Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 915
Filtrar
1.
Naturwissenschaften ; 111(5): 45, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141101

RESUMEN

6-methoxybenzoxazolinone (6-MBOA) is a secondary plant metabolite predominantly found in monocotyledonous plants, especially Gramineae. In damaged tissue, 2-ß-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc) is hydrolyzed to DIMBOA, which spontaneously decomposes into 6-MBOA. It is commonly detected in plants consumed by voles and livestock and can also be present in cereal-based products. Discovered in 1955, this compound is renowned for its ability to trigger animal reproduction. However, there is a lack of research on its functional and mechanistic properties, leaving much of their potential unexplored. This review aimed to comprehensively summarize the effects of 6-MBOA on animal reproduction and human health, as well as its defensive role against herbivores. Studies have shown that 6-MBOA effectively inhibits the digestion, development, growth, and reproduction of insects. 6-MBOA may act as a partial agonist of melatonin and exert a regulatory role in mammalian reproduction, resulting in either promoting or inhibiting effects. 6-MBOA has been theorized to possess anti-tumor, anti-AIDS, anti-anxiety, and weight-loss effects in humans. However, insufficient attention has been paid to its defense properties against mammalian herbivores, and the mechanisms underlying its effects on mammalian reproduction remain unclear. In addition, research on its impact on human health is still in its preliminary stages. The review emphasizes the need for further systematic and comprehensive research on 6-MBOA to fully understand its diverse functions. Elucidating the effects of 6-MBOA on animal reproduction, adaptation, and human health would advance our understanding of plant-herbivore coevolution and the influence of environmental factors on animal population dynamics. Furthermore, this knowledge could potentially promote its application in human health and animal husbandry.


Asunto(s)
Reproducción , Animales , Reproducción/efectos de los fármacos , Reproducción/fisiología , Humanos , Benzoxazoles
2.
Biotechnol Adv ; : 108420, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128577

RESUMEN

Microorganisms co-exist and co-evolve in nature, forming intricate ecological communities. The interspecies cross-talk within these communities creates and sustains their great biosynthetic potential, making them an important source of natural medicines and high-value-added chemicals. However, conventional investigations into microbial metabolites are typically carried out in pure cultures, resulting in the absence of specific activating factors and consequently causing a substantial number of biosynthetic gene clusters to remain silent. This, in turn, hampers the in-depth exploration of microbial biosynthetic potential and frequently presents researchers with the challenge of rediscovering compounds. In response to this challenge, the coculture strategy has emerged to explore microbial biosynthetic capabilities and has shed light on the study of cross-talk mechanisms. These elucidated mechanisms will contribute to a better understanding of complex biosynthetic regulations and offer valuable insights to guide the mining of secondary metabolites. This review summarizes the research advances in microbial cross-talk mechanisms, with a particular focus on the mechanisms that activate the biosynthesis of secondary metabolites. Additionally, the instructive value of these mechanisms for developing strategies to activate biosynthetic pathways is discussed. Moreover, challenges and recommendations for conducting in-depth studies on the cross-talk mechanisms are presented.

3.
BMC Microbiol ; 24(1): 299, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127645

RESUMEN

The fungus Parastagonospora nodorum causes septoria nodorum blotch on wheat. The role of the fungal Velvet-family transcription factor VeA in P. nodorum development and virulence was investigated here. Deletion of the P. nodorum VeA ortholog, PnVeA, resulted in growth abnormalities including pigmentation, abolished asexual sporulation and highly reduced virulence on wheat. Comparative RNA-Seq and RT-PCR analyses revealed that the deletion of PnVeA also decoupled the expression of major necrotrophic effector genes. In addition, the deletion of PnVeA resulted in an up-regulation of four predicted secondary metabolite (SM) gene clusters. Using liquid-chromatography mass-spectrometry, it was observed that one of the SM gene clusters led to an accumulation of the mycotoxin alternariol. PnVeA is essential for asexual sporulation, full virulence, secondary metabolism and necrotrophic effector regulation.


Asunto(s)
Ascomicetos , Proteínas Fúngicas , Enfermedades de las Plantas , Metabolismo Secundario , Factores de Transcripción , Triticum , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Lactonas , Familia de Multigenes , Micotoxinas/metabolismo , Micotoxinas/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/microbiología , Virulencia/genética
4.
Nutrients ; 16(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125431

RESUMEN

Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.


Asunto(s)
Disponibilidad Biológica , Frutas , Polifenoles , Polifenoles/farmacología , Polifenoles/farmacocinética , Humanos , Frutas/química , Verduras/química , Metabolismo Secundario , Nanopartículas , Suplementos Dietéticos
5.
J Adv Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089618

RESUMEN

INTRODUCTION: Ochratoxins (OTs) are worldwide regulated mycotoxins contaminating a variety of food-environment and agro-environment. Several Aspergillus and Pencillium species synthesize OTs from a six-gene biosynthetic gene cluster (BGC) to produce the highly toxic final product OTA. Although many studies on OTA-degrading enzymes were performed, high efficiency enzymes with strong stability are extremely needed, and the OTA degrading mechanism is poorly understood. OBJECTIVES: The study aimed to explore the OT-degradation enzyme and investigate its degradation mechanisms in Metarhizium, which contain an OT biosynthetic gene cluster. METHODS: Phylogenomic relationship combined with RNA expression analysis were used to explore the distribution of OT BGC in fungi. Bioactivity-guided isolation and protein mass spectrometry were conducted to trace the degrading enzymes in Metarhizium spp., and the enzymes were heterologously expressed in E. coli and verified by in vitro assays. Structure prediction and point mutation were performed to reveal the catalytic mechanism of MbAmh1. RESULTS: Beyond Aspergillus and Pencillium species, three species of the distant phylogenetic taxon Metarhizium contain an expressed OT-like BGC but lack an otaD gene. Unexpectedly, no OT BGC products were found in some Metarhizium species. Instead, Metarhizium metabolized both OTA and OTB to their non-toxic degradation products. This activity of M. brunneum was attributed to an intracellular hydrolase MbAmh1, which was tracked by bioactivity-guided proteomic analysis combined with in vitro reaction. Recombinant MbAmh1 (5 µg/mL) completely degraded 1 µg/mL OTA within 3 min, demonstrating a strong degrading ability towards OTA. Additionally, MbAmh1 showed considerable temperature adaptability ranging from 30 to 70 °C and acidic pH stability ranging from 4.0 to 7.0. Identification of active sites supported the crucial role of metal iron for this enzymatic reaction. CONCLUSION: These findings reveal different patterns of OT synthesis in fungi and provide a potential OTA degrading enzyme for industrial applications.

6.
Heliyon ; 10(14): e34369, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114027

RESUMEN

The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.

7.
New Phytol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39081009

RESUMEN

Plants, as a sessile organism, produce various secondary metabolites to interact with the environment. These chemicals have fascinated the plant science community because of their ecological significance and notable biological activity. However, predicting the complete biosynthetic pathways from target molecules to metabolic building blocks remains a challenge. Here, we propose retrieval-augmented dual-view retrosynthesis (READRetro) as a practical bio-retrosynthesis tool to predict the biosynthetic pathways of plant natural products. Conventional bio-retrosynthesis models have been limited in their ability to predict biosynthetic pathways for natural products. READRetro was optimized for the prediction of complex metabolic pathways by incorporating cutting-edge deep learning architectures, an ensemble approach, and two retrievers. Evaluation of single- and multi-step retrosynthesis showed that each component of READRetro significantly improved its ability to predict biosynthetic pathways. READRetro was also able to propose the known pathways of secondary metabolites such as monoterpene indole alkaloids and the unknown pathway of menisdaurilide, demonstrating its applicability to real-world bio-retrosynthesis of plant natural products. For researchers interested in the biosynthesis and production of secondary metabolites, a user-friendly website (https://readretro.net) and the open-source code of READRetro have been made available.

8.
Mar Drugs ; 22(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39057430

RESUMEN

Nitrogen heterocycles have drawn considerable attention because of their structurally novel and significant biological activities. Marine-derived fungi, especially the Aspergillus species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This review prioritizes the structural diversity and biological activities of nitrogen heterocycles that are produced by marine-derived Aspergillus species from January 2019 to January 2024, and their relevant biological activities. A total of 306 new nitrogen heterocycles, including seven major categories-indole alkaloids, diketopiperazine alkaloids, quinazoline alkaloids, isoquinoline alkaloids pyrrolidine alkaloids, cyclopeptide alkaloids, and other heterocyclic alkaloids-are presented in this review. Among these nitrogen heterocycles, 52 compounds had novel skeleton structures. Remarkably, 103 compounds showed various biological activities, such as cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities, and 21 compounds showed potent activities. This paper will guide further investigations into the structural diversity and biological activities of nitrogen heterocycles derived from the Aspergillus species and their potential contributions to the future development of new natural drug products in the medicinal and agricultural fields.


Asunto(s)
Alcaloides , Organismos Acuáticos , Aspergillus , Aspergillus/metabolismo , Alcaloides/farmacología , Alcaloides/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/química , Nitrógeno/química , Animales , Productos Biológicos/farmacología , Productos Biológicos/química , Humanos , Descubrimiento de Drogas/métodos , Relación Estructura-Actividad
9.
Appl Microbiol Biotechnol ; 108(1): 427, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046587

RESUMEN

Filamentous fungi are prolific producers of bioactive natural products and play a vital role in drug discovery. Yet, their potential cannot be fully exploited since many biosynthetic genes are silent or cryptic under laboratory culture conditions. Several strategies have been applied to activate these genes, with heterologous expression as one of the most promising approaches. However, successful expression and identification of new products are often hindered by host-dependent factors, such as low gene targeting efficiencies, a high metabolite background, or a lack of selection markers. To overcome these challenges, we have constructed a Penicillium crustosum expression host in a pyrG deficient strain by combining the split-marker strategy and CRISPR-Cas9 technology. Deletion of ligD and pcribo improved gene targeting efficiencies and enabled the use of an additional selection marker in P. crustosum. Furthermore, we reduced the secondary metabolite background by inactivation of two highly expressed gene clusters and abolished the formation of the reactive ortho-quinone methide. Finally, we replaced the P. crustosum pigment gene pcr4401 with the commonly used Aspergillus nidulans wA expression site for convenient use of constructs originally designed for A. nidulans in our P. crustosum host strain. As proof of concept, we successfully expressed a single polyketide synthase gene and an entire gene cluster at the P. crustosum wA locus. Resulting transformants were easily detected by their albino phenotype. With this study, we provide a highly efficient platform for heterologous expression of fungal genes. KEY POINTS: Construction of a highly efficient Penicillium crustosum heterologous expression host Reduction of secondary metabolite background by genetic dereplication strategy Integration of wA site to provide an alternative host besides Aspergillus nidulans.


Asunto(s)
Sistemas CRISPR-Cas , Penicillium , Metabolismo Secundario , Penicillium/genética , Penicillium/metabolismo , Metabolismo Secundario/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Familia de Multigenes , Marcación de Gen/métodos , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vías Biosintéticas/genética , Ingeniería Metabólica/métodos , Expresión Génica
10.
Nat Prod Res ; : 1-10, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056194

RESUMEN

A new phthalide derivative named paramlyktone (1) and a new arborinane-type triterpenoid named paramyrpenoid (2), together with ten previously described trichothecenes derivatives (3-12) were isolated and identified from a rhizospheric soil-derived Paramyrothecium sp. KMU22107 associated with Delphinium yunnanense. Their structural elucidation was achieved by the comprehensive analysis of spectroscopic data and comparison with literature values. Notably, paramyrpenoid (2) was the first example of an arborinane-type triterpenoid with a double bond at Δ12(13) and an additional methyl motif at C-8. This was the first report of arborinane-type triterpenoids from a fungus belonging to Paramyrothecium genus. In pharmacological studies, paramyrpenoid (2) demonstrated significant cytotoxic activity against the HL-60, SW480, A-549, MDA-MB-231 and SMMC-7721 cell lines, with IC50 values from 2.0 to 16.1 µM. Compounds 1 and 2 were also evaluated for anti-inflammatory, anti-acetylcholinesterase (AChE), and protein tyrosine phosphatase 1B (PTP1B) inhibitory activities in vitro.

11.
Plants (Basel) ; 13(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999684

RESUMEN

This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were analyzed using GC-MS, and their fumigation effects were tested in a vapor-phase bioassay. The experiment followed a factorial design with four types of essential oils, namely, those manually extracted from cardamom leaves (MCL) and galangal leaves (MGL) and those commercially produced from cardamom seeds (CCS) and galangal rhizomes (CGR), at seven concentrations (0, 50, 100, 150, 200, 250, and 300 µL/L air). The manually extracted oils yielded 0.6% from cardamom leaves and 0.25% from galangal leaves. MCL contained 28 components, with eucalyptol (25.2%) being the most abundant, while CCS had 34 components, primarily α-terpinyl acetate (46.1%) and eucalyptol (31.2%). MGL included 25 components, mainly caryophyllene (28.7%) and aciphyllene (18.3%), whereas CGR comprised 27 components, with methyl cis-cinnamate (47.3%) and safrole (19.8%) as the major constituents. The fumigation bioassay results revealed that CGR was the most effective, demonstrating the highest mortality rates of T. castaneum across all the tested periods and concentrations, achieving up to 96% mortality at 168 h with a concentration of 300 µL/L air. Statistical analyses showed significant differences in mortality based on the type and concentration of essential oil, particularly after 96 h. These findings highlight the potential of CGR, with its advantages and differences in chemical composition, as an effective biopesticide against T. castaneum, with increasing efficacy over time and at higher concentrations.

12.
J Agric Food Chem ; 72(32): 17890-17902, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083645

RESUMEN

Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc TR4) is the most destructive soil-borne fungal disease. Until now, there has been a lack of effective measures to control the disease. It is urgent to explore biocontrol agents to control Foc TR4 and the secretion of mycotoxin. In this study, fluvirucin B6 was screened from Streptomyces solisilvae using an activity-guided method. Fluvirucin B6 exhibited strong antifungal activity against Foc TR4 (0.084 mM of EC50 value) and significantly inhibited mycelial growth and spore germination. Further studies demonstrated that fluvirucin B6 could cause the functional loss of mitochondria, the disorder of metabolism of Foc TR4 cells, and the decrease of enzyme activities in the tricarboxylic acid cycle and electron transport chain, ultimately inhibiting mycotoxin metabolism. In a pot experiment, the application of fluvirucin B6 significantly decreased the incidence of banana Fusarium wilt and the amount of Foc TR4 and controlled fungal toxins in the soil. Additionally, fluvirucin B6 could positively regulate the changes in the structure of the banana rhizosphere microbial community, significantly enriching beneficial microbes associated with disease resistance. In summary, this study identifies fluvirucin B6, which plays versatile roles in managing fungal diseases and mycotoxins.


Asunto(s)
Fungicidas Industriales , Fusarium , Musa , Micotoxinas , Enfermedades de las Plantas , Microbiología del Suelo , Streptomyces , Fusarium/metabolismo , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Musa/microbiología , Streptomyces/metabolismo , Micotoxinas/metabolismo , Micotoxinas/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiota/efectos de los fármacos
13.
Indian J Microbiol ; 64(2): 618-634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39011001

RESUMEN

Natural pigments are becoming increasingly popular owing of their reliability. Microbial pigments provide an alternative to natural colours. A total of 24 fungal cultures were collected from leaf bits of Senna auriculata, with one strain (FNG1) producing an extracellular red orange pigment. Nigrospora oryzae was confirmed by using physical criteria and molecular phylogenetic study by using ITS and ß- tubulin analysis. In EtOAc, the crude red pigment was the most soluble. The TLC analysis was used to partly purify the natural pigment. The partially purified fungal pigment was used in successive bioprospecting studies. The antimicrobial activity of the partially purified sample was assessed against eight human pathogens, with Leucobacter AA7 showing the largest zone of inhibition (200-500 µg/mL). The compound's DPPH scavenging activity enhanced from 38.2 to 67.9%, with an IC50 value of 34.195 ± 2.33 µg/mL. Cancer cells were suppressed by partly pure fungal pigment, but non-cancerous HEK 293 cells were unaffected. The GC-MS analysis was used to characterize the molecule present in the partly purified pigment. In addition, the cotton textiles have the greatest staining capability for crude mycobial pigment, which dyes quickly and has a negative cytotoxicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01211-y.

14.
Trends Biotechnol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39054219

RESUMEN

The Streptomyces chassis serves as an important platform for efficient biomanufacture of diverse secondary metabolite (SM) compounds, but the current chassis lacks compatibility for integration of these SM biosynthetic pathways reliably and consistently. This forum discusses harnessing naturally evolved multifaceted switches to reprogram the Streptomyces chassis for biomanufacturing applications.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38967073

RESUMEN

Since ancient times, plants have been used as a remedy for numerous diseases. The pharmacological properties of plants are due to the presence of secondary metabolites like terpenoids, flavonoids, alkaloids, etc. Anthraquinones represent a group of naturally occurring quinones found generously across various plant species. Anthraquinones attract a significant amount of attention due to their reported efficacy in treating a wide range of diseases. Their complex chemical structures, combined with inherent medicinal properties, underscore their potential as agents for therapy. They demonstrate several therapeutic properties such as laxative, antitumor, antimalarial, antibacterial, antifungal, antioxidant, etc. Anthraquinones are found in different forms (derivatives) in plants, and they exhibit various medicinal properties due to their structure and chemical nature. The precursors for the biosynthesis of anthraquinones in higher plants are provided by different pathways such as plastidic hemiterpenoid 2-C-methyl-D-erthriol4-phosphate (MEP), mevalonate (MVA), isochorismate synthase and polyketide. By conducting a thorough analysis of scientific literature, this review provides insights into the intricate interplay between anthraquinone biosynthesis and its broad-ranging contributions to human health.

16.
Front Plant Sci ; 15: 1397874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022605

RESUMEN

Ficus carica is an economically important horticultural plant. Due to its abundant secondary metabolites, F. carica has gained interest for its applications in medicine and as a nutritional supplement. Both external and internal factors affect the accumulation of secondary metabolites in F. carica. The assembly of the F. carica genome has facilitated functional analysis of key genes and transcription factors associated with the biosynthesis of secondary metabolites, particularly anthocyanin. In this review, we summarize the various types and functions of secondary metabolites, with a particular focus on flavonoids, coumarins, and terpenes. We also explore the factors influencing their biosynthesis and accumulation, including varieties, tissue, environmental factors (e.g., light), stresses (e.g., high temperature, low temperature, drought, nutrient deficiencies, salinity), hormonal treatments, and developmental factors. Furthermore, we discuss the involvement of structural genes and transcription factors in the biosynthesis of secondary metabolites, specifically anthocyanin and furanocoumarins, knowledge of which will promote the breeding and genetic engineering of novel F. carica varieties.

17.
Cells ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891082

RESUMEN

Fusarium pseudograminearum causes destructive crown disease in wheat. The velvet protein family is a crucial regulator in development, virulence, and secondary metabolism of fungi. We conducted a functional analysis of FpVelB using a gene replacement strategy. The deletion of FpVelB decreased radial growth and enhanced conidial production compared to that of wild type. Furthermore, FpVelB modulates the fungal responses to abiotic stress through diverse mechanisms. Significantly, virulence decreased after the deletion of FpVelB in both the stem base and head of wheat. Genome-wide gene expression profiling revealed that the regulation of genes by FpVelB is associated with several processes related to the aforementioned phenotype, including "immune", "membrane", and "antioxidant activity", particularly with regard to secondary metabolites. Most importantly, we demonstrated that FpVelB regulates pathogen virulence by influencing deoxynivalenol production and modulating the expression of the PKS11 gene. In conclusion, FpVelB is crucial for plant growth, asexual development, and abiotic stress response and is essential for full virulence via secondary metabolism in F. pseudograminearum.


Asunto(s)
Proteínas Fúngicas , Fusarium , Regulación Fúngica de la Expresión Génica , Metabolismo Secundario , Fusarium/patogenicidad , Fusarium/genética , Fusarium/metabolismo , Metabolismo Secundario/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Virulencia/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Estrés Fisiológico , Tricotecenos/metabolismo , Esporas Fúngicas/metabolismo
18.
Microorganisms ; 12(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930610

RESUMEN

Streptomyces species are attractive sources of secondary metabolites that serve as major sources of antibiotics and other drugs. In this study, genome mining was used to determine the biosynthetic potential of Streptomyces sp. 21So2-11 isolated from Antarctic soil. 16S rRNA gene sequencing revealed that this strain is most closely related to Streptomyces drozdowiczii NBRC 101007T, with a similarity of 98.02%. Genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) showed that strain 21So2-11 represents a novel species of the genus Streptomyces. In addition to a large number of genes related to environmental adaptation and ecological function, a total of 28 putative biosynthetic gene clusters (BGCs) responsible for the biosynthesis of known and/or novel secondary metabolites, including terpenes, lantipeptides, polyketides, nonribosomal peptides, RiPPs and siderophores, were detected in the genome of strain 21So2-11. In addition, a total of 1456 BGCs were predicted to contribute to the biosynthesis of more than 300 secondary metabolites based on the genomes of 47 Streptomyces strains originating from polar regions. The results indicate the potential of Streptomyces sp. 21So2-11 for bioactive secondary metabolite production and are helpful for understanding bacterial adaptability and ecological function in cold terrestrial environments.

19.
Mar Drugs ; 22(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38921547

RESUMEN

Clavatols exhibit a wide range of biological activities due to their diverse structures. A genome mining strategy identified an A5cla cluster from Penicillium sp. MYA5, derived from the Arctic plant Dryas octopetala, is responsible for clavatol biosynthesis. Seven clavatols, including one new clavatol derivate named penicophenone F (1) and six known clavatols (2-7), were isolated from Penicillium sp. MYA5 using a transcriptome mining strategy. These structures were elucidated by comprehensive spectroscopic analysis. Antibacterial, aldose reductase inhibition, and siderophore-producing ability assays were conducted on compounds 1-7. Compounds 1 and 2 demonstrated inhibitory effects on the ALR2 enzyme with inhibition rates of 75.3% and 71.6% at a concentration of 10 µM, respectively. Compound 6 exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 4.0 µg/mL and 4.0 µg/mL, respectively. Additionally, compounds 1, 5, and 6 also showed potential iron-binding ability.


Asunto(s)
Antibacterianos , Penicillium , Staphylococcus aureus , Penicillium/genética , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Genómica/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Transcriptoma , Regiones Árticas , Sideróforos/farmacología , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/genética
20.
Mar Drugs ; 22(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921549

RESUMEN

Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.


Asunto(s)
Gammaproteobacteria , Genoma Bacteriano , Genómica , Filogenia , Regiones Antárticas , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Genómica/métodos , Psychrobacter/genética , Psychrobacter/aislamiento & purificación , Pseudoalteromonas/genética , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA