Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Appl Crystallogr ; 57(Pt 4): 1085-1097, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108824

RESUMEN

X-ray ptychography is a lensless imaging technique that visualizes the nano-structure of a thick specimen which cannot be observed with an electron microscope. It reconstructs a complex-valued refractive index of the specimen from observed diffraction patterns. This reconstruction problem is called phase retrieval (PR). For further improvement in the imaging capability, including expansion of the depth of field, various PR algorithms have been proposed. Since a high-quality PR method is built upon a base PR algorithm such as ePIE, developing a well performing base PR algorithm is important. This paper proposes an improved iterative algorithm named CRISP. It exploits subgradient projection which allows adaptive step size and can be expected to avoid yielding a poor image. The proposed algorithm was compared with ePIE, which is a simple and fast-convergence algorithm, and its modified algorithm, rPIE. The experiments confirmed that the proposed method improved the reconstruction performance for both simulation and real data.

2.
Sci Rep ; 14(1): 17807, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090344

RESUMEN

In recent years, a novel x-ray imaging modality has emerged that reveals unresolved sample microstructure via a "dark-field image", which provides complementary information to conventional "bright-field" images, such as attenuation and phase-contrast modalities. This x-ray dark-field signal is produced by unresolved microstructures scattering the x-ray beam resulting in localised image blur. Dark-field retrieval techniques extract this blur to reconstruct a dark-field image. Unfortunately, the presence of non-dark-field blur such as source-size blur or the detector point-spread-function can affect the dark-field retrieval as they also blur the experimental image. In addition, dark-field images can be degraded by the artefacts induced by large intensity gradients from attenuation and propagation-based phase contrast, particularly around sample edges. By measuring any non-dark-field blurring across the image plane and removing it from experimental images, as well as removing attenuation and propagation-based phase contrast, we show that a directional dark-field image can be retrieved with fewer artefacts and more consistent quantitative measures. We present the details of these corrections and provide "before and after" directional dark-field images of samples imaged at a synchrotron source. This paper utilises single-grid directional dark-field imaging, but these corrections have the potential to be broadly applied to other x-ray imaging techniques.

3.
Micron ; 185: 103688, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38991624

RESUMEN

Iterative phase retrieval is based on minimising a loss function as a measure of the consistency of an initial guess and underlying experimental data. Under ideal experimental conditions, real data contains Poissonian noise due to counting statistics. In this work, we use the Wirtinger Flow concept in combination with four common loss functions, being the L1 loss, the mean-squared error (MSE), the amplitude loss and the Poisson loss. Since only the latter reflects the counting statistics as an asymmetric Poisson distribution correctly, our simulation study focuses on two main cases. Firstly, high-dose momentum-resolved scanning transmission electron microscopy (STEM) of an MoS2 monolayer is considered for phase retrieval. In this case, it is found that the four losses perform differently with respect to chemical sensitivity and frequency transfer, which we interprete in terms of the substantially different signal level in the bright and dark field part of diffraction patterns. Remedies are discussed using further simulations, addressing the use of virtual ring detectors for the dark field, or restricting loss calculation to the bright field. Secondly, a dose series is presented down to 100 electrons per diffraction pattern. It is found that all losses yield qualitatively reasonable structural data in the phase, whereas only MSE and Poisson loss range at the correct amplitude level. Chemical contrast is, in general, reliably obtained using the Poisson concept, which also provides the most continuous spatial frequency transfer as to the reconstructed object transmission function.

4.
IUCrJ ; 11(Pt 4): 587-601, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904547

RESUMEN

The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm.

5.
Sensors (Basel) ; 24(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38894283

RESUMEN

Permanent engravings on contact lenses provide information about the manufacturing process and lens positioning when they are placed on the eye. The inspection of their morphological characteristics is important, since they can affect the user's comfort and deposit adhesion. Therefore, an inverted wavefront holoscope (a lensless microscope based on Gabor's principle of in-line digital holography) is explored for the characterization of the permanent marks of soft contact lenses. The device, based on an in-line transmission configuration, uses a partially coherent laser source to illuminate the soft contact lens placed in a cuvette filled with a saline solution for lens preservation. Holograms were recorded on a digital sensor and reconstructed by back propagation to the image plane based on the angular spectrum method. In addition, a phase-retrieval algorithm was used to enhance the quality of the recovered images. The instrument was experimentally validated through a calibration process in terms of spatial resolution and thickness estimation, showing values that perfectly agree with those that were theoretically expected. Finally, phase maps of different engravings for three commercial soft contact lenses were successfully reconstructed, validating the inverted wavefront holoscope as a potential instrument for the characterization of the permanent marks of soft contact lenses. To improve the final image quality of reconstructions, the geometry of lenses should be considered to avoid induced aberration effects.

6.
Ultramicroscopy ; 262: 113962, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38642481

RESUMEN

Ewald sphere curvature correction, which extends beyond the projection approximation, stretches the shallow depth of field in cryo-EM reconstructions of thick particles. Here we show that even for previously assumed thin particles, reconstruction artifacts which we refer to as ghosts can appear. By retrieving the lost phases of the electron exitwaves and accounting for the first Born approximation scattering within the particle, we show that these ghosts can be effectively eliminated. Our simulations demonstrate how such ghostbusting can improve reconstructions as compared to existing state-of-the-art software. Like ptychographic cryo-EM, our Ghostbuster algorithm uses phase retrieval to improve reconstructions, but unlike the former, we do not need to modify the existing data acquisition pipelines.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Artefactos , Tomografía con Microscopio Electrónico/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38261858

RESUMEN

Gabor phase retrieval is the problem of reconstructing a signal from only the magnitudes of its Gabor transform. Previous findings suggest a possible link between unique solvability of the discrete problem (recovery from measurements on a lattice) and stability of the continuous problem (recovery from measurements on an open subset of R2). In this paper, we close this gap by proving that such a link cannot be made. More precisely, we establish the existence of functions which break uniqueness from samples without affecting stability of the continuous problem. Furthermore, we prove the novel result that counterexamples to unique recovery from samples are dense in L2(R). Finally, we develop an intuitive argument on the connection between directions of instability in phase retrieval and certain Laplacian eigenfunctions associated to small eigenvalues.

8.
J Biophotonics ; 17(1): e202300278, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717259

RESUMEN

In multi-distance coherent diffraction imaging, the task of distance calculation for multi-diffraction images is cumbersome. The information features are hard-to-extract and the region of interest extraction algorithms are difficult to be adopted. A universal salient feature region selection algorithm by using the area with the highest density of corners is proposed to extract the most representative feature region. In addition, equally spaced recording modes and mismatched diffraction distances will result in system noise and destroy image quality. The polydirectional maximum gradient is offered as a sharpness criterion to weigh a quantitative feature for the final pattern. A fast, sensitive, and high-accuracy autofocusing and sample reconstruction can be achieved using only a small number of images while ensuring that morphological properties and quantification of the reconstructions are not compromised. The proposed method is promising for biological and medical dynamic observations for computational imaging systems.


Asunto(s)
Algoritmos , Diagnóstico por Imagen
9.
Comput Biol Med ; 168: 107711, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995534

RESUMEN

Grating-based X-ray phase contrast radiography and computed tomography (CT) are promising modalities for future medical applications. However, the ill-posed phase retrieval problem in X-ray phase contrast imaging has hindered its use for quantitative analysis in biomedical imaging. Deep learning has been proved as an effective tool for image retrieval. However, in practical grating-based X-ray phase contrast imaging system, acquiring the ground truth of phase to form image pairs is challenging, which poses a great obstacle for using deep leaning methods. Transfer learning is widely used to address the problem with knowledge inheritance from similar tasks. In the present research, we propose a virtual differential absorption model and generate a training dataset with differential absorption images and absorption images. The knowledge learned from the training is transferred to phase retrieval with transfer learning techniques. Numerical simulations and experiments both demonstrate its feasibility. Image quality of retrieved phase radiograph and phase CT slices is improved when compared with representative phase retrieval methods. We conclude that this method is helpful in both X-ray 2D and 3D imaging and may find its applications in X-ray phase contrast radiography and X-ray phase CT.


Asunto(s)
Aprendizaje Automático , Tomografía Computarizada por Rayos X , Rayos X , Radiografía , Tomografía Computarizada por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos
10.
Appl Radiat Isot ; 204: 111149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134854

RESUMEN

The quantitative assessment of micro-structure and load-induced damages in Al-SiC metal matrix composites (MMC) is important for its design optimization, performance evaluation and structure-property correlation. X-ray Phase contrast micro-tomography is potentially used for evaluation of its 3 dimensional micro-structure manifested in the form of voids, cracks, embedded particles, and load-induced damages. However, the contrast between Al matrix and SiC particles is insufficient for their clear morphological identification and quantitative assessment. In the present study, we have proposed and applied single image-based phase retrieval as a pre-processing step to micro-tomography reconstruction for improved assessment of micro-structure and cohesion-induced damages in Al-SiC MMC. The advantages of applying different phase retrieval techniques in the enhancement of image quality and morphological quantification of SiC particles, pores and cohesion damages are discussed. It is observed that the Paganin method offers the best improvement in contrast to noise ratio for the measurement of SiC particles embedded in the Al matrix.

11.
J Synchrotron Radiat ; 31(Pt 1): 113-128, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38054945

RESUMEN

In X-ray diffraction imaging (XDI), electron density maps of a targeted particle are reconstructed computationally from the diffraction pattern alone using phase-retrieval (PR) algorithms. However, the PR calculations sometimes fail to yield realistic electron density maps that approximate the structure of the particle. This occurs due to the absence of structure amplitudes at and near the zero-scattering angle and the presence of Poisson noise in weak diffraction patterns. Consequently, the PR calculation becomes a bottleneck for XDI structure analyses. Here, a protocol to efficiently yield realistic maps is proposed. The protocol is based on the empirical observation that realistic maps tend to yield low similarity scores, as suggested in our prior study [Sekiguchi et al. (2017), J. Synchrotron Rad. 24, 1024-1038]. Among independently and concurrently executed PR calculations, the protocol modifies all maps using the electron-density maps exhibiting low similarity scores. This approach, along with a new protocol for estimating particle shape, improved the probability of obtaining realistic maps for diffraction patterns from various aggregates of colloidal gold particles, as compared with PR calculations performed without the protocol. Consequently, the protocol has the potential to reduce computational costs in PR calculations and enable efficient XDI structure analysis of non-crystalline particles using synchrotron X-rays and X-ray free-electron laser pulses.

12.
J Synchrotron Radiat ; 31(Pt 1): 95-112, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38054944

RESUMEN

X-ray diffraction imaging (XDI) is utilized for visualizing the structures of non-crystalline particles in material sciences and biology. In the structural analysis, phase-retrieval (PR) algorithms are applied to the diffraction amplitude data alone to reconstruct the electron density map of a specimen particle projected along the direction of the incident X-rays. However, PR calculations may not lead to good convergence because of a lack of diffraction patterns in small-angle regions and Poisson noise in X-ray detection. Therefore, the PR calculation is still a bottleneck for the efficient application of XDI in the structural analyses of non-crystalline particles. For screening maps from hundreds of trial PR calculations, we have been using a score and measuring the similarity between a pair of retrieved maps. Empirically, probable maps approximating the particle structures gave a score smaller than a threshold value, but the reasons for the effectiveness of the score are still unclear. In this study, the score is characterized in terms of the phase differences between the structure factors of the retrieved maps, the usefulness of the score in screening the maps retrieved from experimental diffraction patterns is demonstrated, and the effective resolution of similarity-score-selected maps is discussed.

13.
IUCrJ ; 11(Pt 1): 73-81, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096037

RESUMEN

Speckle-tracking X-ray imaging is an attractive candidate for dynamic X-ray imaging owing to its flexible setup and simultaneous yields of phase, transmission and scattering images. However, traditional speckle-tracking imaging methods suffer from phase distortion at locations with abrupt changes in density, which is always the case for real samples, limiting the applications of the speckle-tracking X-ray imaging method. In this paper, we report a deep-learning based method which can achieve dynamic X-ray speckle-tracking imaging with high-accuracy phase retrieval. The calibration results of a phantom show that the profile of the retrieved phase is highly consistent with the theoretical one. Experiments of polyurethane foaming demonstrated that the proposed method revealed the evolution of the complicated microstructure of the bubbles accurately. The proposed method is a promising solution for dynamic X-ray imaging with high-accuracy phase retrieval, and has extensive applications in metrology and quantitative analysis of dynamics in material science, physics, chemistry and biomedicine.

14.
Sensors (Basel) ; 23(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067776

RESUMEN

Current ghost imaging phase reconstruction schemes require either complex optical systems, iterative algorithms, Fourier transform steps, or entangled photon pairs. These factors may increase the difficulty of system design, lead to phase retrieval errors, or result in excessive time consumption. To tackle this challenge, we propose a five-step phase-shifting method that eliminates the need for complex optical systems, Fourier transform steps, entangled photon pairs, or iterative algorithms. Using five specifically designed incoherent sources, we can generate five distinct ghost imaging patterns. Subsequently, the phase information of the object can be calculated from these five speckle patterns. Additionally, we offer a detailed theoretical explanation for choosing the five-step phase-shifting method over the more commonly used three-step or four-step phase-shifting methods. We demonstrate the applicability of this theoretical proposal through numerical simulations involving two types of complicated objects. The results illustrate that the phase information of the complex object can be successfully and quantitatively reconstructed.

15.
J Biomed Opt ; 28(11): 116503, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38078152

RESUMEN

Significance: Fourier ptychographic microscopy (FPM) is a new, developing computational imaging technology. It can realize the quantitative phase imaging of a wide field of view and high-resolution (HR) simultaneously by means of multi-angle illumination via a light emitting diode (LED) array, combined with a phase recovery algorithm and the synthetic aperture principle. However, in the FPM reconstruction process, LED position misalignment affects the quality of the reconstructed image, and the reconstruction efficiency of the existing LED position correction algorithms needs to be improved. Aim: This study aims to improve the FPM correction method based on simulated annealing (SA) and proposes a position misalignment correction method (AA-C algorithm) using an improved phase recovery strategy. Approach: The spectrum function update strategy was optimized by adding an adaptive control factor, and the reconstruction efficiency of the algorithm was improved. Results: The experimental results show that the proposed method is effective and robust for position misalignment correction of LED arrays in FPM, and the convergence speed can be improved by 21.2% and 54.9% compared with SC-FPM and PC-FPM, respectively. Conclusions: These results can reduce the requirement of the FPM system for LED array accuracy and improve robustness.


Asunto(s)
Iluminación , Microscopía , Microscopía/métodos , Análisis de Fourier , Algoritmos
16.
Sensors (Basel) ; 23(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960546

RESUMEN

Fringe projection profilometry (FPP) has been widely used for 3D reconstruction, surface measurement, and reverse engineering. However, if the surface of an object has a high reflectivity, overexposure can easily occur. Image saturation caused by overexposure can lead to an incorrect intensity of the captured pattern images, resulting in phase and measurement errors of FPP. To address this issue, we propose a phase retrieval method for the 3D shape measurement of high-reflectivity surfaces based on π phase-shifting fringes. Our method only requires eight images to be projected, including three single-frequency three-step phase-shifting patterns and one pattern used to provide phase unwrapping constraints, called conventional patterns, as well as the π phase-shifting patterns corresponding to the four conventional patterns, called supplemental patterns. Saturated pixels of conventional fringes are replaced by unsaturated pixels in supplemental fringes to suppress phase retrieval errors. We analyzed all 16 replacement cases of fringe patterns and provided calculation methods for unwrapped phases. The main advantages of our method are as follows: (1) By combining the advantages of the stereo phase unwrapping (SPU) algorithm, the number of projected fringes is reduced. (2) By utilizing the phase unwrapping constraint provided by the fourth fringe pattern, the accuracy of SPU is improved. For highly reflective surfaces, the experimental results demonstrate the performance of the proposed method.

17.
Microscopy (Oxf) ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37793048

RESUMEN

In this study, a new method for the phase retrieval of electron rocking curves observed using convergent-beam electron diffraction, which is applicable to the determination of three-dimensional lattice displacement fields along the beam direction, is proposed. Total variation and total squared variation regularizations are introduced for phase retrieval to suppress overfitting to noise or background signals in the rocking curves and to reproduce the sparse characteristics of displacement fields, which exist only near lattice defects. The results show that the proposed algorithm is effective for rocking curves modulated by the dynamical effect of electron diffraction. The accuracy of phase reconstruction using the proposed method is also discussed. Phase retrieval of the experimental rocking curves obtained from a stacking fault in stainless steel is demonstrated.

18.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37837135

RESUMEN

In contrast to traditional phase-shifting (PS) algorithms, which rely on capturing multiple fringe patterns with different phase shifts, digital PS algorithms provide a competitive alternative to relative phase retrieval, which achieves improved efficiency since only one pattern is required for multiple PS pattern generation. Recent deep learning-based algorithms further enhance the retrieved phase quality of complex surfaces with discontinuity, achieving state-of-the-art performance. However, since much attention has been paid to understanding image intensity mapping, such as supervision via fringe intensity loss, global temporal dependency between patterns is often ignored, which leaves room for further improvement. In this paper, we propose a deep learning model-based digital PS algorithm, termed PSNet. A loss combining both local and global temporal information among the generated fringe patterns has been constructed, which forces the model to learn inter-frame dependency between adjacent patterns, and hence leads to the improved accuracy of PS pattern generation and the associated phase retrieval. Both simulation and real-world experimental results have demonstrated the efficacy and improvement of the proposed algorithm against the state of the art.

19.
Microsc Microanal ; 29(3): 967-982, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749695

RESUMEN

We present a gradient-descent-based approach to determining the projected electrostatic potential from four-dimensional scanning transmission electron microscopy measurements of a periodic, crystalline material even when dynamical scattering occurs. The method solves for the scattering matrix as an intermediate step, but overcomes the so-called truncation problem that limited previous scattering-matrix-based projected structure determination methods. Gradient descent is made efficient by using analytic expressions for the gradients. Through simulated case studies, we show that iteratively improving the scattering matrix determination can significantly improve the accuracy of the projected structure determination.

20.
Ultramicroscopy ; 254: 113829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37633169

RESUMEN

Electron ptychography provides highly sensitive, dose efficient phase images which can be corrected for aberrations after the data has been acquired. This is crucial when very precise quantification is required, such as with sensitivity to charge transfer due to bonding. Drift can now be essentially eliminated as a major impediment to focused probe ptychography, which benefits from the availability of easily interpretable simultaneous Z-contrast imaging. However challenges have remained when quantifying the ptychographic phases of atomic sites. The phase response of a single atom has a negative halo which can cause atoms to reduce in phase when brought closer together. When unaccounted for, as in integrating methods of quantification, this effect can completely obscure the effects of charge transfer. Here we provide a new method of quantification that overcomes this challenge, at least for 2D materials, and is robust to experimental parameters such as noise, sample tilt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA