Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Adv Res ; 33: 141-151, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34603785

RESUMEN

Introduction: Nephrotic syndrome is a common pediatric kidney disease. Investigations on several genetic polymorphisms revealed an inconsistent influence on the resistance of patients to steroids. Objectives: This study aimed to identify the association of ABCB1 (1236C > T, 2677G > T, 3435C > T), NR3C1 (rs10482634, rs6877893), and CYP3A5 (CYP3A5*3) gene polymorphism as well as sociodemographic and clinicopathological parameters with the risk of developing prednisolone resistance in pediatric patients with nephrotic syndrome. Methods: A case-control analysis was performed on 180 nephrotic syndrome patients. Among them, 30 patients were classified as prednisolone resistant group, and 150 were classified as prednisolone sensitive group. Genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: No significant association of 1236C > T polymorphism with the risk of prednisolone resistance (p > 0.05) was found. The GT heterozygous of 2677G > T was found to be significantly associated with the development of prednisolone resistance (OR = 3.9, p = 0.034). In the case of 3435C > T, a statistically significant association was observed in TC heterozygous and TT mutant homozygous genotypes (OR = 0.38, p = 0.047; OR = 3.06, p = 0.038, respectively) with prednisolone resistance. For rs10482634 polymorphism, the AG heterozygous and AG+GG genotypes were significantly linked with prednisolone resistance (OR = 2.40, p = 0.033; OR = 2.36, p = 0.034, respectively). We found no association with the risk of prednisolone resistance with rs6877893 and CYP3A5*3 polymorphism (p > 0.05). CTC and TGT haplotypes of ABCB1 and GA haplotype of NR3C1 were also associated with the increased risk of pediatric prednisolone resistance (OR = 4.47, p = 0.0003; OR = 2.71, p = 0.03; and OR = 4.22, p = 0.022, consecutively). We also observed the correlation of different sociodemographic and clinicopathological factors with prednisolone resistance in pediatric nephrotic syndrome. Conclusion: Our findings showed a significant association of ABCB1 and NR3C1 gene polymorphisms with prednisolone resistant pediatric nephrotic syndrome.


Asunto(s)
Síndrome Nefrótico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Bangladesh , Niño , Resistencia a Medicamentos/genética , Genotipo , Haplotipos , Humanos , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Polimorfismo Genético/genética , Prednisolona/uso terapéutico , Receptores de Glucocorticoides/genética
2.
JHEP Rep ; 2(6): 100179, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33134908

RESUMEN

BACKGROUND & AIMS: The paradox of hepatic insulin resistance describes the inability for liver to respond to bioenergetics hormones in suppressing gluconeogenesis whilst maintaining lipid synthesis. Here, we report the deficiency of miR-192-3p in the livers of mice with diabetes and its role in alleviating hepatic steatosis. METHODS: As conventional pre-microRNA (miRNA) stem-loop overexpression only boosts guiding strand (i.e. miR-192-5p) expression, we adopted an artificial AAV(DJ)-directed, RNA Pol III promoter-driven miRNA hairpin construct for star-strand-specific overexpression in the liver. Liver steatosis and insulin resistance markers were evaluated in primary hepatocytes, mice with diabetes, and mice with excessive carbohydrate consumption. RESULTS: Functional loss of miR-192-3p in liver exacerbated hepatic micro-vesicular steatosis and insulin resistance in either mice with diabetes or wild-type mice with excessive fructose consumption. Liver-specific overexpression of miR-192-3p effectively halted hepatic steatosis and ameliorated insulin resistance in these mice models. Likewise, hepatocytes overexpressing miR-192-3p exhibited improved lipid accumulation, accompanied with decreases in lipogenesis and lipid-accumulation-related transcripts. Mechanistically, glucocorticoid receptor (GCR, also known as nuclear receptor subfamily 3, group C, member 1 [NR3C1]) was demonstrated to be negatively regulated by miR-192-3p. The effect of miR-192-3p on mitigating micro-vesicular steatosis was ablated by the reactivation of NR3C1. CONCLUSIONS: The star strand miR-192-3p was an undermined glycerolipid regulator involved in controlling fat accumulation and insulin sensitivity in liver through blockade of hepatic GCR signalling; this miRNA may serve as a potential therapeutic option for the common co-mobility of diabetic mellitus and fatty liver disease. LAY SUMMARY: The potential regulatory activity of star strand microRNA (miRNA) species has been substantially underestimated. In this study, we investigate the role and mechanism of an overlooked star strand miRNA (miR-192-3p) in regulating hepatic steatosis and insulin signalling in the livers of mice with diabetes and mice under excessive carbohydrate consumption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA