Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.490
Filtrar
1.
J Environ Sci (China) ; 149: 330-341, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181646

RESUMEN

The emission of heavy-duty vehicles has raised great concerns worldwide. The complex working and loading conditions, which may differ a lot from PEMS tests, raised new challenges to the supervision and control of emissions, especially during real-world applications. On-board diagnostics (OBD) technology with data exchange enabled and strengthened the monitoring of emissions from a large number of heavy-duty diesel vehicles. This paper presents an analysis of the OBD data collected from more than 800 city and highway heavy-duty vehicles in China using remote OBD data terminals. Real-world NOx and CO2 emissions of China-6 heavy-duty vehicles have been examined. The results showed that city heavy-duty vehicles had higher NOx emission levels, which was mostly due to longer time of low SCR temperatures below 180°C. The application of novel methods based on 3B-MAW also found that heavy-duty diesel vehicles tended to have high NOx emissions at idle. Also, little difference had been found in work-based CO2 emissions, and this may be due to no major difference were found in occupancies of hot running.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Carbono , Monitoreo del Ambiente , Óxidos de Nitrógeno , Emisiones de Vehículos , Emisiones de Vehículos/análisis , China , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , Monitoreo del Ambiente/métodos , Óxidos de Nitrógeno/análisis , Ciudades , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/análisis , Gasolina/análisis
2.
J Environ Sci (China) ; 149: 386-393, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181651

RESUMEN

To understand the smoke level and NOx emission characteristics of in-use construction machinery in Beijing, we selected 905 construction machines in Beijing from August 2022 to April 2023 to monitor the emission level of smoke and NOx. The exhaust smoke level and excessive emission situation of different machinery types were identified, and their NOx emission levels were monitored according to the free acceleration method. We investigated the correlation of NOx and smoke emission, and proposed suggestions for controlling pollution discharge from construction machinery in the future. The results show that the exhaust smoke level was 0-2.62 m-1, followed a log-normal distribution (µ = -1.73, δ = 1.09, R2 = 0.99), with a 5.64% exceedance rate. Differences were observed among machinery types, with low-power engine forklifts showing higher smoke levels. The NOx emission range was 71-1516 ppm, followed a normal distribution (µ = 565.54, δ = 309.51, R2 = 0.83). Differences among machinery types were relatively small. Engine rated net power had the most significant impact on NOx emissions. Thus, NOx emissions from construction machinery need further attention. Furthermore, we found a weak negative correlation (p < 0.05) between the emission level of smoke and NOx, that is the synergic emission reduction effect is poor, emphasizing the need for NOx emission limits. In the future, the oversight in Beijing should prioritize phasing out China Ⅰ and China Ⅱ machinery, and monitor emissions from high-power engine China Ⅲ machinery.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Humo , Beijing , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Humo/análisis , Emisiones de Vehículos/análisis , Óxidos de Nitrógeno/análisis , Industria de la Construcción
3.
Chem Biol Drug Des ; 104(2): e14610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160642

RESUMEN

NADPH oxidases (NOXs) are the sole enzyme in the human body that can directly produce reactive oxygen species. Recent studies have shown that NOXs is a very promising target for the treatment of diabetic nephropathy (DN). Here, a series of quinoline(quinolinone) derivatives have been designed based on pharmacophore strategy, synthesized and evaluated. Among them, 19d exhibits potent antiproliferative and NOXs inhibitory activities, and is worthy for further investigation.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , NADPH Oxidasas , Quinolinas , Quinolonas , Humanos , NADPH Oxidasas/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Quinolinas/química , Quinolinas/farmacología , Quinolinas/síntesis química , Quinolonas/química , Quinolonas/farmacología , Quinolonas/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral
4.
Chem Rec ; 24(8): e202400094, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39092686

RESUMEN

Nitrogen oxides (NOx) should be purified according to environmental regulations, being restricted increasingly year by year. A wide variety of denitration technologies, such as selective catalytic reduction (SCR) of NOx to nitrogen (N2) and NOx storage reduction (NSR) to N2 by injecting reducing agents like ammonia (NH3), has so far been developed practically. Sophisticated catalytic approaches are perhaps mandatory for the sustainability in energy including complete purification of NOx. As one of the solutions to overcome problems for environment and resource simultaneously, this concept article focuses on the utilization of reactive nitrogen (Nr) compounds, mainly NOx, for encouraging an opening to consider nitrogen circular economy. For the recycling of NOx via NH3, a challenging but rational catalytic technology can be proposed by an alternate switching the inlet gas between NOx containing oxidative gas and H2 containing reductive one without an operation to change the reaction temperature. Considering the reactivity of NOx higher than that of N2, this kind of NOx to NH3 (NTA) process is promising for synthesizing NH3, being valuable not only as fertilizer but also as fuel in near future.

5.
Free Radic Biol Med ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182738

RESUMEN

Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of Oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.

6.
Genes Cells ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126279

RESUMEN

The membrane-integrated NADPH oxidases DUOX1 and DUOX2 are recruited to the apical plasma membrane in epithelial cells to release hydrogen peroxide, thereby playing crucial roles in various functions such as thyroid hormone synthesis and host defense. However, it has remained unknown about the molecular mechanism for apical sorting of DUOX1 and DUOX2. Here we show that DUOX1 and DUOX2 are correctly sorted to the apical membrane via the membrane-spanning DUOX maturation proteins DUOXA1 and DUOXA2, respectively, when co-expressed in MDCK epithelial cells. Impairment of N-glycosylation of DUOXA1 results in mistargeting of DUOX1 to the basolateral membrane. Similar to DUOX1 complexed with the glycosylation-defective DUOXA1, the naturally non-glycosylated oxidase NOX5, which forms a homo-oligomer, is targeted basolaterally. On the other hand, a mutant DUOXA2 deficient in N-glycosylation is less stable than the wild-type protein but still capable of recruiting DUOX2 to the apical membrane, whereas DUOX2 is missorted to the basolateral membrane when paired with DUOXA1. These findings indicate that DUOXA2 is crucial but its N-glycosylation is dispensable for DUOX2 apical recruitment; instead, its C-terminal region seems to be involved. Thus, apical sorting of DUOX1 and DUOX2 is likely regulated in a distinct manner by their respective partners DUOXA1 and DUOXA2.

7.
Environ Sci Technol ; 58(32): 14329-14337, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088742

RESUMEN

A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnOx, FeOx, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene. The MnFeOx-USY catalyst with MnOx and FeOx dimetallic oxides exhibited the most excellent performance of catalytic ozonation of toluene. On the other hand, the presence of NOx in reaction gas mixtures significantly promoted both toluene conversion and mineralization, which was attributed to the formation of nitrate species on the catalysts surface and thus the increase of both acid sites and toluene oxidation sites. Meanwhile, the reaction mechanism between O3 and C7H8 was modified in which the strong interactions between MnOx, FeOx, and USY accelerated the reaction progress based on the L-H route. In addition, the formation of the surface nitrate species not only promoted reaction progress following the L-H route but also resulted in the occurrence of the reaction via the E-R route.


Asunto(s)
Ozono , Tolueno , Tolueno/química , Catálisis , Ozono/química , Compuestos Férricos/química , Manganeso/química , Gases/química , Óxidos/química , Óxidos de Nitrógeno/química , Oxidación-Reducción
8.
Environ Sci Technol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134451

RESUMEN

Tandem catalysis is widely adopted for multipollutant control in mobile sources but has rarely been reported in stationary source emission elimination. This work proposed a tandem arrangement way with up-streamed V2O5/TiO2 + down-streamed Cr2O3/TiO2 catalysts, which could achieve the efficient synergistic control of NOx and C3H8 in industrial flue gas. Moreover, this arrangement successfully alleviated the unwanted N2O formation during the NH3 -SCR process. Compared to the conventional impregnation method of the Cr2O3-V2O5/TiO2 catalyst, the tandem catalysts of V2O5/TiO2 + Cr2O3/TiO2 could enhance the NOx and C3H8 conversion by 4.2% and 39.5%, respectively, at 350 °C. It might be attributed to the fact that Cr species was the active site for C3H8 oxidation, and the tandem arrangement of catalysts was beneficial to even dispersion of active components on supports. Furthermore, due to the preferential NOx removal over the up-streamed V2O5/TiO2 catalyst, the tandem catalysts obviously alleviated the N2O formation caused by Cr species during the NH3-SCR process. Herein, it significantly decreased N2O formation by 240.5% at 350 °C compared to the Cr2O3-V2O5/TiO2 catalyst, achieving multipollutant emission control from industrial flue gas with the performance of "one stone three birds".

9.
Stem Cell Rev Rep ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39134888

RESUMEN

NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs. In the current study, we noticed that Nox2-deficient mice, despite the increased number of HSPCs in the bone marrow (BM), show hematopoietic defects illustrated by delayed recovery of peripheral blood (PB) hematopoietic parameters after sublethal irradiation and mobilize fewer HSPCs after administration of G-CSF and AMD3100. Moreover, Nox2-deficient HSPCs engraft poorly after transplantation into normal syngeneic recipients. To explain these defects at the molecular level, we hypothesized that Nox2-KO decreased ROS level does not efficiently activate Nlrp3 inflammasome, which plays a crucial role in regulating the trafficking of HSPCs. Herein, we report Nox2-deficient HSPCs display i) defective migration to major chemoattractant, ii) impaired intracellular activation of Nlrp3 inflammasome, and iii) a defect in membrane lipid raft (MLRs) formation that is required for a proper chemotactic response to pro-migratory factors. We conclude that Nox2-derived ROS enhances in Nlrp3 inflammasome-dependent manner HSPCs trafficking by facilitating MLRs assemble on the outer cell membranes, and defect in Nox2 expression results in impaired activation of Nlrp3 inflammasome, which affects HSPCs migration.

10.
Fundam Res ; 4(4): 934-940, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39161416

RESUMEN

Nitrate products are widely used in manufacturing as crucial raw materials and fertilizers. The traditional nitrate synthesis process involves high energy consumption and emission, thereby opposing the goals of zero-carbon emission and green chemistry. Thus, a sustainable roadmap for nitrate synthesis that uses green energy input, clean N sources, and direct catalytic processes is urgently required (e.g., developing a novel photosynthesis system). Here, we synthesized TiO2-supported atomically dispersed Cu species for N2 photofixation to nitrate in a flow reactor. The optimized photocatalyst yielded a high nitrate photosynthesis rate of 0.93 µmol h-1 and selectivity of ∼90%, which is superior to most of the values reported thus far. Further, experimental results and in-situ investigations revealed that the atomically dispersed Cu sites in the as-designed sample significantly enhanced the separation and transfer efficiency of photogenerated carriers, adsorption and activation of reactants, and the formation of chemisorbed NOx intermediates, thereby realizing the excellent photofixation of N2 to nitrate.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124945, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39163768

RESUMEN

Pd speciation induced by the combined effect of CO and water on Pd/SSZ-13 samples prepared by both impregnation and ion exchange was examined by FT-IR spectroscopy of CO adsorbed at room temperature and at liquid nitrogen temperature on anhydrous and hydrated samples. Starting from the literature findings related to the CO reducing effect on Pd cations, the present work gives precise spectroscopic evidences on how water is necessary in this process not only for compensating with H+ the zeolite exchange sites set free by Pd reduction, but also for mobilizing isolated Pd2+/Pd+ cations and making possible the reduction reactions. The aggregation of some Pd+ sites, just formed by the reduction and mobilized by the hydration, gives rise to the formation of Pd2O particles. Also, Pd0(100) sites are observed with CO on hydrated sample, formed by the aggregation and reduction of isolated Pd cations. Moreover, Pd0(111) sites are formed on the surface of PdOx particles during CO outgassing. The observation of the combined effect of water and CO allowed to define assignments of IR bands related to carbonyls of Pd in different oxidation states and coordination degrees.

12.
J Nanobiotechnology ; 22(1): 479, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134988

RESUMEN

The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Exosomas , Ferroptosis , Flores , Mucosa Gástrica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Mucosa Intestinal , Intestino Delgado , Peroxidación de Lípido , Nanopartículas , Animales , Ferroptosis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patología , Administración Oral , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Flores/química , Nanopartículas/química , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Humanos , Ratones Endogámicos C57BL
13.
Free Radic Biol Med ; 224: 1-8, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147069

RESUMEN

We re-examined the reported increase in mitochondrial ROS production during acute hypoxia in cells. Using the Amplex Ultrared/horseradish peroxidase assay we found a decrease, not increase, in hydrogen peroxide release from HEK293 cells under acute hypoxia, at times ranging from 1 min to 3 h. The rates of superoxide/hydrogen peroxide production from each of the three major sites (site IQ in complex I and site IIIQo in complex III in mitochondria, and NADH oxidases (NOX) in the cytosol) were decreased to the same extent by acute hypoxia, with no change in the cells' ability to degrade added hydrogen peroxide. A similar decrease in ROS production under acute hypoxia was found using the diacetyldichlorofluorescein assay. Using a HIF1α reporter cell line we confirmed earlier observations that suppression of superoxide production by site IIIQo decreases HIF1α expression, and found similar effects of suppressing site IQ or NOX. We conclude that increased mitochondrial ROS do not drive the response of HIF1α to acute hypoxia, but suggest that cytosolic H2O2 derived from site IQ, site IIIQo and NOX in cells is necessary to permit HIF1α stabilization by other signals.

14.
Sci Total Environ ; 949: 175073, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089381

RESUMEN

Emissions of nitrogen oxides (NOx) are a dominant contributor to ambient nitrogen dioxide (NO2) concentrations, but the quantitative relationship between them at an intracity scale remains elusive. The Chengdu 2021 FISU World University Games (July 22 to August 10, 2023) was the first world-class multisport event in China after the COVID-19 pandemic which led to a substantial decline in NOx emissions in Chengdu. This study evaluated the impact of variations in NOx emissions on NO2 concentrations at a fine spatiotemporal scale by leveraging this event-driven experiment. Based on ground-based and satellite observations, we developed a data-driven approach to estimate full-coverage hourly NO2 concentrations at 1 km resolution. Then, a random-forest-based meteorological normalization method was applied to decouple the impact of meteorological conditions on NO2 concentrations for every grid cell, the resulting data were then compared with the timely bottom-up NOx emissions. The SHapley-Additive-exPlanation (SHAP) method was employed to delineate the individual contributions of meteorological factors and various emission sources to the changes in NO2 concentrations. According to the full-coverage meteorologically normalized NO2 concentrations, a decrease in NOx emissions and favorable meteorological conditions accounted for 80 % and 20 % of the NO2 reduction, respectively, across Chengdu city during the control period. Within the strict control zone, a 30 % decrease in the meteorologically normalized NO2 concentrations was observed during the control period. The normalized NO2 concentrations demonstrated a strong correlation with NOx emissions (R = 0.96). Based on the SHAP analysis, traffic emissions accounted for 73 % of the reduction in NO2 concentrations, underscoring the significance of traffic control measures in improving air quality in urban areas. This study provides insights into the relationship between NO2 concentrations and NOx emissions using real-world data, which implies the substantial benefits of vehicle electrification for sustainable urban development.

15.
Sci Total Environ ; 949: 175177, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094662

RESUMEN

Satellite remote sensing is a promising approach for monitoring global CO2 emissions. However, existing satellite-based CO2 observations are too coarse to meet the requirements of fine-scale global mapping. We propose a novel data-driven method to estimate global anthropogenic CO2 emissions at a 0.1° scale, which integrates emissions inventories and satellite data while bypassing the inadequate accuracy of CO2 observations. Due to the co-emitted anthropogenic emissions of nitrogen oxides (NOx = NO + NO2) and CO2, high-resolution NO2 measurements from the TROPOspheric Monitoring Instrument (TROPOMI) are employed to map the global anthropogenic emissions at a global 0.1° scale. We construct the driving features from NO2 data and also incorporate gridded CO2/NOx emission ratios and NOx/NO2 conversion ratios as driving data to describe co-emissions. Both ratios are predicted using a long short-term memory (LSTM) neural network (with an R2 of 0.984 for the CO2/NOx emission ratio and an R2 of 0.980 for the NOx/NO2 conversion ratio). The data-driven model for estimating anthropogenic CO2 emissions is implemented by random forest regression (RFR) and trained using the Emissions Database for Global Atmospheric Research (EDGAR). The satellite-based anthropogenic CO2 emission dataset at a global 0.1° scale agrees well with the national CO2 emission inventories (an R2 of 0.998 with Global Carbon Budget (GCB) and an R2 of 0.996 with EDGAR) and consistent with city-level emission estimates from Carbon Monitor Cities (CMC) with the R2 of 0.824. This data-driven method based on satellite-observed NO2 provides a new perspective for fine-resolution anthropogenic CO2 emissions estimation.

16.
Life Sci ; 353: 122936, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094904

RESUMEN

Diclofenac (DF), a non-steroidal anti-inflammatory drug, is commonly used to relieve pain and inflammation. High doses of DF might induce acute kidney injury (AKI), particularly in elderly, a known vulnerable population. AIM: We aimed to assess the protective role of melatonin (Mel) on DF-induced AKI in aged rats and to highlight the underpinning mechanisms include, oxidative stress and inflammation focusing on microRNA-34a (miR-34a), nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 (Nrf2/HO-1) and NLR family-pyrin domain containing-3 (NLRP3) inflammasome pathways, and to elucidate the possibility of epithelial sodium channel (ENaC) involvement. MATERIALS AND METHODS: Thirty old male Wistar rats were allocated randomly into 3 groups: Control, DF and Mel-DF groups. KEY FINDINGS: Melatonin provided nephroprotective effects against DF-induced AKI via attenuating the expression of renal miR-34a and subsequently promoting the signaling of Nrf2/HO-1 with elevation of the antioxidant defense capacity and suppressing NLRP3 inflammasomes. Melatonin alleviated DF-induced hypernatremia via decreasing the ENaC expression. Renal histopathological examination revealed significant reduction in vascular congestion, mononuclear infiltration, glomerulo-tubular damage, fibrosis and TNF-α optical density. SIGNIFICANCE: It can be assumed that melatonin is a promising safe therapeutic agent in controlling DF-induced AKI in elderly.


Asunto(s)
Lesión Renal Aguda , Antiinflamatorios no Esteroideos , Diclofenaco , Melatonina , Estrés Oxidativo , Ratas Wistar , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Masculino , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Ratas , Antiinflamatorios no Esteroideos/farmacología , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sustancias Protectoras/farmacología , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo
17.
Molecules ; 29(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124862

RESUMEN

In this paper, the removal effects and activation energy of Ce and Pd doping on pollutants (CO, C3H6, and NO) were comparatively analyzed by using characterization methods and constructed kinetic equations. Furthermore, the problems of the water influence mechanism on the NSR process were also discussed. The results show the following: (1) Pd doping effectively improves the removal of CO (80%) and C3H6 (71%) in the low-temperature section of the catalyst (150-250 °C) compared to Ce doping, while Ce doping exhibits excellent low-temperature conversion of NO. (2) The reaction activation energy of the LaKMnPdO3 catalyst was 9784 kJ/mol, which was significantly lower than that of the LaKMnCeO3 catalyst. (3) The presence of H2O has an important enhancement effect in the storage performance of the LaKMnPdO3 catalyst for NOx but decreases the catalytic reduction of NO. It provides a solution for the effective treatment of the increasing problems of particulate matter and ozone pollution.

18.
Nutrients ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125413

RESUMEN

It is widely recognized that foods, biodiversity, and human health are strongly interconnected, and many efforts have been made to understand the nutraceutical value of diet. In particular, diet can affect the progression of intestinal diseases, including inflammatory bowel disease (IBD) and intestinal cancer. In this context, we studied the anti-inflammatory and antioxidant activities of extracts obtained from a local endangered variety of Phaseolus vulgaris L. (Fagiola di Venanzio, FV). Using in vitro intestinal cell models, we evaluated the activity of three different extracts: soaking water, cooking water, and the bioaccessible fraction obtained after mimicking the traditional cooking procedure and gastrointestinal digestion. We demonstrated that FV extracts reduce inflammation and oxidative stress prompted by interleukin 1ß through the inhibition of cyclooxygenase 2 expression and prostaglandin E2 production and through the reduction in reactive oxygen species production and NOX1 levels. The reported data outline the importance of diet in the prevention of human inflammatory diseases. Moreover, they strongly support the necessity to safeguard local biodiversity as a source of bioactive compounds.


Asunto(s)
Antiinflamatorios , Antioxidantes , Inflamación , Phaseolus , Extractos Vegetales , Phaseolus/química , Humanos , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Dinoprostona/metabolismo , Ciclooxigenasa 2/metabolismo , Línea Celular Tumoral
19.
Cell Commun Signal ; 22(1): 393, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118129

RESUMEN

BACKGROUND: Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS: An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS: Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS: This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.


Asunto(s)
Daño por Reperfusión , Intercambiador 1 de Sodio-Hidrógeno , Animales , Humanos , Masculino , Ratones , Ácidos/metabolismo , Línea Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Concentración de Iones de Hidrógeno , Precondicionamiento Isquémico , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/genética
20.
J Hazard Mater ; 478: 135613, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39180994

RESUMEN

This investigation explored the potential of utilizing alkali-treated corn cob (CC) as a solid carbon source to improve NOX and SO2 removal from flue gas. Leaching experiments unveiled a hierarchy of chemical oxygen demand release capacity: 0.03 mol/L alkali-treated CC > 0.02 mol/L > 0.01 mol/L > 0.005 mol/L > control. In NOX and SO2 removal experiments, as the inlet NOX concentration rose from 300 to 1000 mg/m3, the average NOX removal efficiency increased from 58.56 % to 80.00 %. Conversely, SO2 removal efficiency decreased from 99.96 % to 91.05 %, but swiftly rebounded to 98.56 % by day 18. The accumulation of N intermediates (NH4+, NO3-, NO2-) increased with escalating inlet NOX concentration, while the accumulation of S intermediates (SO42-, SO32-, S0) varied based on shifts in the population of functional bacteria. The elevation in inlet NOX concentration stimulated the growth of denitrifying bacteria, enhancing NOX removal efficiency. Concurrently, the population of nitrate-reducing sulfur-oxidizing bacteria and sulfate-reducing bacteria expanded, aiding in the accumulation of S0 and the removal of SO2. The comparison experiments on carbon sources confirmed the comparable NOX and SO2 removal efficiencies of alkali-treated CC and glucose, yet underscored differences in intermediates accumulation due to distinct genus structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA