Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 19: 6328-6342, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938409

RESUMEN

Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm Osedax mucofloris, and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.6%) encoding such enzymes were retrieved. The taxonomic assignation and the median identity of 72.2% to homologous proteins reflect microbial and functional novelty associated to a specialized bone-degrading marine community. Binning suggests that only one generalist hosting all ten targeted activities, working in synergy with multiple specialists hosting a few or individual activities. Collagenases were the most abundant enzyme class, representing 48% of the total hits. A total of 47 diverse enzymes, representing 8 hydrolytic activities, were produced in Escherichia coli, whereof 13 were soluble and active. The biochemical analyses revealed a wide range of optimal pH (4.0-7.0), optimal temperature (5-65 °C), and of accepted substrates, specific to each microbial enzyme. This versatility may contribute to a high environmental plasticity of bone-degrading marine consortia that can be confronted to diverse habitats and bone materials. Through bone-meal degradation tests, we further demonstrated that some of these enzymes, particularly those from Flavobacteriaceae and Marinifilaceae, may be an asset for development of new value chains in the biorefinery industry.

2.
Comput Struct Biotechnol J ; 19: 2307-2317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995922

RESUMEN

Our understanding of enzymes with high substrate ambiguity remains limited because their large active sites allow substrate docking freedom to an extent that seems incompatible with stereospecificity. One possibility is that some of these enzymes evolved a set of evolutionarily fitted sequence positions that stringently allow switching substrate ambiguity and chiral specificity. To explore this hypothesis, we targeted for mutation a serine ester hydrolase (EH3) that exhibits an impressive 71-substrate repertoire but is not stereospecific (e.e. 50%). We used structural actions and the computational evolutionary trace method to explore specificity-swapping sequence positions and hypothesized that position I244 was critical. Driven by evolutionary action analysis, this position was substituted to leucine, which together with isoleucine appears to be the amino acid most commonly present in the closest homologous sequences (max. identity, ca. 67.1%), and to phenylalanine, which appears in distant homologues. While the I244L mutation did not have any functional consequences, the I244F mutation allowed the esterase to maintain a remarkable 53-substrate range while gaining stereospecificity properties (e.e. 99.99%). These data support the possibility that some enzymes evolve sequence positions that control the substrate scope and stereospecificity. Such residues, which can be evolutionarily screened, may serve as starting points for further designing substrate-ambiguous, yet chiral-specific, enzymes that are greatly appreciated in biotechnology and synthetic chemistry.

3.
Comput Struct Biotechnol J ; 19: 145-152, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33425247

RESUMEN

AmpC BER is an extended-spectrum (ES) class C ß-lactamase with a two-amino-acid insertion in the H10 helix region located at the boundary of the active site compared with its narrow spectrum progenitor. The crystal structure of the wild-type AmpC BER revealed that the insertion widens the active site by restructuring the flexible H10 helix region, which is the structural basis for its ES activity. Besides, two sulfates originated from the crystallization solution were observed in the active site. The presence of sulfate-binding subsites, together with the recognition of ring-structured chemical scaffolds by AmpC BER, led us to perform in silico molecular docking experiments with halisulfates, natural products isolated from marine sponge. Inspired by the snug fit of halisulfates within the active site, we demonstrated that halisulfate 3 and 5 significantly inhibit ES class C ß-lactamases. Especially, halisulfate 5 is comparable to avibactam in terms of inhibition efficiency; it inhibits the nitrocefin-hydrolyzing activity of AmpC BER with a Ki value of 5.87 µM in a competitive manner. Furthermore, halisulfate 5 displayed moderate and weak inhibition activities against class A and class B/D enzymes, respectively. The treatment of ß-lactamase inhibitors (BLIs) in combination with ß-lactam antibiotics is a working strategy to cope with infections by pathogens producing ES ß-lactamases. Considering the emergence and dissemination of enzymes insensitive to clinically-used BLIs, the broad inhibition spectrum and structural difference of halisulfates would be used to develop novel BLIs that can escape the bacterial resistance mechanism mediated by ß-lactamases.

4.
Saudi J Biol Sci ; 23(3): 410-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27081368

RESUMEN

The HSPA6, one of the members of large family of HSP70, is significantly up-regulated and has been targeted as a biomarker of cellular stress in several studies. Herein, conditions were optimized to increase the yield of recombinant camel HSPA6 protein in its native state, primarily focusing on the optimization of upstream processing parameters that lead to an increase in the specific as well as volumetric yield of the protein. The results showed that the production of cHSPA6 was increased proportionally with increased incubation temperature up to 37 °C. Induction with 10 µM IPTG was sufficient to induce the expression of cHSPA6 which was 100 times less than normally used IPTG concentration. Furthermore, the results indicate that induction during early to late exponential phase produced relatively high levels of cHSPA6 in soluble form. In addition, 5 h of post-induction incubation was found to be optimal to produce folded cHSPA6 with higher specific and volumetric yield. Subsequently, highly pure and homogenous cHSPA6 preparation was obtained using metal affinity and size exclusion chromatography. Taken together, the results showed successful production of electrophoretically pure recombinant HSPA6 protein from Camelus dromedarius in Escherichia coli in milligram quantities from shake flask liquid culture.

5.
Biochem Biophys Rep ; 7: 415-422, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28955933

RESUMEN

Francisella tularensis is the causative agent of the highly, infectious disease, tularemia. Amongst the genes identified as essential to the virulence of F. tularensis was the proposed serine hydrolase FTT0941c. Herein, we purified FTT0941c to homogeneity and then characterized the folded stability, enzymatic activity, and substrate specificity of FTT0941c. Based on phylogenetic analysis, FTT0941c was classified within a divergent Francisella subbranch of the bacterial hormone sensitive lipase (HSL) superfamily, but with the conserved sequence motifs of a bacterial serine hydrolase. FTT0941c showed broad hydrolase activity against diverse libraries of ester substrates, including significant hydrolytic activity across alkyl ester substrates from 2 to 8 carbons in length. Among a diverse library of fluorogenic substrates, FTT0941c preferred α-cyclohexyl ester substrates, matching with the substrate specificity of structural homologues and the broad open architecture of its modeled binding pocket. By substitutional analysis, FTT0941c was confirmed to have a classic catalytic triad of Ser115, His278, and Asp248 and to remain thermally stable even after substitution. Its overall substrate specificity profile, divergent phylogenetic homology, and preliminary pathway analysis suggested potential biological functions for FTT0941c in diverse metabolic degradation pathways in F. tularensis.

6.
Hum Vaccin Immunother ; 11(8): 2030-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25891359

RESUMEN

CIGB-247 is a cancer vaccine that is a formulation of a recombinant protein antigen representative of the human vascular endothelial growth factor (VEGF) with a bacterially-derived adjuvant (VSSP). The vaccine has shown an excellent safety profile in mice, rats, rabbits, not-human primates and in recent clinical trials in cancer patients. Response to the vaccine is characterized by specific antibody titers that neutralize VEGF/VEGFR2 binding and a cytotoxic tumor-specific response. To expand our present anti-VEGF active immunotherapy strategies, we have now studied in mice and non-human primates the effects of vaccination with a formulation of our recombinant VEGF antigen and aluminum phosphate adjuvant (hereafter denominated CIGB-247-A). Administered bi-weekly, CIGB-247-A produces high titers of anti-VEGF IgG blocking antibodies in 2 mice strains. Particularly in BALB/c, the treatment impaired subcutaneous F3II mammary tumor growth and reduced the number of spontaneous lung macro metastases, increasing animals' survival. Spleen cells from specifically immunized mice directly killed F3II tumor cells in vitro. CIGB-247-A also showed to be immunogenic in non-human primates, which developed anti-VEGF blocking antibodies and the ability for specific direct cell cytotoxic responses, all without impairing the healing of deep skin wounds or other side effect. Our results support consideration of aluminum phosphate as a suitable adjuvant for the development of new vaccine formulations using VEGF as antigen.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Aluminio/administración & dosificación , Vacunas contra el Cáncer/inmunología , Química Farmacéutica , Fosfatos/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/genética , Chlorocebus aethiops , Citotoxicidad Inmunológica , Femenino , Esquemas de Inmunización , Leucocitos Mononucleares/inmunología , Masculino , Neoplasias Mamarias Animales/terapia , Neoplasias Mamarias Experimentales/terapia , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/prevención & control , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
7.
Autophagy ; 11(3): 503-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714412

RESUMEN

Autophagy is an essential component of host innate and adaptive immunity. Viruses have developed diverse strategies for evading or utilizing autophagy for survival. The response of the autophagy pathways to virus invasion is poorly documented. Here, we report on the induction of autophagy initiated by the pathogen receptor HSP90AA1 (heat shock protein 90 kDa α [cytosolic], class A member 1) via the AKT-MTOR (mechanistic target of rapamycin)-dependent pathway. Transmission electron microscopy and confocal microscopy revealed that intracellular autolysosomes packaged avibirnavirus particles. Autophagy detection showed that early avibirnavirus infection not only increased the amount of light chain 3 (LC3)-II, but also upregulated AKT-MTOR dephosphorylation. HSP90AA1-AKT-MTOR knockdown by RNA interference resulted in inhibition of autophagy during avibirnavirus infection. Virus titer assays further verified that autophagy inhibition, but not induction, enhanced avibirnavirus replication. Subsequently, we found that HSP90AA1 binding to the viral protein VP2 resulted in induction of autophagy and AKT-MTOR pathway inactivation. Collectively, our findings suggest that the cell surface protein HSP90AA1, an avibirnavirus-binding receptor, induces autophagy through the HSP90AA1-AKT-MTOR pathway in early infection. We reveal that upon viral recognition, a direct connection between HSP90AA1 and the AKT-MTOR pathway trigger autophagy, a critical step for controlling infection.


Asunto(s)
Autofagia , Avibirnavirus/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Membrana Celular/metabolismo , Pollos , Citosol/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Fosforilación , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
8.
Bioengineered ; 6(1): 62-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25551420

RESUMEN

We report the molecular cloning, expression, and single-step homogeneous purification of RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae. RPB5 is a 210 amino acid nuclear protein that functions as the fifth largest subunit of polymerase II and plays a central role in transcription. The gene that codes for RPB5 was generated by amplification by polymerase chain reaction. It was then inserted in the expression vector pET28a(+) under the transcriptional control of the bacteriophage T7 promoter and lac operator. BL21(DE3) Escherichia coli strain transformed with the rpb5 expression vector pET28a(+)-rpb5 accumulates large amounts of a soluble protein of about 30 kDa (25 kDa plus 5 kDa double His6-Tag at N and C-terminal). The protein was purified to homogeneity using immobilized metal affinity chromatography. RPB5 recombinant protein was further confirmed by immunoblotting with anti-His antibody. In this study, the expression and purification procedures have provided a simple and efficient method to obtain pure RPB5 in large quantities. This will provide an opportunity to study the role of S. cerevisiae RPB5 in gene expression and transcription regulation. Furthermore, it can provide additional knowledge of the interaction partners of RPB5 during various steps of transcription and gene expression.


Asunto(s)
Clonación Molecular , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cromatografía de Afinidad , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/aislamiento & purificación , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad
9.
MAbs ; 6(5): 1327-39, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25517317

RESUMEN

A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV's NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes.


Asunto(s)
Hepacivirus/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Anticuerpos de Cadena Única/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Visualización de Superficie Celular , Supervivencia Celular/efectos de los fármacos , Epítopos/genética , Epítopos/metabolismo , Hepacivirus/genética , Hepacivirus/fisiología , Hepatitis C/prevención & control , Hepatitis C/virología , Humanos , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Microscopía Confocal , Modelos Moleculares , Mutación , Biblioteca de Péptidos , Unión Proteica , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
10.
FEBS Open Bio ; 4: 77-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24490132

RESUMEN

Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting) assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH) or N-acetyl-l-cysteine (NAC). Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA