Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339029

RESUMEN

G-quadruplexes (G4s) are secondary DNA and RNA structures stabilized by positive cations in a central channel formed by stacked tetrads of Hoogsteen base-paired guanines. G4s form from G-rich sequences across the genome, whose biased distribution in regulatory regions points towards a gene-regulatory role. G4s can themselves be regulated by helicases, such as DHX36 (aliases: G4R1 and RHAU), which possess the necessary activity to resolve these stable structures. G4s have been shown to both positively and negatively regulate gene expression when stabilized by ligands, or through the loss of helicase activity. Using DHX36 knockout Jurkat cell lines, we identified widespread, although often subtle, effects on gene expression that are associated with the presence or number of observed G-quadruplexes in promoters or gene regions. Genes that significantly change their expression, particularly those that show a significant increase in RNA abundance under DHX36 knockout, are associated with a range of cellular functions and processes, including numerous transcription factors and oncogenes, and are linked to several cancers. Our work highlights the direct and indirect role of DHX36 in the transcriptome of T-lymphocyte leukemia cells and the potential for DHX36 dysregulation in cancer.


Asunto(s)
ARN Helicasas DEAD-box , G-Cuádruplex , Neoplasias , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Expresión Génica , ARN/metabolismo , Células Jurkat/metabolismo
2.
Curr Res Struct Biol ; 7: 100126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292819

RESUMEN

G-quadruplexes (G4s) are reported to present on the SARS-CoV-2 RNA genome and control various viral activities. Specific ligands targeting those viral nucleic acid structures could be investigated as promising detection methods or antiviral reagents to suppress this menacing virus. Herein, we demonstrate the binding between a G4 structure in the RNA of SARS-CoV-2 and a fluorescent probe created by fusing a parallel-G4 specific RHAU53 and a cyan fluorescent protein. The specific binding of G4 in SARS-CoV-2 by RHAU peptide was easily detected under the fluorescence spectrometer. The drawbacks of this approach and potential solutions are also discussed.

3.
Mol Biotechnol ; 65(3): 291-299, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35984625

RESUMEN

G-quadruplexes (G4s) are non-canonical nucleic acid structures formed by guanine (G)-rich sequences, which are ubiquitously found in the human genome and transcriptome. Targeting G4s by specific ligands provides a powerful tool to monitor and regulate G4s-associated biological processes. RHAU peptides, derived from the G4-binding motif of "RNA Helicase associated with AU-rich element" (RHAU), have emerged as extraordinary ligands for specific recognition of parallel G4s. This review highlights the significances of recent studies investigating potential applications of the engineered RHAU peptides incorporated to different functional moieties.


Asunto(s)
G-Cuádruplex , Humanos , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Péptidos/genética , Biología
4.
Animal Model Exp Med ; 5(6): 542-549, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35789129

RESUMEN

The G-quadruplex (G4) sequences are short fragments of 4-interval triple guanine (G) with frequent and ubiquitous distribution in the genome and RNA transcripts. The G4 sequences are usually folded into secondary "knot" structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes, including DNA replication and transcription, mRNA translation, and telomere maintenance. Recent structural biological and mouse genetics studies have demonstrated that RHAU (DHX36) can bind and unwind the G4 "knots" to modulate embryonic development and postnatal organ function. Deficiency of RHAU gives rise to embryonic lethality, impaired organogenesis, and organ dysfunction. These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier, which plays fundamental roles in development and physiological homeostasis. This review discusses the latest advancements and findings in deciphering RHAU functions using animal models.


Asunto(s)
G-Cuádruplex , ARN , Animales , Ratones , ARN/genética , ARN/química , ARN/metabolismo , Recombinasas/química , Recombinasas/genética , Recombinasas/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/química , ADN/metabolismo
5.
Methods ; 204: 1-13, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35483547

RESUMEN

G-quadruplex structures (G4s) form readily in DNA and RNA and play diverse roles in gene expression and other processes, and their inappropriate formation and stabilization are linked to human diseases. G4s are inherently long-lived, such that their timely unfolding depends on a suite of DNA and RNA helicase proteins. Biochemical analysis of G4 binding and unfolding by individual helicase proteins is important for establishing their levels of activity, affinity, and specificity for G4s, including individual G4s of varying sequence and structure. Here we describe a set of simple, accessible methods in which electrophoretic mobility shift assays (EMSA) are used to measure the kinetics of G4 binding, dissociation, and unfolding by helicase proteins. We focus on practical considerations and the pitfalls that are most likely to arise when these methods are used to study the activities of helicases on G4s.


Asunto(s)
ARN Helicasas DEAD-box , G-Cuádruplex , ARN Helicasas DEAD-box/química , ADN/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Humanos , Cinética , ARN/genética
6.
J Biol Chem ; 298(1): 101449, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838591

RESUMEN

The G-quadruplex (G4) resolvase RNA helicase associated with AU-rich element (RHAU) possesses the ability to unwind G4 structures in both DNA and RNA molecules. Previously, we revealed that RHAU plays a critical role in embryonic heart development and postnatal heart function through modulating mRNA translation and stability. However, whether RHAU functions to resolve DNA G4 in the regulation of cardiac physiology is still elusive. Here, we identified a phenotype of noncompaction cardiomyopathy in cardiomyocyte-specific Rhau deletion mice, including such symptoms as spongiform cardiomyopathy, heart dilation, and death at young ages. We also observed reduced cardiomyocyte proliferation and advanced sarcomere maturation in Rhau mutant mice. Further studies demonstrated that RHAU regulates the expression levels of several genes associated with ventricular trabeculation and compaction, including the Nkx2-5 and Hey2 that encode cardiac transcription factors of NKX2-5 and Hey2, and the myosin heavy chain 7 (Myh7) whose protein product is MYH7. While RHAU modulates Nkx2-5 mRNA and Hey2 mRNA at the post-transcriptional level, we uncovered that RHAU facilitates the transcription of Myh7 through unwinding of the G4 structures in its promoter. These findings demonstrated that RHAU regulates ventricular chamber development through both transcriptional and post-transcriptional mechanisms. These results contribute to a knowledge base that will help to understand the pathogenesis of diseases such as noncompaction cardiomyopathy.


Asunto(s)
ARN Helicasas DEAD-box , G-Cuádruplex , Miocitos Cardíacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , Ventrículos Cardíacos , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Aging (Albany NY) ; 13(23): 25578-25587, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34862880

RESUMEN

G-Quadruplex (G4) DNA (G4 DNA) and RNA (G4 RNA) are secondary nucleic acid structures that have multiple roles in vital cellular processes. G4 DNA- and RNA-binding proteins and unwinding helicases associate with and regulate G4s during virtually all processes that involve DNA and RNA. DEAH-Box helicase 36 (DHX36), a member of the large DExD/H box helicase family, enzymatically unwinds both G4 DNA and G4 RNA. By exerting its G4 helicase function, DHX36 regulates transcription, genomic stability, telomere maintenance, translation and RNA metabolism. This review will provide an overview of G4s and DHX36, including DHX36's potential role in neuronal development and neurodegeneration. We conclude with a discussion of the possible functions of G4s and DHX36 in the aging brain.


Asunto(s)
Envejecimiento/metabolismo , ARN Helicasas DEAD-box/metabolismo , G-Cuádruplex , Envejecimiento/fisiología , Animales , ARN Helicasas DEAD-box/fisiología , Humanos , Neoplasias/metabolismo , Enfermedades del Sistema Nervioso/metabolismo
8.
J Biol Chem ; 297(2): 100914, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174288

RESUMEN

GGGGCC (G4C2) hexanucleotide repeat expansions in the endosomal trafficking gene C9orf72 are the most common genetic cause of ALS and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation of this expansion through near-cognate initiation codon usage and internal ribosomal entry generates toxic proteins that accumulate in patients' brains and contribute to disease pathogenesis. The helicase protein DEAH-box helicase 36 (DHX36-G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells. As G4C2 repeats are known to form G4 structures in vitro, we sought to determine the impact of manipulating DHX36 expression on repeat transcription and RAN translation. Using a series of luciferase reporter assays both in cells and in vitro, we found that DHX36 depletion suppresses RAN translation in a repeat length-dependent manner, whereas overexpression of DHX36 enhances RAN translation from G4C2 reporter RNAs. Moreover, upregulation of RAN translation that is typically triggered by integrated stress response activation is prevented by loss of DHX36. These results suggest that DHX36 is active in regulating G4C2 repeat translation, providing potential implications for therapeutic development in nucleotide repeat expansion disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , ARN Helicasas DEAD-box/metabolismo , Expansión de las Repeticiones de ADN , G-Cuádruplex , ARN Helicasas/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/metabolismo , Línea Celular Tumoral , Demencia Frontotemporal/enzimología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Biosíntesis de Proteínas
9.
Comput Struct Biotechnol J ; 19: 2526-2536, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025941

RESUMEN

Because of high stability and slow unfolding rates of G-quadruplexes (G4), cells have evolved specialized helicases that disrupt these non-canonical DNA and RNA structures in an ATP-dependent manner. One example is DHX36, a DEAH-box helicase, which participates in gene expression and replication by recognizing and unwinding parallel G4s. Here, we studied the molecular basis for the high affinity and specificity of DHX36 for parallel-type G4s using all-atom molecular dynamics simulations. By computing binding free energies, we found that the two main G4-interacting subdomains of DHX36, DSM and OB, separately exhibit high G4 affinity but they act cooperatively to recognize two distinctive features of parallel G4s: the exposed planar face of a guanine tetrad and the unique backbone conformation of a continuous guanine tract, respectively. Our results also show that DSM-mediated interactions are the main contributor to the binding free energy and rely on making extensive van der Waals contacts between the GXXXG motifs and hydrophobic residues of DSM and a flat guanine plane. Accordingly, the sterically more accessible 5'-G-tetrad allows for more favorable van der Waals and hydrophobic interactions which leads to the preferential binding of DSM to the 5'-side. In contrast to DSM, OB binds to G4 mostly through polar interactions by flexibly adapting to the 5'-terminal guanine tract to form a number of strong hydrogen bonds with the backbone phosphate groups. We also identified a third DHX36/G4 interaction site formed by the flexible loop missing in the crystal structure.

10.
Biol Chem ; 402(5): 593-604, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33857359

RESUMEN

DHX36 is a eukaryotic DEAH/RHA family helicase that disrupts G-quadruplex structures (G4s) with high specificity, contributing to regulatory roles of G4s. Here we used a DHX36 truncation to examine the roles of the 13-amino acid DHX36-specific motif (DSM) in DNA G4 recognition and disruption. We found that the DSM promotes G4 recognition and specificity by increasing the G4 binding rate of DHX36 without affecting the dissociation rate. Further, for most of the G4s measured, the DSM has little or no effect on the G4 disruption step by DHX36, implying that contacts with the G4 are maintained through the transition state for G4 disruption. This result suggests that partial disruption of the G4 from the 3' end is sufficient to reach the overall transition state for G4 disruption, while the DSM remains unperturbed at the 5' end. Interestingly, the DSM does not contribute to G4 binding kinetics or thermodynamics at low temperature, indicating a highly modular function. Together, our results animate recent DHX36 crystal structures, suggesting a model in which the DSM recruits G4s in a modular and flexible manner by contacting the 5' face early in binding, prior to rate-limiting capture and disruption of the G4 by the helicase core.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , Secuencias de Aminoácidos , ARN Helicasas DEAD-box/química , ADN/química , G-Cuádruplex , Humanos
11.
J Biol Chem ; 296: 100080, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33199370

RESUMEN

Post-transcriptional regulation of mRNA translation and stability is primarily achieved by RNA-binding proteins, which are of increasing importance for heart function. Furthermore, G-quadruplex (G4) and G4 resolvase activity are involved in a variety of biological processes. However, the role of G4 resolvase activity in heart function remains unknown. The present study aims to investigate the role of RNA helicase associated with adenylate- and uridylate-rich element (RHAU), an RNA-binding protein with G4 resolvase activity in postnatal heart function through deletion of Rhau in the cardiomyocytes of postnatal mice. RHAU-deficient mice displayed progressive pathological remodeling leading to heart failure and mortality and impaired neonatal heart regeneration. RHAU ablation reduced the protein levels but enhanced mRNA levels of Yap1 and Hexim1 that are important regulators for heart development and postnatal heart function. Furthermore, RHAU was found to associate with both the 5' and 3' UTRs of these genes to destabilize mRNA and enhance translation. Thus, we have demonstrated the important functions of RHAU in the dual regulation of mRNA translation and stability, which is vital for heart physiology.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Mensajero/metabolismo , Recombinasas/metabolismo , Regiones no Traducidas 3'/genética , Regiones no Traducidas 3'/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Western Blotting , Línea Celular , Biología Computacional , ARN Helicasas DEAD-box/genética , Ecocardiografía , Células HEK293 , Humanos , Ratones , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , RNA-Seq , Recombinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
12.
Biochem Biophys Res Commun ; 533(4): 1135-1141, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33041003

RESUMEN

RNA G-quadruplex (rG4) structure and its association with rG4-binding proteins/peptides are important for its function. However, there is very limited study that investigates what factors are involved in rG4 that drive the rG4-protein/peptide interaction. Here we study and uncover the effect of RNA sequence context and stereochemistry on G-quadruplex-peptide interaction. Using rG4-binding RHAU53 peptide as an example, we report that the number of G-quartet, thermostability, overhanging nucleotides, and RNA base chirality have an impact on rG4-RHAU53 binding. Notably, our data also demonstrate that RHAU53 preferentially binds to 5' G-quartet over 3' G-quartet, and showcase that RHAU53 interacts with unnatural L-rG4 for the first time. Our findings reported here offer unique insights to the potential development of targeting tools that recognize rG4 structure and rG4-binding peptide/protein.


Asunto(s)
G-Cuádruplex , Péptidos/química , Péptidos/genética , ARN/química , ARN/genética , Secuencias de Aminoácidos/genética , Dicroismo Circular , Modelos Moleculares , Espectrofotometría Ultravioleta , Termodinámica
13.
Molecules ; 25(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354083

RESUMEN

RNA-protein complexes (RNPs) are essential components in a variety of cellular processes, and oftentimes exhibit complex structures and show mechanisms that are highly dynamic in conformation and structure. However, biochemical and structural biology approaches are mostly not able to fully elucidate the structurally and especially conformationally dynamic and heterogeneous nature of these RNPs, to which end single molecule Förster resonance energy transfer (smFRET) spectroscopy can be harnessed to fill this gap. Here we summarize the advantages of strategic smFRET studies to investigate RNP dynamics, complemented by structural and biochemical data. Focusing on recent smFRET studies of three essential biological systems, we demonstrate that investigation of RNPs on a single molecule level can answer important functional questions that remained elusive with structural or biochemical approaches alone: The complex structural rearrangements throughout the splicing cycle, unwinding dynamics of the G-quadruplex (G4) helicase RHAU, and aspects in telomere maintenance regulation and synthesis.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , G-Cuádruplex , ARN/química , Imagen Individual de Molécula , Animales , Bovinos , Análisis por Conglomerados , Cristalografía por Rayos X , Humanos , Cadenas de Markov , Conformación de Ácido Nucleico , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Empalme del ARN , Ribonucleoproteínas , Empalmosomas/química , Telomerasa/química , Telómero/química , Telómero/ultraestructura
14.
Biochem Biophys Res Commun ; 531(1): 62-66, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32220493

RESUMEN

G-quadruplex (G4) is a non-canonical four-stranded nucleic acid structure and the RHAU helicase has been identified to have high specificity for recognition of parallel-stranded G4s. We have designed and synthesized two stapled peptide analogues of the G4-specfic motif of RHAU, which preserve the G4 binding ability. Characterization of these peptides identified the stapled variants to exhibit higher helical formation propensity in aqueous buffer in comparison to the native RHAU sequence. Moreover, the stapled peptides exhibit superior enzymatic stability towards α-chymotrypsin. Our stapled RHAU peptides can serve as a new tool for targeting G4 nucleic acid structures.


Asunto(s)
ARN Helicasas DEAD-box/química , G-Cuádruplex , Péptidos/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , ARN Helicasas DEAD-box/síntesis química , ARN Helicasas DEAD-box/metabolismo , Humanos , Modelos Moleculares , Péptidos/síntesis química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa
15.
J Struct Biol ; 209(1): 107399, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31586599

RESUMEN

G-quadruplexes (G4) are secondary structures of nucleic acids that can form in cells and have diverse biological functions. Several biologically important proteins interact with G-quadruplexes, of which RHAU (or DHX36) - a helicase from the DEAH-box superfamily, was shown to bind and unwind G-quadruplexes efficiently. We report a X-ray co-crystal structure at 1.5 Šresolution of an N-terminal fragment of RHAU bound to an exposed tetrad of a parallel-stranded G-quadruplex. The RHAU peptide folds into an L-shaped α-helix, and binds to a G-quadruplex through π-stacking and electrostatic interactions. X-ray crystal structure of our complex identified key amino acid residues important for G-quadruplex-peptide binding interaction at the 3'-end G•G•G•G tetrad. Together with previous solution and crystal structures of RHAU bound to the 5'-end G•G•G•G and G•G•A•T tetrads, our crystal structure highlights the occurrence of a robust G-quadruplex recognition motif within RHAU that can adapt to different accessible tetrads.


Asunto(s)
ARN Helicasas DEAD-box/ultraestructura , Proteínas de Unión al ADN/ultraestructura , G-Cuádruplex , Conformación de Ácido Nucleico , Secuencias de Aminoácidos/genética , Cristalografía por Rayos X , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Humanos , Péptidos/química , Péptidos/genética , Unión Proteica/genética , Conformación Proteica en Hélice alfa/genética
16.
Biochem Biophys Res Commun ; 508(3): 756-761, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30528389

RESUMEN

Guanine-quadruplex (G-quadruplex) structures in mRNAs have been shown to modulate gene expression. However, the overall biological relevance of this process is under debate, as cellular helicases unwind G-quadruplex structures. The helicase Rhau (encoded by the DHX36 gene) was reported to be the major source of RNA G-quadruplex resolving activity in lysates of human cells. In the current study, we depleted Rhau by RNAi-mediated silencing and analyzed the effect on proteins whose mRNAs harbor a G-quadruplex motif in their 5'-UTRs. A targeted investigation of the proto-oncogenes Bcl-2 and NRAS, which are well-known examples for the translational repression of G-quadruplex structures, did not reveal effects caused by Rhau silencing. We therefore carried out a global analysis of changes in protein levels by label-free quantification using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Following Rhau knockdown, of all the identified proteins, only 1.9% were significantly downregulated to at least 70%. According to a bioinformatic analysis with the QGRS mapper, 33% of the downregulated proteins were predicted to harbor a G-quadruplex motif in the 5'-UTR of their respective mRNAs, compared to only 11% in the complete dataset. This indicates that in an unexpectedly small set of genes, in which G-quadruplex motifs are unusually common in the 5'-UTR of their mRNAs, Rhau helicase is responsible for the regulation of their expression.


Asunto(s)
Regiones no Traducidas 5'/genética , ARN Helicasas DEAD-box/genética , G-Cuádruplex , Técnicas de Silenciamiento del Gen , Interferencia de ARN , Supervivencia Celular , Regulación hacia Abajo/genética , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
17.
Biochem Biophys Res Commun ; 487(2): 274-280, 2017 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28412358

RESUMEN

Intramolecular G-quadruplexes (G4s) are G-rich nucleic acid structures that fold back on themselves via interrupting loops to create stacked planar G-tetrads, in which four guanine bases associate via Hoogsteen hydrogen bonding. The G4 structure is further stabilized by monovalent cations centered between the stacked tetrads. The G-tetrad face on the top and bottom planes of G4s are often the site of interaction with proteins and small molecules. To investigate the potential impact of interrupting loops on both G4 structure and interaction with proteins/small molecules, we characterized a specific G4 from the 3'-UTR of PITX1 mRNA that contains loops of 6 nucleotides using biophysical approaches. We then introduced mutations to specific loops to determine the impact on G4 structure and the ability to interact with both proteins and a G4-specific ligand. Our results suggest that mutation of a specific loop both affects the global G4 structure and impacts the ability to interact with a G4 binding protein and small molecule ligand.


Asunto(s)
G-Cuádruplex , MicroARNs/química , MicroARNs/ultraestructura , Conformación de Ácido Nucleico , Factores de Transcripción Paired Box/química , Factores de Transcripción Paired Box/ultraestructura , Sitios de Unión , Simulación por Computador , MicroARNs/genética , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Factores de Transcripción Paired Box/genética , Unión Proteica , Proteínas/química , Proteínas/genética , Proteínas/ultraestructura , Relación Estructura-Actividad
18.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1382-1388, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28065761

RESUMEN

G-quadruplexes (G4) are RNA and DNA secondary structures formed by the stacking of guanine quartets in guanine rich sequences. Quadruplex-prone motifs may be found in key genomic regions such as telomeres, ribosomal DNA, transcriptional activators and regulators or oncogene promoters. A number of proteins involved in various biological processes are able to interact with G4s. Among them, proteins dedicated to nucleic acids unwinding such as WRN, BLM, FANCJ or PIF1, can unfold G4 structures. Mutations of these helicases are linked to genome instability and to increases in cancer risks. Here, we present a high-throughput fluorescence-based reliable, inexpensive and fast assay to study G4/RHAU interaction. RHAU is an RNA helicase known as the major source of G4 resolution in HeLa cells. Our assay allows to monitor the unfolding properties of RHAU towards DNA and RNA quadruplexes in parallel and to screen for the optimal conditions for its activity. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , G-Cuádruplex , ARN/metabolismo , ARN Helicasas DEAD-box/genética , ADN/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Desnaturalización de Ácido Nucleico , Potasio/química , Potasio/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , ARN/química , Estabilidad del ARN , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Telómero/química , Telómero/metabolismo , Temperatura
19.
Proc Natl Acad Sci U S A ; 113(30): 8448-53, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27407146

RESUMEN

G-quadruplex (GQ) is a four stranded DNA secondary structure that arises from a guanine rich sequence. Stable formation of GQ in genomic DNA can be counteracted by the resolving activity of specialized helicases including RNA helicase AU (associated with AU rich elements) (RHAU) (G4 resolvase 1), Bloom helicase (BLM), and Werner helicase (WRN). However, their substrate specificity and the mechanism involved in GQ unfolding remain uncertain. Here, we report that RHAU, BLM, and WRN exhibit distinct GQ conformation specificity, but use a common mechanism of repetitive unfolding that leads to disrupting GQ structure multiple times in succession. Such unfolding activity of RHAU leads to efficient annealing exclusively within the same DNA molecule. The same resolving activity is sufficient to dislodge a stably bound GQ ligand, including BRACO-19, NMM, and Phen-DC3. Our study demonstrates a plausible biological scheme where different helicases are delegated to resolve specific GQ structures by using a common repetitive unfolding mechanism that provides a robust resolving power.


Asunto(s)
ARN Helicasas DEAD-box/química , ADN/química , G-Cuádruplex , RecQ Helicasas/química , Imagen Individual de Molécula/métodos , Helicasa del Síndrome de Werner/química , Secuencia de Bases , Dicroismo Circular , ARN Helicasas DEAD-box/metabolismo , ADN/genética , ADN/metabolismo , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , RecQ Helicasas/metabolismo , Especificidad por Sustrato , Telómero/genética , Telómero/metabolismo , Helicasa del Síndrome de Werner/metabolismo
20.
J Biol Chem ; 291(10): 5355-72, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26740632

RESUMEN

RNA helicase associated with AU-rich element (RHAU) is an ATP-dependent RNA helicase that demonstrates high affinity for quadruplex structures in DNA and RNA. To elucidate the significance of these quadruplex-RHAU interactions, we have performed RNA co-immunoprecipitation screens to identify novel RNAs bound to RHAU and characterize their function. In the course of this study, we have identified the non-coding RNA BC200 (BCYRN1) as specifically enriched upon RHAU immunoprecipitation. Although BC200 does not adopt a quadruplex structure and does not bind the quadruplex-interacting motif of RHAU, it has direct affinity for RHAU in vitro. Specifically designed BC200 truncations and RNase footprinting assays demonstrate that RHAU binds to an adenosine-rich region near the 3'-end of the RNA. RHAU truncations support binding that is dependent upon a region within the C terminus and is specific to RHAU isoform 1. Tests performed to assess whether BC200 interferes with RHAU helicase activity have demonstrated the ability of BC200 to act as an acceptor of unwound quadruplexes via a cytosine-rich region near the 3'-end of the RNA. Furthermore, an interaction between BC200 and the quadruplex-containing telomerase RNA was confirmed by pull-down assays of the endogenous RNAs. This leads to the possibility that RHAU may direct BC200 to bind and exert regulatory functions at quadruplex-containing RNA or DNA sequences.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Largo no Codificante/metabolismo , Secuencia de Bases , Sitios de Unión , ARN Helicasas DEAD-box/genética , G-Cuádruplex , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Datos de Secuencia Molecular , Unión Proteica , ARN Largo no Codificante/química , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...