Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125892

RESUMEN

Boron (B) deficiency has been shown to inhibit root cell growth and division. However, the precise mechanism underlying B deficiency-mediated root tip growth inhibition remains unclear. In this study, we investigated the role of BnaA3.NIP5;1, a gene encoding a boric acid channel, in Brassica napus (B. napus). BnaA3.NIP5;1 is expressed in the lateral root cap and contributes to B acquisition in the root tip. Downregulation of BnaA3.NIP5;1 enhances B sensitivity in B. napus, resulting in reduced shoot biomass and impaired root tip development. Transcriptome analysis was conducted on root tips from wild-type B. napus (QY10) and BnaA3.NIP5;1 RNAi lines to assess the significance of B dynamics in meristematic cells during seedling growth. Differentially expressed genes (DEGs) were significantly enriched in plant circadian rhythm and nitrogen (N) metabolism pathways. Notably, the circadian-rhythm-related gene HY5 exhibited a similar B regulation pattern in Arabidopsis to that observed in B. napus. Furthermore, Arabidopsis mutants with disrupted circadian rhythm (hy5/cor27/toc1) displayed heightened sensitivity to low B compared to the wild type (Col-0). Consistent with expectations, B deficiency significantly disrupted N metabolism in B. napus roots, affecting nitrogen concentration, nitrate reductase enzyme activity, and glutamine synthesis. Interestingly, this disruption was exacerbated in BnaA3NIP5;1 RNAi lines. Overall, our findings highlight the critical role of B dynamics in root tip cells, impacting circadian rhythm and N metabolism, ultimately leading to retarded growth. This study provides novel insights into B regulation in root tip development and overall root growth in B. napus.


Asunto(s)
Boro , Brassica napus , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Nitrógeno , Raíces de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/crecimiento & desarrollo , Boro/metabolismo , Boro/deficiencia , Nitrógeno/metabolismo , Nitrógeno/deficiencia , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Ritmo Circadiano/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Plantones/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
J Exp Bot ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140702

RESUMEN

Nuclear Ca²âº signaling is crucial for symbiotic interactions between legumes and beneficial microbes, such as rhizobia and arbuscular mycorrhizal fungi. Key to generating repetitive nuclear Ca²âº oscillations are the ion channels DMI1 and CNGC15. Despite over 20 years of research on symbiotic nuclear Ca²âº spiking, important questions remain, including the exact function of the DMI1 channel. This review highlights recent developments that have filled knowledge gaps regarding the regulation of CNGC15 and its interplay with DMI1. We also explore new insights into the evolutionary conservation of DMI1-induced symbiotic nuclear Ca²âº oscillations and the roles of CNGC15 and DMI1 beyond symbiosis, such as in nitrate signaling, and discuss new questions this raises. As we delve deeper into the regulatory mechanisms and evolutionary history of these ion channels, we move closer to fully understanding the roles of nuclear Ca²âº signaling in plant life.

3.
PeerJ ; 12: e17456, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076773

RESUMEN

Background: The band and loop space maintainer is used to maintain the missing space of deciduous molars which are lost early. When the second deciduous molar is lost prematurely, the stress on the first permanent molar during different degrees of development may vary when it is the abutment. The design and use of the space maintainer may also lead to damage of the loop. The purpose of this article is to use the finite element method to study the stress on the first permanent molar and the loop with or without occlusal contact, with the first permanent molar of four different degrees of development serving as the abutment. We aimed to guide the clinical design and use of the space maintainer. Methods: We developed finite element models of the mandibular first permanent molar and the band and loop space maintainer, and simulated alveolar bone, periodontal ligament (PDL), enamel and dentin. The four developmental stages were 1/2 (I), 2/3 (II), 3/4 (III) and full development (IV). Ansys Workbench was used to analyze the effects of root development and occlusal contact between the loop and the opposite jaw on abutment teeth and the loop. Abutment teeth were statically loaded vertically and obliquely with a force of 70 N. The loop was statically loaded vertically with a force of 14 N. The stress on all structures and the displacement trends of the loop were calculated. Results: The stress on enamel, dentin, PDL and alveolar bone were similar, and the concentration was consistent. But if there was occlusal contact, the loop produced maximum displacement at the near middle edge of contact with the anterior teeth. When the loop was in occlusal contact with the opposing occlusal tooth, the peak value of the equivalent stress on the space maintainer under vertical load was: group I > group IV > group III > group II, and the maximum principal stress peak change was: group I > group III > group II > group IV. The change of the equivalent stress peak value of the loop under oblique load was: group I > group III > group IV > group II, and the maximum principal stress peak change was: group III > group I > group II > group IV. When the loop was not in occlusal contact with the opposing occlusal tooth, the peak value of the equivalent stress on the space maintainer under vertical load was: group IV > group I > group II > group III, and the maximum principal stress peak change was: group IV > group I > group II > group III. The change of the equivalent stress peak value of the space maintainer under oblique load was: group I > group IV > group II > group III, and the maximum principal stress peak change was: group I > group IV > group II > group III. Conclusions: Our results suggested that whenever possible, choosing the teeth with nearly complete root development as the abutment of the space maintainer is advisable. The design and use of the band and loop space maintainer should avoid occlusal contact with the occlusal teeth to prevent deformation of the loop.


Asunto(s)
Fuerza de la Mordida , Análisis de Elementos Finitos , Mandíbula , Diente Molar , Diente Molar/fisiología , Humanos , Mandíbula/fisiología , Estrés Mecánico , Masticación/fisiología , Análisis del Estrés Dental/métodos , Ligamento Periodontal/fisiología , Ligamento Periodontal/crecimiento & desarrollo
4.
J Hazard Mater ; 476: 135092, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38964040

RESUMEN

Methylisothiazolinone (MIT) is a widely used preservative and biocide to prevent product degradation, yet its potential impact on plant growth remains poorly understood. In this study, we investigated MIT's toxic effects on Arabidopsis thaliana root growth. Exposure to MIT significantly inhibited Arabidopsis root growth, associated with reduced root meristem size and root meristem cell numbers. We explored the polar auxin transport pathway and stem cell regulation as key factors in root meristem function. Our findings demonstrated that MIT suppressed the expression of the auxin efflux carrier PIN1 and major root stem cell regulators (PLT1, PLT2, SHR, and SCR). Additionally, MIT hindered root regeneration by downregulating the quiescent center (QC) marker WOX5. Transcriptome analysis revealed MIT-induced alterations in gene expression related to oxidative stress, with physiological experiments confirming elevated reactive oxygen species (ROS) levels and increased cell death in root tips at concentrations exceeding 50 µM. In summary, this study provides critical insights into MIT's toxicity on plant root development and regeneration, primarily linked to modifications in polar auxin transport and downregulation of genes associated with root stem cell regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Raíces de Plantas , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Regeneración/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Meristema/efectos de los fármacos , Tiazoles/toxicidad
5.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062910

RESUMEN

Tree peony (Paeonia suffruticosa Andr.) is a woody plant with high ornamental, medicinal, and oil values. However, its low rooting rate and poor rooting quality are bottleneck issues in the micropropagation of P. ostii. The WUSCHEL-related homeobox (WOX) family plays a crucial role in root development. In this study, based on the screening of the genome and root transcriptome database, we identified ten WOX members in P. ostii. Phylogenetic analysis revealed that the ten PoWOX proteins clustered into three major clades, the WUS, intermediate, and ancient clade, respectively. The conserved motifs and tertiary structures of PoWOX proteins located in the same clade exhibited higher similarity. The analysis of cis-regulatory elements in the promoter indicated that PoWOX genes are involved in plant growth and development, phytohormones, and stress responses. The expression analysis revealed that PoWOX genes are expressed in distinct tissues. PoWOX4, PoWOX5, PoWOX11, and PoWOX13b are preferentially expressed in roots at the early stage of root primordium formation, suggesting their role in the initiation and development of roots. These results will provide a comprehensive reference for the evolution and potential function of the WOX family and offer guidance for further study on the root development of tree peony.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Paeonia , Filogenia , Proteínas de Plantas , Raíces de Plantas , Paeonia/genética , Paeonia/crecimiento & desarrollo , Paeonia/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Familia de Multigenes , Genoma de Planta , Perfilación de la Expresión Génica
6.
Biochem Soc Trans ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984866

RESUMEN

Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.

7.
Front Plant Sci ; 15: 1412540, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966148

RESUMEN

Introduction: Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods: In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion: These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.

8.
Plant Cell Rep ; 43(7): 188, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960994

RESUMEN

KEY MESSAGE: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/citología , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , División Celular Asimétrica , Mutación/genética , Células Madre/metabolismo , Células Madre/citología , Ciclinas/metabolismo , Ciclinas/genética , Proteínas de Unión a Calmodulina , Factores de Transcripción
9.
Plant J ; 119(3): 1183-1196, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824611

RESUMEN

Plants possess an outstanding capacity to regenerate enabling them to repair damages caused by suboptimal environmental conditions, biotic attacks, or mechanical damages impacting the survival of these sessile organisms. Although the extent of regeneration varies greatly between localized cell damage and whole organ recovery, the process of regeneration can be subdivided into a similar sequence of interlinked regulatory processes. That is, competence to regenerate, cell fate reprogramming, and the repatterning of the tissue. Here, using root tip regeneration as a paradigm system to study plant regeneration, we provide a synthesis of the molecular responses that underlie both regeneration competence and the repatterning of the root stump. Regarding regeneration competence, we discuss the role of wound signaling, hormone responses and synthesis, and rapid changes in gene expression observed in the cells close to the cut. Then, we consider how this rapid response is followed by the tissue repatterning phase, where cells experience cell fate changes in a spatial and temporal order to recreate the lost stem cell niche and columella. Lastly, we argue that a multi-scale modeling approach is fundamental to uncovering the mechanisms underlying root regeneration, as it allows to integrate knowledge of cell-level gene expression, cell-to-cell transport of hormones and transcription factors, and tissue-level growth dynamics to reveal how the bi-directional feedbacks between these processes enable self-organized repatterning of the root apex.


Asunto(s)
Raíces de Plantas , Regeneración , Regeneración/fisiología , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Meristema/fisiología , Meristema/genética
10.
Plant Physiol Biochem ; 213: 108827, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38875779

RESUMEN

Salvia miltiorrhiza is a widely utilized medicinal herb in China. Its roots serve as crucial raw materials for multiple drugs. The root morphology is essential for the quality of this herb, but little is known about the molecular mechanism underlying the root development in S. miltiorrhiza. Previous study reveals that the polar auxin transport is critical for lateral root development in S. miltiorrhiza. Whether the auxin efflux carriers PIN-FORMEDs (PINs) are involved in this process is worthy investigation. In this study, we identified nine SmPIN genes in S. miltiorrhiza, and their chromosome localization, physico-chemical properties, and phylogenetic relationship were analyzed. SmPINs were unevenly distributed across four chromosomes, and a variety of hormone responsive elements were detected in their promoter regions. The SmPIN proteins were divided into three branches according to the phylogenetic relationship. SmPINs with close evolutionary distance showed similar conserved motif features. The nine SmPINs showed distinct tissue-specific expression patterns and most of them were auxin-inducible genes. We generated SmPIN3 overexpression S. miltiorrhiza seedlings to investigate the function of SmPIN3 in the root development in this species. The results demonstrated that SmPIN3 regulated the root morphogenesis of S. miltiorrhiza by simultaneously affecting the lateral root development and the root anatomical structure. The root morphology, patterns of root xylem and phloem as well as the expressions of genes in the auxin signaling pathway all altered in the SmPIN3 overexpression lines. Our findings provide new insights for elucidating the regulatory roles of SmPINs in the auxin-mediated root development in S. miltiorrhiza.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Raíces de Plantas , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Genes de Plantas
11.
Plant Physiol Biochem ; 213: 108833, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879984

RESUMEN

Root plays an important role in plant drought tolerance, especially in horticultural crops like apples. However, the crucial regulator and molecular mechanism in root development of apple trees under drought are not well unknown. Cys2/His2-type Zinc-finger proteins are essential for plant response to drought, while the members of C2H2 Zinc-finger proteins in apple are largely unknown. In this study, we identified the members of the C1-2i subclass family of C2H2 Zinc-finger proteins in apple (Malus × domestica). Among them, MdZAT5 is significantly induced in apple roots under drought conditions and positively regulates apple root development under drought. Further investigation revealed that MdZAT5 positively regulates root development and root hydraulic conductivity by mediating the transcription level of MdMYB88 under drought stress. Taken together, our results demonstrate the importance of MdZAT5 in root development under drought in apple trees. This finding provides a new candidate direction for apple breeding for drought resistance.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Raíces de Plantas , Malus/genética , Malus/crecimiento & desarrollo , Malus/metabolismo , Malus/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
12.
Int J Biol Macromol ; 274(Pt 2): 133446, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945337

RESUMEN

Panax ginseng C.A. Mey., known for its medicinal and dietary supplement properties, primarily contains pharmacologically active ginsenosides. However, the regulatory mechanisms linking ginseng root development with ginsenoside biosynthesis are still unclear. Root meristem growth factors (RGFs) are crucial for regulating plant root growth. In our study, we identified five ginseng RGF peptide sequences from the ginseng genome and transcriptome libraries. We treated Arabidopsis and ginseng adventitious roots with exogenous Panax ginseng RGFs (PgRGFs) to assess their activities. Our results demonstrate that PgRGF1 influences gravitropic responses and reduces lateral root formation in Arabidopsis. PgRGF1 has been found to restrict the number and length of ginseng adventitious root branches in ginseng. Given the medicinal properties of ginseng, We determined the ginsenoside content and performed transcriptomic analysis of PgRGF1-treated ginseng adventitious roots. Specifically, the total ginsenoside content in ginseng adventitious roots decreased by 19.98 % and 63.71 % following treatments with 1 µM and 10 µM PgRGF1, respectively, compared to the control. The results revealed that PgRGF1 affects the accumulation of ginsenosides by regulating the expression of genes associated with auxin transportation and ginsenoside biosynthesis. These findings suggest that PgRGF1, as a peptide hormone regulator in ginseng, can modulate adventitious root growth and ginsenoside accumulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ginsenósidos , Meristema , Panax , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ginsenósidos/biosíntesis , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Panax/genética , Panax/crecimiento & desarrollo , Panax/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
13.
Genes (Basel) ; 15(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38927696

RESUMEN

Small auxin-upregulated RNAs (SAURs), as the largest family of early auxin-responsive genes, play important roles in plant growth and development processes, such as auxin signaling and transport, hypocotyl development, and tolerance to environmental stresses. However, the functions of few SAUR genes are known in the root development of sweet potatoes. In this study, an IbSAUR36 gene was cloned and functionally analyzed. The IbSAUR36 protein was localized to the nucleus and plasma membrane. The transcriptional level of this gene was significantly higher in the pencil root and leaf.This gene was strongly induced by indole-3-acetic acid (IAA), but it was downregulated under methyl-jasmonate(MeJA) treatment. The promoter of IbSAUR36 contained the core cis-elements for phytohormone responsiveness. Promoter ß-glucuronidase (GUS) analysis in Arabidopsis showed that IbSAUR36 is highly expressed in the young tissues of plants, such as young leaves, roots, and buds. IbSAUR36-overexpressing sweet potato roots were obtained by an efficient Agrobacterium rhizogenes-mediated root transgenic system. We demonstrated that overexpression of IbSAUR36 promoted the accumulation of IAA, upregulated the genes encoding IAA synthesis and its signaling pathways, and downregulated the genes encoding lignin synthesis and JA signaling pathways. Taken together, these results show that IbSAUR36 plays an important role in adventitious root (AR) development by regulating IAA signaling, lignin synthesis, and JA signaling pathways in transgenic sweet potatoes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Ipomoea batatas , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Ipomoea batatas/genética , Ipomoea batatas/crecimiento & desarrollo , Ipomoea batatas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Regiones Promotoras Genéticas , Ciclopentanos/farmacología , Ciclopentanos/metabolismo
14.
Plant Sci ; 346: 112160, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908800

RESUMEN

Vegetative propagation through cutting is a widely used clonal approach for maintaining desired genotypes. However, some woody species have difficulty forming adventitious roots (ARs) with this approach, including yellow camellia (YC) C. nitidissima. Yellow camellias, prized for their ornamental value and potential health benefits in tea, remain difficult to propagate clonally due to this rooting recalcitrance. As part of the efforts to understand YC cuttings' recalcitrance, we conducted a detailed investigation into AR formation in yellow camellia cuttings via histology and endogenous phytohormone dynamics during this process. We also compared YC endogenous phytohormone and metabolite phytohormone profiles with those of easy-to-root poplar and willow cuttings. Our results indicate that the induction of ARs in YC cuttings is achievable through auxin treatment, and YC ARs are initiated from cambial derivatives and develop a vascular system connected with that of the stem. During AR induction, endogenous hormones showed a dynamic profile, with IAA continuing to increase starting 9 days after auxin induction. JA, JA-Ile, and OPDA showed a similar trend as IAA but decreased by the 45th day. Cytokinin first decreased to its lowest level by the 18th day and then increased. SA largely exhibited an increasing trend with a drop on the 36th day, while ABA first increased to its peak level by the 18th day and then decreased. Compared to poplar, YC cuttings had a low level of IAA, IAA-Asp, and OPDA, and a high level of cytokinin and SA. Metabolite profiling highlighted significant down-accumulation of compounds associated with AR formation in yellow camellias, such as citric and ascorbic acid, fructose, sucrose, flavonoids, and phenolic acid derivatives. Our study reveals the unfavorable endogenous hormone and metabolite profiles underlying the rooting recalcitrance of YC cuttings, providing valuable knowledge for addressing this challenge in clonal propagation.


Asunto(s)
Camellia , Reguladores del Crecimiento de las Plantas , Raíces de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Camellia/metabolismo , Camellia/genética , Camellia/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo
15.
Plants (Basel) ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891290

RESUMEN

Numerous studies have shown that the endophytic fungus Piriformospora indica has a broad range of promoting effects on root development and plant growth in host plants. However, there are currently no reports on the application of this fungus on Cerasus humilis. This study first compared the colonization ability of P. indica on 11 C. humilis varieties and found that the colonization rate of this fungus on these varieties ranged from 90% to 100%, with the colonization rate of the varieties '09-01' and 'Nongda 7' being as high as 100%. Subsequently, the effect of P. indica on root development and plant growth of C. humilis was investigated using cuttings of '09-01' and 'Nongda 7' as materials. P. indica colonization was found to increase the biomass of '09-01' and 'Nongda 7' plants; root activity, POD enzymes, and chlorophyll content were also significantly increased. In addition, indole-3-acetic acid (IAA) content in the roots of C. humilis plants increased after colonization, while jasmonic acid (JA) and 1-aminocyclopropane-1-car- boxylic acid (ACC) content decreased. In conclusion, it has been demonstrated that P. indica can promote the growth of C. humilis plants by accelerating biomass accumulation, promoting rooting, and enhancing the production of photosynthetic pigments, as well as regulating hormone synthesis.

16.
Plant Physiol Biochem ; 213: 108858, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924907

RESUMEN

Cytokinins are growth-regulating plant hormones that are considered to adjust plant development under environmental stresses. During sole ammonium nutrition, a condition known to induce growth retardation of plants, altered cytokinin content can contribute to the characteristic ammonium toxicity syndrome. To understand the metabolic changes in cytokinin pools, cytokinin biosynthesis and degradation were analyzed in the leaves and roots of mature Arabidopsis plants. We found that in leaves of ammonium-grown plants, despite induction of biosynthesis on the expression level, there was no active cytokinin build-up because they were effectively routed toward their downstream catabolites. In roots, cytokinin conjugation was also induced, together with low expression of major synthetic enzymes, resulting in a decreased content of the trans-zeatin form under ammonium conditions. Based on these results, we hypothesized that in leaves and roots, cytokinin turnover is the major regulator of the cytokinin pool and does not allow active cytokinins to accumulate. A potent negative-regulator of root development is trans-zeatin, therefore its low level in mature root tissues of ammonium-grown plants may be responsible for occurrence of a wide root system. Additionally, specific cytokinin enhancement in apical root tips may evoke a short root phenotype in plants under ammonium conditions. The ability to flexibly regulate cytokinin metabolism and distribution in root and shoot tissues can contribute to adjusting plant development in response to ammonium stress.


Asunto(s)
Compuestos de Amonio , Arabidopsis , Citocininas , Hojas de la Planta , Raíces de Plantas , Arabidopsis/metabolismo , Citocininas/metabolismo , Citocininas/biosíntesis , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Compuestos de Amonio/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Plant Cell Rep ; 43(7): 165, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861173

RESUMEN

KEY MESSAGE: SmSAUR4, SmSAUR18, SmSAUR28, SmSAUR37, and SmSAUR38 were probably involved in the auxin-mediated root development in Salvia miltiorrhiza. Salvia miltiorrhiza is a widely utilized medicinal plant in China. Its roots and rhizomes are the main medicinal portions and are closely related to the quality of this herb. Previous studies have revealed that auxin plays pivotal roles in S. miltiorrhiza root development. Whether small auxin-up RNA genes (SAURs), which are crucial early auxin response genes, are involved in auxin-mediated root development in S. miltiorrhiza is worthy of investigation. In this study, 55 SmSAUR genes in S. miltiorrhiza were identified, and their physical and chemical properties, gene structure, cis-acting elements, and evolutionary relationships were analyzed. The expression levels of SmSAUR genes in different organs of S. miltiorrhiza were detected using RNA-seq combined with qRT‒PCR. The root development of S. miltiorrhiza seedlings was altered by the application of indole-3-acetic acid (IAA), and Pearson correlation coefficient analysis was conducted to screen SmSAURs that potentially participate in this physiological process. The diameter of primary lateral roots was positively correlated with SmSAUR4. The secondary lateral root number was positively correlated with SmSAUR18 and negatively correlated with SmSAUR4. The root length showed a positive correlation with SmSAUR28 and SmSAUR37 and a negative correlation with SmSAUR38. The fresh root biomass exhibited a positive correlation with SmSAUR38 and a negative correlation with SmSAUR28. The aforementioned SmSAURs were likely involved in auxin-mediated root development in S. miltiorrhiza. Our study provides a comprehensive overview of SmSAURs and provides the groundwork for elucidating the molecular mechanism underlying root morphogenesis in this species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Raíces de Plantas , Salvia miltiorrhiza , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Filogenia , Genes de Plantas , Genoma de Planta , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos
18.
Plant Cell Rep ; 43(7): 169, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864921

RESUMEN

KEY MESSAGE: The study unveils Si's regulatory influence by regulating DEGs, TFs, and TRs. Further bHLH subfamily and auxin transporter pathway elucidates the mechanisms enhancing root development and nodulation. Soybean is a globally important crop serving as a primary source of vegetable protein for millions of individuals. The roots of these plants harbour essential nitrogen fixing structures called nodules. This study investigates the multifaceted impact of silicon (Si) application on soybean, with a focus on root development, and nodulation employing comprehensive transcriptomic analyses and gene regulatory network. RNA sequence analysis was utilised to examine the change in gene expression and identify the noteworthy differentially expressed genes (DEGs) linked to the enhancement of soybean root nodulation and root development. A set of 316 genes involved in diverse biological and molecular pathways are identified, with emphasis on transcription factors (TFs) and transcriptional regulators (TRs). The study uncovers TF and TR genes, categorized into 68 distinct families, highlighting the intricate regulatory landscape influenced by Si in soybeans. Upregulated most important bHLH subfamily and the involvement of the auxin transporter pathway underscore the molecular mechanisms contributing to enhanced root development and nodulation. The study bridges insights from other research, reinforcing Si's impact on stress-response pathways and phenylpropanoid biosynthesis crucial for nodulation. The study reveals significant alterations in gene expression patterns associated with cellular component functions, root development, and nodulation in response to Si.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Glycine max , Nodulación de la Raíz de la Planta , Raíces de Plantas , Silicio , Factores de Transcripción , Glycine max/genética , Glycine max/crecimiento & desarrollo , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Silicio/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
19.
Plant Physiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865442

RESUMEN

The roots of plants play multiples functions that are essential for growth and development, including anchoring to the soil and water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, e.g. the root nodule symbiosis established between a limited group of plants and nitrogen fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of root nodule symbiosis recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes -DNA methylation and histone post-translational modifications- that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlighted how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long non-coding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single-cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.

20.
Front Plant Sci ; 15: 1351436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911974

RESUMEN

In crops like wheat, terminal drought is one of the principal stress factors limiting productivity in rain-fed systems. However, little is known about root development after heading, when water uptake can be critical to wheat crops. The impact of water-stress on root growth was investigated in two wheat cultivars, Scout and Mace, under well-watered and post-anthesis water stress in three experiments. Plants were grown outside in 1.5-m long pots at a density similar to local recommended farming practice. Differences in root development were observed between genotypes, especially for water stress conditions under which Scout developed and maintained a larger root system than Mace. While under well-watered conditions both genotypes had shallow roots that appeared to senesce after heading, a moderate water stress stimulated shallow-root growth in Scout but accelerated senescence in Mace. For deep roots, post-heading biomass growth was observed for both genotypes in well-watered conditions, while under moderate water stress, only Scout maintained net growth as Mace deep roots senesced. Water stress of severe intensity affected both genotypes similarly, with root senescence at all depths. Senescence was also observed above ground. Under well-watered conditions, Scout retained leaf greenness (i.e. stay-green phenotype) for slightly longer than Mace. The difference between genotypes accentuated under moderate water stress, with rapid post-anthesis leaf senescence in Mace while Scout leaf greenness was affected little if at all by the stress. As an overall result, grain biomass per plant ('yield') was similar in the two genotypes under well-watered conditions, but more affected by a moderate stress in Mace than Scout. The findings from this study will assist improvement in modelling root systems of crop models, development of relevant phenotyping methods and selection of cultivars with better adaptation to drought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA