Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechniques ; 70(3): 167-174, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33535813

RESUMEN

The ongoing pandemic has demonstrated the utility of widespread surveillance and diagnostic detection of the novel SARS-CoV-2. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) has enabled broader testing, but current LAMP tests only detect single targets and require separate reactions for controls. With flu season in the Northern Hemisphere, the ability to screen for multiple targets will be increasingly important, and the ability to include internal controls in RT-LAMP allows for improved efficiency. Here we describe multiplexed RT-LAMP with four targets (SARS-CoV-2, influenza A, influenza B, human RNA) in a single reaction using real-time and end point fluorescence detection. Such increased functionality of RT-LAMP will enable even broader adoption of this molecular testing approach and aid in the fight against this public health threat.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza B/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , SARS-CoV-2/genética , Prueba de Ácido Nucleico para COVID-19/métodos , Cartilla de ADN/genética , Fluorescencia , ARN Viral/análisis , Transcripción Reversa , Sensibilidad y Especificidad
2.
Npj Flex Electron ; 4(1): 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-38624354

RESUMEN

The rapid advancement of electronic devices and fabrication technologies has further promoted the field of wearables and smart textiles. However, most of the current efforts in textile electronics focus on a single modality and cover a small area. Here, we have developed a tailored, electronic textile conformable suit (E-TeCS) to perform large-scale, multimodal physiological (temperature, heart rate, and respiration) sensing in vivo. This platform can be customized for various forms, sizes and functions using standard, accessible and high-throughput textile manufacturing and garment patterning techniques. Similar to a compression shirt, the soft and stretchable nature of the tailored E-TeCS allows intimate contact between electronics and the skin with a pressure value of around ~25 mmHg, allowing for physical comfort and improved precision of sensor readings on skin. The E-TeCS can detect skin temperature with an accuracy of 0.1 °C and a precision of 0.01 °C, as well as heart rate and respiration with a precision of 0.0012 m/s2 through mechano-acoustic inertial sensing. The knit textile electronics can be stretched up to 30% under 1000 cycles of stretching without significant degradation in mechanical and electrical performance. Experimental and theoretical investigations are conducted for each sensor modality along with performing the robustness of sensor-interconnects, washability, and breathability of the suit. Collective results suggest that our E-TeCS can simultaneously and wirelessly monitor 30 skin temperature nodes across the human body over an area of 1500 cm2, during seismocardiac events and respiration, as well as physical activity through inertial dynamics.

3.
NPJ Digit Med ; 2: 123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31840094

RESUMEN

Technological advances in passive digital phenotyping present the opportunity to quantify neurological diseases using new approaches that may complement clinical assessments. Here, we studied multiple sclerosis (MS) as a model neurological disease for investigating physiometric and environmental signals. The objective of this study was to assess the feasibility and correlation of wearable biosensors with traditional clinical measures of disability both in clinic and in free-living in MS patients. This is a single site observational cohort study conducted at an academic neurological center specializing in MS. A cohort of 25 MS patients with varying disability scores were recruited. Patients were monitored in clinic while wearing biosensors at nine body locations at three separate visits. Biosensor-derived features including aspects of gait (stance time, turn angle, mean turn velocity) and balance were collected, along with standardized disability scores assessed by a neurologist. Participants also wore up to three sensors on the wrist, ankle, and sternum for 8 weeks as they went about their daily lives. The primary outcomes were feasibility, adherence, as well as correlation of biosensor-derived metrics with traditional neurologist-assessed clinical measures of disability. We used machine-learning algorithms to extract multiple features of motion and dexterity and correlated these measures with more traditional measures of neurological disability, including the expanded disability status scale (EDSS) and the MS functional composite-4 (MSFC-4). In free-living, sleep measures were additionally collected. Twenty-three subjects completed the first two of three in-clinic study visits and the 8-week free-living biosensor period. Several biosensor-derived features significantly correlated with EDSS and MSFC-4 scores derived at visit two, including mobility stance time with MSFC-4 z-score (Spearman correlation -0.546; p = 0.0070), several aspects of turning including turn angle (0.437; p = 0.0372), and maximum angular velocity (0.653; p = 0.0007). Similar correlations were observed at subsequent clinic visits, and in the free-living setting. We also found other passively collected signals, including measures of sleep, that correlated with disease severity. These findings demonstrate the feasibility of applying passive biosensor measurement techniques to monitor disability in MS patients both in clinic and in the free-living setting.

4.
Commun Biol ; 2: 279, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31372518

RESUMEN

Non-shivering thermogenesis through mitochondrial proton uncoupling is one of the dominant thermoregulatory mechanisms crucial for normal cellular functions. The metabolic pathway for intracellular temperature rise has widely been considered as steady-state substrate oxidation. Here, we show that a transient proton motive force (pmf) dissipation is more dominant than steady-state substrate oxidation in stimulated thermogenesis. Using transient intracellular thermometry during stimulated proton uncoupling in neurons of Aplysia californica, we observe temperature spikes of ~7.5 K that decay over two time scales: a rapid decay of ~4.8 K over ~1 s followed by a slower decay over ~17 s. The rapid decay correlates well in time with transient electrical heating from proton transport across the mitochondrial inner membrane. Beyond ~33 s, we do not observe any heating from intracellular sources, including substrate oxidation and pmf dissipation. Our measurements demonstrate the utility of transient thermometry in better understanding the thermochemistry of mitochondrial metabolism.


Asunto(s)
Calor , Mitocondrias/metabolismo , Protones , Indicadores y Reactivos/química , Fuerza Protón-Motriz
5.
ACS Sens ; 2(9): 1257-1261, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28809477

RESUMEN

We report a mitochondria-specific glutathione (GSH) probe-designated as Mito-RealThiol (MitoRT)-that can monitor in vivo real-time mitochondrial glutathione dynamics, and apply this probe to follow mitochondrial GSH dynamic changes in living cells for the first time. MitoRT can be utilized in confocal microscopy, super-resolution fluorescence imaging, and flow cytometry systems. Using MitoRT, we demonstrate that cells have a high priority to maintain the GSH level in mitochondria compared to the cytosol not only under normal growing conditions but also upon oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA