Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731921

RESUMEN

The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.


Asunto(s)
Proteínas Bacterianas , Synechococcus , Synechococcus/metabolismo , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Adenosina Trifosfato/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Unión al ADN , Factores de Transcripción
2.
Microorganisms ; 11(10)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37894037

RESUMEN

Cyanobacteria, microorganisms performing oxygenic photosynthesis, must adapt their metabolic processes to environmental challenges such as day and night changes. PipX, a unique regulatory protein from cyanobacteria, provides a mechanistic link between the signalling protein PII, a widely conserved (in bacteria and plants) transducer of carbon/nitrogen/energy richness, and the transcriptional regulator NtcA, which controls a large regulon involved in nitrogen assimilation. PipX is also involved in translational regulation through interaction with the ribosome-assembly GTPase EngA. However, increases in the PipX/PII ratio are toxic, presumably due to the abnormally increased binding of PipX to other partner(s). Here, we present mutational and structural analyses of reported PipX-PII and PipX-NtcA complexes, leading to the identification of single amino acid changes that decrease or abolish PipX toxicity. Notably, 4 out of 11 mutations decreasing toxicity did not decrease PipX levels, suggesting that the targeted residues (F12, D23, L36, and R54) provide toxicity determinants. In addition, one of those four mutations (D23A) argued against the over-activation of NtcA as the cause of PipX toxicity. Most mutations at residues contacting PII decreased PipX levels, indicating that PipX stability would depend on its ability to bind to PII, a conclusion supported by the light-induced decrease of PipX levels in Synechococcus elongatus PCC7942 (hereafter S. elongatus).

3.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194907, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638863

RESUMEN

Regulation of DNA repair genes in cyanobacteria is an unexplored field despite some of them exhibiting high radio-resistance. With RecF pathway speculated to be the major double strand break repair pathway in Nostoc sp. strain PCC7120, regulation of recF, recO and recR genes was investigated. Bioinformatic approach-based identification of promoter and regulatory elements was validated using qRT-PCR analysis, reporter gene and DNA binding assays. Different deletion constructs of the upstream regulatory regions of these genes were analysed in host Nostoc as well as heterologous system Escherichia coli. Studies revealed: (1) Positive regulation of all three genes by NtcA, (2) Negative regulation by LexA, (3) Involvement of contiguous heptamer repeats with/without its yet to be identified interacting partner in regulating (i) binding of NtcA and LexA to recO promoter and its translation, (ii) transcription or translation of recF, (4) Translational regulation of recF and recO through non-canonical and distant S.D. sequence and of recR through a rare initiation codon. Presence of NtcA either precludes binding of LexA to AnLexA-Box or negates its repressive action resulting in higher expression of these genes under nitrogen-fixing conditions in Nostoc. Thus, in Nostoc, expression of recF, recO and recR genes is intricately regulated through multiple regulatory elements/proteins. Contiguous heptamer repeats present across the Nostoc genome in the vicinity of start codon or promoter is likely to have a global regulatory role. This is the first report detailing regulation of DSB repair genes in any algae.


Asunto(s)
Proteínas Bacterianas , Nostoc , Proteínas Bacterianas/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Nostoc/genética , Nostoc/metabolismo
4.
J Exp Bot ; 73(16): 5596-5611, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35595516

RESUMEN

In most algae, NO3- assimilation is tightly controlled and is often inhibited by the presence of NH4+. In the marine, non-colonial, non-diazotrophic cyanobacterium Synechococcus UTEX 2380, NO3- assimilation is sensitive to NH4+ only when N does not limit growth. We sequenced the genome of Synechococcus UTEX 2380, studied the genetic organization of the nitrate assimilation related (NAR) genes, and investigated expression and kinetics of the main NAR enzymes, under N or light limitation. We found that Synechococcus UTEX 2380 is a ß-cyanobacterium with a full complement of N uptake and assimilation genes and NAR regulatory elements. The nitrate reductase of our strain showed biphasic kinetics, previously observed only in freshwater or soil diazotrophic Synechococcus strains. Nitrite reductase and glutamine synthetase showed little response to our growth treatments, and their activity was usually much higher than that of nitrate reductase. NH4+ insensitivity of NAR genes may be associated with the stimulation of the binding of the regulator NtcA to NAR gene promoters by the high 2-oxoglutarate concentrations produced under N limitation. NH4+ sensitivity in energy-limited cells fits with the fact that, under these conditions, the use of NH4+ rather than NO3- decreases N-assimilation cost, whereas it would exacerbate N shortage under N limitation.


Asunto(s)
Synechococcus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
5.
Toxins (Basel) ; 13(5)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946501

RESUMEN

Non-proteinogenic neurotoxic amino acid ß-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms' ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA's action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected-due to their notable expression differences-for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and ß (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations.


Asunto(s)
Aminoácidos Diaminos/farmacología , Fijación del Nitrógeno/efectos de los fármacos , Nostoc/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Bicarbonatos/metabolismo , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Dióxido de Carbono/metabolismo , Toxinas de Cianobacterias , Regulación hacia Abajo/efectos de los fármacos , Nitrógeno/metabolismo , Nitrogenasa/metabolismo , Nostoc/metabolismo , Nostoc/fisiología , Fosforilación/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Proteómica , Estrés Fisiológico/efectos de los fármacos
6.
FEBS J ; 288(5): 1614-1629, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32799414

RESUMEN

NsiR3 (nitrogen stress-inducible RNA 3) is a small noncoding RNA strongly conserved in heterocyst-forming cyanobacteria. In Nostoc sp. PCC 7120, transcription of NsiR3 is induced by nitrogen starvation and depends on the global nitrogen regulator NtcA. A conserved NtcA-binding site is centered around position -42.5 with respect to the transcription start site of NsiR3 homologs, and NtcA binds in vitro to a DNA fragment containing this sequence. In the absence of combined nitrogen, NsiR3 expression is induced in all cells along the Nostoc filament but much more strongly in heterocysts, differentiated cells devoted to nitrogen fixation. Co-expression analysis of transcriptomic data obtained from microarrays hybridized with RNA obtained from Nostoc wild-type or mutant strains grown in the presence of ammonium or in the absence of combined nitrogen revealed that the expression profile of gene putA (proline oxidase) correlates negatively with that of NsiR3. Using a heterologous system in Escherichia coli, we show that NsiR3 binds to the 5'-UTR of putA mRNA, resulting in reduced expression of a reporter gene. Overexpression of NsiR3 in Nostoc resulted in strong reduction of putA mRNA accumulation, further supporting the negative regulation of putA by NsiR3. The higher expression of NsiR3 in heterocysts versus vegetative cells of the N2 -fixing filament could contribute to the previously described absence of putA mRNA and of the catabolic pathway to produce glutamate from arginine via proline specifically in heterocysts. Post-transcriptional regulation by NsiR3 represents an indirect NtcA-operated regulatory mechanism of putA expression. DATABASE: Microarray data are available in GEO database under accession numbers GSE120377 and GSE150191.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas Bacterianas/química , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/química , Nitrógeno/metabolismo , Nostoc/genética , ARN Bacteriano/química , ARN Pequeño no Traducido/química , Regiones no Traducidas 5' , Compuestos de Amonio/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nitrógeno/química , Fijación del Nitrógeno/genética , Nostoc/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Front Microbiol ; 11: 541558, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101223

RESUMEN

Diazotrophs or N2-fixers are one of the most ecologically significant groups in marine ecosystems (pelagic and benthic). Inorganic phosphorus (PO4 3-) and iron (Fe) can limit the growth and N2-fixing capacities of cyanobacteria. However, studies investigating co-limitation of these factors are lacking. Here, we added different concentrations of PO4 3- and Fe in two cyanobacterial species whose relatives can be found in seagrass habitats: the unicellular Halothece sp. (PCC 7418) and the filamentous Fischerella muscicola (PCC 73103), grown under different nitrate (NO3 -) concentrations and under N2 as sole N source, respectively. Their growth, pigment content, N2-fixation rates, oxidative stress responses, and morphological and cellular changes were investigated. Our results show a serial limitation of NO3 - and PO4 3- (with NO3 - as the primary limiting nutrient) for Halothece sp. Simultaneous co-limitation of PO4 3- and Fe was found for both species tested, and high levels of Fe (especially when added with high PO4 3- levels) inhibited the growth of Halothece sp. Nutrient limitation (PO4 3-, Fe, and/or NO3 -) enhanced oxidative stress responses, morphological changes, and apoptosis. Furthermore, an extensive bio-informatic analysis describing the predicted Pho, Fur, and NtcA regulons (involved in the survival of cells to P, Fe, and N limitation) was made using the complete genome of Halothece sp. as a model, showing the potential of this strain to adapt to different nutrient regimes (P, Fe, or N).

8.
mSphere ; 5(5)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115834

RESUMEN

The model cyanobacterium Anabaena sp. PCC 7120 exhibits a phototrophic metabolism relying on oxygenic photosynthesis and a complex morphology. The organismic unit is a filament of communicated cells that may include cells specialized in different nutritional tasks, thus representing a paradigm of multicellular bacteria. In Anabaena, the inorganic carbon and nitrogen regime influenced not only growth, but also cell size, cell shape, and filament length, which also varied through the growth cycle. When using combined nitrogen, especially with abundant carbon, cells enlarged and elongated during active growth. When fixing N2, which imposed lower growth rates, shorter and smaller cells were maintained. In Anabaena, gene homologs to mreB, mreC, and mreD form an operon that was expressed at higher levels during the phase of fastest growth. In an ntcA mutant, mre transcript levels were higher than in the wild type and, consistently, cells were longer. Negative regulation by NtcA can explain that Anabaena cells were longer in the presence of combined nitrogen than in diazotrophic cultures, in which the levels of NtcA are higher. mreB, mreC, and mreD mutants could grow with combined nitrogen, but only the latter mutant could grow diazotrophically. Cells were always larger and shorter than wild-type cells, and their orientation in the filament was inverted. Consistent with increased peptidoglycan width and incorporation in the intercellular septa, filaments were longer in the mutants, suggesting a role for MreB, MreC, and MreD in the construction of septal peptidoglycan that could affect intercellular communication required for diazotrophic growth.IMPORTANCE Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena.


Asunto(s)
Anabaena/genética , Anabaena/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Nutrientes , Anabaena/citología , Carbono/metabolismo , Citoesqueleto , Nitrógeno/metabolismo , Factores de Transcripción
9.
Toxins (Basel) ; 12(6)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512731

RESUMEN

All cyanobacteria produce a neurotoxic non-protein amino acid ß-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually "silent" under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the "starvation" state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA-a global transcriptional regulator-one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin.


Asunto(s)
Aminoácidos Diaminos/farmacología , Proteínas Bacterianas/metabolismo , Nitrógeno/metabolismo , Nostoc/efectos de los fármacos , Proteómica , Cromatografía Líquida de Alta Presión , Toxinas de Cianobacterias , Glutamato Sintasa/metabolismo , Nostoc/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Espectrometría de Masas en Tándem
10.
J Basic Microbiol ; 60(9): 738-745, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32515850

RESUMEN

Differentiation commitment is one of the most complex mechanisms to study in biological science. One of the model systems used for understanding differentiation complexity is heterocyst development in cyanobacteria. Cyanobacteria have the capability of biological nitrogen fixation due to highly differentiated heterocyst cells. Once the nitrogen deficiency signal is perceived by the cyanobacteria, few of its vegetative cells commit toward the development of heterocyst. Heterocyst provides a microoxic environment that is essential for the nitrogenase complex to fix the atmospheric dinitrogen. The entire process of development of heterocyst can be divided into different steps, such as (a) sensing signal and differentiation induction, (b) positional (pattern) determination of heterocyst in the filament, (c) formation of extracellular thick heterocyst-specific layers, and (d) assembly of nitrogen-fixing machinery. Many of the key regulators that are essential for heterocyst formation in these different steps have been identified. Recently, the role of small RNA and interruption DNA elements that influence the heterocyst formation and function has also been identified. In this review article, we have outlined the current understanding of the entire molecular circuit of heterocyst development in a simplistic way. This article focuses on explaining key concepts related to heterocyst development and discusses recent discoveries in this line.


Asunto(s)
Cianobacterias/citología , Cianobacterias/genética , Redes Reguladoras de Genes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Ingeniería Metabólica , Nitrógeno/deficiencia , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Transducción de Señal
11.
Bioinform Biol Insights ; 14: 1177932220977490, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33402818

RESUMEN

The cyanobiont Trichormus azollae lives symbiotically within fronds of the genus Azolla, and assimilates atmospheric nitrogen upon N-limitation, which earmarks this symbiosis to be a valuable biofertilizer in rice cultivation, among many other benefits that also include carbon sequestration. Therefore, studying the regulation of nitrogen fixation in Trichormus azollae is of great importance and benefit, especially the two topmost rungs of regulation, the NtcA and HetR transcription factors that are able to regulate the expression of myriads of downstream genes. Bioinformatics tools were used to zoom in on the NtcA and HetR transcription factors from Trichormus azollae to elaborate on what makes this particular cyanobiont different from other symbiotic as well as more distinct counterparts, in their commitment to nitrogen fixation. The utility of Azolla plants in tropical agriculture in particular merits the "top down N-regulation" by cyanobiont as a significant niche area of study, to make sense of superior N-fixing capabilities. The Trichormus azollae NtcA sequence was found as a phylogenetic outlier to horizontally infecting cyanobionts, which points to a distinct identity compared to symbiotic counterparts. There were borderline (60%-70%) levels of acceptable bootstrap support for the phylogenetic position of the Azolla cyanobiont's NtcA protein compared to other cyanobionts. Furthermore, the NtcA global nitrogen regulator in the Azolla cyanobiont has an extra cysteine at position 128, in addition to two other more conspicuous cysteines (positions, 157 and 164). A simulated homology model of the NtcA protein from Trichormus azollae, points to a single unique cysteine (Cysteine-128) as a key residue at the center of a lengthy C-helix, which forms a coiled-coil interface, through likely disulfide bond formation. Three cysteine (Cysteines: 128, 157, 164) architecture is exclusively found in Trichormus azollae and is absent in other cyanobacteria. A separate proline to alanine mutation in position 97-again exclusive to Trichormus azollae-appears to influence the flexibility of effector binding domain (EBD) to 2-oxoglutarate. The Trichormus azollae HetR sequence was found outside of horizontally-infecting cyanobiont sequences that formed a common clade, with the exception of the cyanobiont from the genus Cycas that formed one line of descent with the Trichormus azollae counterpart. Five (out of 6) serines predicted to be phosphorylated in the Trichormus azollae HetR sequence, are conserved in the Nostoc punctiforme counterpart, showcasing that phosphorylation is likley conserved in both vertically-transmitted and horizontally-acquired cyanobionts. A key Serine-127, within a conserved motif TSLTS, although conserved in heterocystous subsection IV and V cyanobacteria, are mutated in subsection III cyanobacteria that form trichomes but are unable to form heterocysts. I conclude that the NtcA protein from Trichormus azollae to be strategically divergent at specific amino acids that gives it an advantage in function as a 2-oxoglutarate-mediated transcription factor. The Trichormus azollae HetR transcription factor appears to possess parallel functionality to horizontally acquired counterparts. Especially Cysteine-128 in the NtcA transcription factor of the Azolla cyanobiont is an interesting proposition for future structure-function studies.

12.
FEBS Lett ; 594(2): 278-289, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31538336

RESUMEN

2-oxoglutarate (2-OG) is a central metabolite that acts as a signaling molecule informing about the status of the carbon/nitrogen balance of the cell. In recent years, some transcriptional regulators and even two-component systems have been described as 2-OG sensors. In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, two master regulators, NtcA and FurA, are deeply involved in the regulation of nitrogen metabolism. Both of them show a complex intertwined regulatory circuit to achieve a suitable regulation of nitrogen fixation. In this work, 2-OG is found to bind FurA, modulating the specific binding of FurA to the ntcA promoter. This study provides evidence of a new additional control point in the complex network controlled by the NtcA and FurA proteins.


Asunto(s)
Anabaena/genética , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Ácidos Cetoglutáricos/metabolismo , Factores de Transcripción/genética , Anabaena/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/genética
13.
Front Mol Biosci ; 5: 91, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483512

RESUMEN

PII, a homotrimeric very ancient and highly widespread (bacteria, archaea, plants) key sensor-transducer protein, conveys signals of abundance or poorness of carbon, energy and usable nitrogen, converting these signals into changes in the activities of channels, enzymes, or of gene expression. PII sensing is mediated by the PII allosteric effectors ATP, ADP (and, in some organisms, AMP), 2-oxoglutarate (2OG; it reflects carbon abundance and nitrogen scarcity) and, in many plants, L-glutamine. Cyanobacteria have been crucial for clarification of the structural bases of PII function and regulation. They are the subject of this review because the information gathered on them provides an overall structure-based view of a PII regulatory network. Studies on these organisms yielded a first structure of a PII complex with an enzyme, (N-acetyl-Lglutamate kinase, NAGK), deciphering how PII can cause enzyme activation, and how it promotes nitrogen stockpiling as arginine in cyanobacteria and plants. They have also revealed the first clear-cut mechanism by which PII can control gene expression. A small adaptor protein, PipX, is sequestered by PII when nitrogen is abundant and is released when is scarce, swapping partner by binding to the 2OG-activated transcriptional regulator NtcA, co-activating it. The structures of PII-NAGK, PII-PipX, PipX alone, of NtcA in inactive and 2OG-activated forms and as NtcA-2OG-PipX complex, explain structurally PII regulatory functions and reveal the changing shapes and interactions of the T-loops of PII depending on the partner and on the allosteric effectors bound to PII. Cyanobacterial studies have also revealed that in the PII-PipX complex PipX binds an additional transcriptional factor, PlmA, thus possibly expanding PipX roles beyond NtcA-dependency. Further exploration of these roles has revealed a functional interaction of PipX with PipY, a pyridoxal-phosphate (PLP) protein involved in PLP homeostasis whose mutations in the human ortholog cause epilepsy. Knowledge of cellular levels of the different components of this PII-PipX regulatory network and of KD values for some of the complexes provides the basic background for gross modeling of the system at high and low nitrogen abundance. The cyanobacterial network can guide searches for analogous components in other organisms, particularly of PipX functional analogs.

14.
Front Microbiol ; 9: 2267, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319578

RESUMEN

Small regulatory RNAs (sRNAs) are currently considered as major post-transcriptional regulators of gene expression in bacteria. The interplay between sRNAs and transcription factors leads to complex regulatory networks in which both transcription factors and sRNAs may appear as nodes. In cyanobacteria, the responses to nitrogen availability are controlled at the transcriptional level by NtcA, a CRP/FNR family regulator. In this study, we describe an NtcA-regulated sRNA in the cyanobacterium Nostoc sp. PCC 7120, that we have named NsrR1 (nitrogen stress repressed RNA1). We show sequence specific binding of NtcA to the promoter of NsrR1. Prediction of possible mRNA targets regulated by NsrR1 allowed the identification of nblA, encoding a protein adaptor for phycobilisome degradation under several stress conditions, including nitrogen deficiency. We demonstrate specific interaction between NsrR1 and the 5'-UTR of the nblA mRNA, that leads to decreased expression of nblA. Because both NsrR1 and NblA are under transcriptional control of NtcA, this regulatory circuit constitutes a coherent feed-forward loop, involving a transcription factor and an sRNA.

15.
Bio Protoc ; 8(12): e2895, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34286004

RESUMEN

Nitrogen is an essential nutrient for all living organisms. In cyanobacteria, a group of oxygenic photosynthetic bacteria, nitrogen homeostasis is maintained by an intricate regulatory network around the transcription factor NtcA. Although mechanisms controlling NtcA activity appear to be well understood, the sets of genes under its control (i.e., its regulon) remain poorly defined. In this protocol, we describe the procedure for chromatin immunoprecipitation using NtcA antibodies, followed by DNA sequencing analysis (ChIP-seq) during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). This protocol can be extended to analyze any DNA-binding protein in cyanobacteria for which suitable antibodies exist.

16.
Toxins (Basel) ; 9(11)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29104251

RESUMEN

Arginine (Arg) and glycine (Gly) seem to be the only substrates accepted by the amidinotransferase that catalyze the first step of the synthesis pathway of the cyanotoxin cylindrospermopsin (CYN), leading to guanidinoacetate (GAA). Here, the effect of these amino acids on the production of CYN in cultures of the cylindrospermopsin-producing strain, Aphanizomenon ovalisporum UAM-MAO, has been studied. Arg clearly increased CYN content, the increment appearing triphasic along the culture. On the contrary, Gly caused a decrease of CYN, observable from the first day on. Interestingly, the transcript of the gene ntcA, key in nitrogen metabolism control, was also enhanced in the presence of Arg and/or Gly, the trend of the transcript oscillations being like that of aoa/cyr. The inhibitory effect of Gly in CYN production seems not to result from diminishing the activity of genes considered involved in CYN synthesis, since Gly, as Arg, enhance the transcription of genes aoaA-C and cyrJ. On the other hand, culture growth is affected by Arg and Gly in a similar way to CYN production, with Arg stimulating and Gly impairing it. Taken together, our data show that the influence of both Arg and Gly on CYN changes seems not to be due to a specific effect on the first step of CYN synthesis; it rather appears to be the result of changes in the physiological cell status.


Asunto(s)
Aphanizomenon/efectos de los fármacos , Arginina/farmacología , Toxinas Bacterianas/metabolismo , Glicina/farmacología , Uracilo/análogos & derivados , Alcaloides , Aphanizomenon/genética , Aphanizomenon/crecimiento & desarrollo , Aphanizomenon/metabolismo , Proteínas Bacterianas/genética , Clorofila/metabolismo , Clorofila A , Toxinas de Cianobacterias , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Uracilo/metabolismo
17.
World J Microbiol Biotechnol ; 33(8): 158, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28730560

RESUMEN

Iron deficiency ends up into several unavoidable consequences including damaging oxidative stress in cyanobacteria. NtcA is a global nitrogen regulator controls wide range of metabolisms in addition to regulation of nitrogen metabolism. In present communication, NtcA based regulation of iron homeostasis, ROS production and cellular phenotype under iron deficiency in Anabaena 7120 has been investigated. NtcA regulates the concentration dependent iron uptake by controlling the expression of furA gene. NtcA also regulated pigment synthesis and phenotypic alterations in Anabaena 7120. A significant increase in ROS production and corresponding reduction in the activities of antioxidative enzymes (SOD, CAT, APX and GR) in CSE2 mutant strain in contrast to wild type Anabaena 7120 also suggested the possible involvement of NtcA in protection against oxidative stress in iron deficiency. NtcA has no impact on the expression of furB and furC in spite of presence of consensus NtcA binding site (NBS) and -10 boxes in their promoter. NtcA also regulates the thylakoid arrangement as well as related photosynthetic and respiration rates under iron deficiency in Anabaena 7120. Overall results suggested that NtcA regulates iron acquisition and in turn protect Anabaena cells from the damaging effects of oxidative stress induced under iron deficiency.


Asunto(s)
Anabaena/genética , Anabaena/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Homeostasis , Hierro/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Anabaena/enzimología , Ascorbato Peroxidasas/análisis , Sitios de Unión , Catalasa/análisis , Electrólitos , Genes Bacterianos/genética , Glutatión Reductasa/análisis , Peroxidación de Lípido , Mutación , Estrés Oxidativo , Fotosíntesis/fisiología , Pigmentos Biológicos/análisis , Regiones Promotoras Genéticas , Superóxido Dismutasa/análisis
18.
Biotechnol Biofuels ; 10: 145, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28592994

RESUMEN

BACKGROUND: Cyanobacteria are considered potential photosynthetic microbial cell factories for biofuel and biochemical production. Ethylene, one of the most important organic chemicals, has been successfully synthesized in cyanobacteria by introducing an exogenous ethylene-forming enzyme (Efe). However, it remains challenging to significantly improve the biosynthetic efficiency of cyanobacterial ethylene. Genetic modification of transcription factors is a powerful strategy for reprogramming cellular metabolism toward target products. In cyanobacteria, nitrogen control A (NtcA), an important global transcription regulator of primary carbon/nitrogen metabolism, is expected to play a crucial role in ethylene biosynthesis. RESULTS: The partial deletion of ntcA (MH021) enhanced ethylene production by 23%, while ntcA overexpression (MH023) in a single-copy efe recombinant Synechocystis (XX76) reduced ethylene production by 26%. Compared to XX76, the Efe protein content increased 1.5-fold in MH021. This result may be due to the release of the negative regulation of NtcA on promoter P cpcB , which controls efe expression. Glycogen content showed a 23% reduction in MH021, and the ratio of intracellular succinate to 2-oxoglutarate (2-OG) increased 4.8-fold. In a four-copy efe recombinant strain with partially deleted ntcA and a modified tricarboxylic acid (TCA) cycle (MH043), a peak specific ethylene production rate of 2463 ± 219 µL L-1 h-1 OD730-1 was achieved, which is higher than previously reported. CONCLUSIONS: The effects of global transcription factor NtcA on ethylene synthesis in genetically engineered Synechocystis sp. PCC 6803 were evaluated, and the partial deletion of ntcA enhanced ethylene production in both single-copy and multi-copy efe recombinant Synechocystis strains. Increased Efe expression, accelerated TCA cycling, and redirected carbon flux from glycogen probably account for this improvement. The results show great potential for improving ethylene synthetic efficiency in cyanobacteria by modulating global regulation factors.

19.
J Basic Microbiol ; 57(2): 171-183, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28165619

RESUMEN

Calcium being a signaling molecule and mediator of cell response, we examined the modulation in fatty acid and hydrocarbon profiles of wild type cyanobacterium Anabaena sp. PCC 7120 and its ntcA mutant under the influence of different calcium chloride concentrations (0-10 mM). Dynamic modifications in fatty acid and hydrocarbon profile were evident through GC-FID analysis of extracted lipids. In the wild type, increase in CaCl2 (10 mM) resulted in unsaturation of fatty acids (observed in terms of high MUFA/PUFA ratio) while hydrocarbon production was distinctly high in the mutant strain compared to wild type at all tested concentrations. The synthesis of short chain hydrocarbons (C5-C8) were dominated at inhibitory concentration (10 mM CaCl2) in mutant strain. Results suggest that the increase in MUFA/PUFA ratio at inhibitory concentration in wild type, and higher percentage of hydrocarbons in mutant strain, may be attributed to the survival and acclimation strategies under altered calcium environment. Our results also suggest the involvement of the ntcA gene (master regulator of N2 metabolism) in regulation of carbon metabolism; specifically fatty acid, hydrocarbon, and other metabolic compounds essential for maintenance and sustenance of growth under stress condition. Thus, our study outlines basic acclimation response along with possibilities of production of fatty acid and hydrocarbon derived biofuel and other bioactive compounds in Anabaena sp. PCC 7120 under altered calcium levels which could be of biotechnological interest.


Asunto(s)
Anabaena/efectos de los fármacos , Anabaena/metabolismo , Proteínas Bacterianas/genética , Cloruro de Calcio/metabolismo , Ácidos Grasos/metabolismo , Hidrocarburos/metabolismo , Factores de Transcripción/deficiencia , Anabaena/genética , Carbono/metabolismo , Eliminación de Gen , Nitrógeno/metabolismo , Factores de Transcripción/genética
20.
J Basic Microbiol ; 56(7): 762-78, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26374944

RESUMEN

In order to understand a cross talk between Ca(2+) and ROS regulating enzymes and the possible involvement of ntcA gene, Anabaena sp. PCC 7120 and its derivative ntcA mutant grown in varied levels of calcium chloride (0, 1, 10, and 100 mM) have been investigated. Scanning Electron Microscopy showed abnormal structure formation at high calcium concentration (100 mM) both in wild type and mutant. Fv /Fm values suggested that 100 mM calcium concentration was detrimental for photosynthetic apparatus. SOD, catalase, APX, GR, and peroxidase activity were found to be maximum for 100 mM and minimum for 1 mM of exogenously supplied calcium salt. NADPH contents were higher for wild type than mutant. RAPD-PCR and SDS-PAGE analysis revealed a difference in DNA as well as proteome pattern with changes in calcium chloride regime. Prominent bands of approximately 70, 33, 21, and 14 kDa expressed in the wild type served as the marker polypeptide bands under calcium supplementation. Results suggest that higher levels of calcium ion disturb the cellular homeostasis generating ROS, thereby inducing enhanced levels of antioxidative enzymes. Further, data also suggests possible involvement of ntcA gene in cross talk between calcium ion and ROS regulating enzymes.


Asunto(s)
Anabaena/enzimología , Cloruro de Calcio/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Anabaena/genética , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Electroforesis en Gel de Poliacrilamida , Genes Bacterianos/genética , Glutatión Reductasa/metabolismo , Peroxidasa/metabolismo , Técnica del ADN Polimorfo Amplificado Aleatorio , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...