Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62.517
Filtrar
1.
Neurosci Biobehav Rev ; 164: 105809, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004323

RESUMEN

BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.

2.
Toxicol Appl Pharmacol ; 490: 117036, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009138

RESUMEN

Catechin is a kind of flavonoids, mainly derived from the plant Camellia sinensis. It has a strong antioxidant effect, and it also has significant therapeutic effects on anti-cancer, anti-diabetes, and anti-infection. This study was intended to look at how catechin affected the malignant biological activity of gastric cancer cells. We used databases to predict the targets of catechin and the pathogenic targets of gastric cancer. Venn diagram was used to find the intersection genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on intersection genes. Using the STRING database, the Protein-Protein Interaction (PPI) network was built. The top 8 genes were screened by Cytoscape 3.9.1, then their binding was verified by molecular docking. The proliferation ability, cell cycle, apoptosis and migration of gastric cancer cells were detected, as well as the protein expression levels of PI3K, p-AKT, and AKT and the mRNA expression levels of AKT1, VEGFA, EGFR, HRAS, and HSP90AA1 in gastric cancer cells. Our research revealed that different concentrations of catechin could effectively inhibit the proliferation and migration of gastric cancer cells, regulate the cell cycle, and promote the death of these cells, and it's possible that the PI3K/Akt pathway was crucial in mediating this impact. Moreover, adding the PI3K/Akt pathway agonist significantly reduced the promoting effect of catechin on the apoptosis of gastric cancer cells. This study suggested that catechin was a potential drug for the treatment of gastric cancer.

3.
Free Radic Biol Med ; 222: 552-568, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971541

RESUMEN

Uveal melanoma (UM) is a rare yet lethal primary intraocular malignancy affecting adults. Analysis of data from The Cancer Genome Atlas (TCGA) database revealed that FGFR1 expression was increased in UM tumor tissues and was linked to aggressive behavior and a poor prognosis. This study assessed the anti-tumor effects of Erdafitinib, a selective pan-FGFR inhibitor, in both in vitro and in vivo UM models. Erdafitinib exhibited a robust anti-cancer activity in UM through inducing ferroptosis in the FGFR1-dependent manner. Transcriptomic data revealed that Erdafitinib mediated its anti-cancer effects via modulating the ferritinophagy/lysosome biogenesis. Subsequent research revealed that Erdafitinib exerted its effects by reducing the expression of FGFR1 and inhibiting the activity of mTORC1 in UM cells. Concurrently, it enhanced the dephosphorylation, nuclear translocation, and transcriptional activity of TFEB. The aggregation of TFEB in nucleus triggered FTH1-dependent ferritinophagy, leading to lysosomal activation and iron overload. Conversely, the overexpression of FGFR1 served to mitigate the effects of Erdafitinib on ferritinophagy, lysosome biogenesis, and the activation of the mTORC1/TFEB signaling pathway. In vivo experiments have convincingly shown that Erdafitinib markedly curtails tumor growth in an UM xenograft mouse model, an effect that is closely correlated with a decrease in FGFR1 expression levels. The present study is the first to demonstrate that Erdafitinib powerfully induces ferroptosis in UM by orchestrating the ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling. Consequently, Erdafitinib emerges as a strong candidate for clinical trial investigation, and FGFR1 emerges as a novel and promising therapeutic target in the treatment of UM.

4.
J Ethnopharmacol ; 334: 118515, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972530

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In Mongolian medicine, Loulu flower (LLF), the dried inflorescence of Rhaponticum uniflorum (L.) DC. from the Compositae family, has been used to clear heat and relieve toxicity for millennia, particularly in the treatment of pneumonia. AIM OF THIS STUDY: To reveal the effects of LLF on mice with lipopolysaccharide (LPS)-stimulated acute lung injury (ALI) and elucidate the underlying mechanisms. MATERIALS AND METHODS: ALI was established in BALB/c mice via nasal drops administration of LPS (5 mg/kg). The mice were then orally administrated with various doses of LLF extracts and the positive drug dexamethasone (DEX, 5 mg/kg), once daily for seven consecutive days. Last day, after being stimulated with LPS for 6h, the mice were closed dislocation of cervical vertebra, the serum, bronchus alveolar lavage fluid (BALF) and lung tissue were put into the EP tube and stored at -80 °C for further analysis. The changes of histopathology were tested by hematoxylin and eosin stain (H&E), the levels of, IL-1ß, IL-18, TNF-α and IL-4 in BALF and serum were measured by ELISA. The pathways related to the treatment of ALI were predicted by network pharmacology. The expression levels of TLR4/NF-κB and NLRP3 signaling pathway-associated proteins, COX-2 and ERK were tested by western blotting. The levels of P65 and NLRP3 in lung tissues were determined by immunofluorescence analysis. RESULTS: LLF total extract and the extract parts could alleviate the inflammatory cell infiltration, thicken the alveolar walls in lung tissues, reduce the levels of IL-18, IL-1ß in BALF, the TNF-α in both BALF and serum, meantime enhance the level of IL-4 in BALF and serum in mice with LPS-induced ALI. Our network pharmacology and comprehensive gene ontology analyses revealed the active constituents of LLF and the pathways, including TLR4/NF-κB, NLRP3 and MAPK signaling pathways, which play significant roles in ALI. Furthermore, both the total extract and its extraction portions suppressed the expressions of proteins related with the COX-2, p-ERK and TLR4/NF-κB signaling pathway (TLR4, p-IκB, p-p65), as well as the NLRP3 signaling pathway (NLRP3, cleaved caspase-1, caspase-1, IL-1ß). CONCLUSION: LLF could improve the pathological changes and reducing inflammatory reactions in mice induced by LPS. The mechanism may be related to the modulation of the TLR4/NLRP3 signaling pathways.

5.
J Biomed Sci ; 31(1): 72, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010070

RESUMEN

BACKGROUND: Epithelial cell adhesion molecule (EpCAM) has been widely studied as a tumor antigen due to its expression in varieties of solid tumors. Moreover, the glycoprotein contributes to critical cancer-associated cellular functionalities via its extracellular (EpEX) and intracellular (EpICD) domains. In colorectal cancer (CRC), EpCAM has been implicated in the Wnt signaling pathway, as EpICD and ß-Catenin are coordinately translocated to the nucleus. Once in the nucleus, EpICD transcriptionally regulates EpCAM target genes that; however, remains unclear whether Wnt signaling is modulated by EpICD activity. METHODS: Patient-derived organoids (PDOs), patient-derived xenografts (PDXs), and various CRC cell lines were used to study the roles of EpCAM and EpICD in Wnt receptor expression. Fluorescence and confocal microscopy were used to analyze tumors isolated from PDX and other xenograft models as well as CRC cell lines. EpCAM signaling was intervened with our humanized form of EpCAM neutralizing antibody, hEpAb2-6. Wnt receptor promoters under luciferase reporters were constructed to examine the effects of EpICD. Luciferase reporter assays were performed to evaluate promoter, γ-secretase and Wnt activity. Functional assays including in vivo tumor formation, organoid formation, spheroid and colony formation experiments were performed to study Wnt related phenomena. The therapeutic potential of EpCAM suppression by hEpAb2-6 was evaluated in xenograft and orthotopic models of human CRC. RESULTS: EpICD interacted with the promoters of Wnt receptors (FZD6 and LRP5/6) thus upregulated their transcriptional activity inducing Wnt signaling. Furthermore, activation of Wnt-pathway-associated kinases in the ß-Catenin destruction complex (GSK3ß and CK1) induced γ-secretase activity to augment EpICD shedding, establishing a positive-feedback loop. Our hEpAb2-6 antibody blocked EpICD-mediated upregulation of Wnt receptor expressions and conferred therapeutic benefits in both PDX and orthotopic models of human CRC. CONCLUSIONS: This study uncovers relevant functions of EpCAM where Wnt receptors are upregulated via the transcriptional co-factor activity of EpICD. The resultant enhancement of Wnt signaling induces γ-secretase activity further stimulating EpICD cleavage and its nuclear translocation. Our humanized anti-EpCAM antibody hEpAb2-6 blocks these mechanisms and may thereby provide therapeutic benefit in CRC.


Asunto(s)
Neoplasias Colorrectales , Molécula de Adhesión Celular Epitelial , Vía de Señalización Wnt , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Molécula de Adhesión Celular Epitelial/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Ratones , Animales , Línea Celular Tumoral , Progresión de la Enfermedad
6.
Front Cell Dev Biol ; 12: 1421204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011396

RESUMEN

Circadian rhythm disruption is closely related to increased incidence of prostate cancer. Incorporating circadian rhythms into the study of prostate cancer pathogenesis can provide a more comprehensive understanding of the causes of cancer and offer new options for precise treatment. Therefore, this article comprehensively summarizes the epidemiology of prostate cancer, expounds the contradictory relationship between circadian rhythm disorders and prostate cancer risk, and elucidates the relationship between circadian rhythm regulators and the incidence of prostate cancer. Importantly, this article also focuses on the correlation between circadian rhythms and androgen receptor signaling pathways, as well as the applicability of time therapy in prostate cancer. This may prove significant in enhancing the clinical treatment of prostate cancer.

7.
Front Pharmacol ; 15: 1407010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011506

RESUMEN

As an increasingly well-known derivative of coumarin, daphnetin (7,8-dithydroxycoumarin) has demonstrated various pharmacological activities, including anti-inflammation, anti-cancer, anti-autoimmune diseases, antibacterial, organ protection, and neuroprotection properties. Various studies have been conducted to explore the action mechanisms and synthetic methods of daphnetin, given its therapeutic potential in clinical. Despite these initial insights, the precise mechanisms underlying the pharmacological activities of daphnetin remain largely unknown. In order to address this knowledge gap, we explore the molecular effects from the perspectives of signaling pathways, NOD-like receptor protein 3 (NLRP3) inflammasome and inflammatory factors; and try to find out how these mechanisms can be utilized to inform new combined therapeutic strategies.

8.
Front Mol Neurosci ; 17: 1405415, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011540

RESUMEN

More than 650 reversible and irreversible post-translational modifications (PTMs) of proteins have been listed so far. Canonical PTMs of proteins consist of the covalent addition of functional or chemical groups on target backbone amino-acids or the cleavage of the protein itself, giving rise to modified proteins with specific properties in terms of stability, solubility, cell distribution, activity, or interactions with other biomolecules. PTMs of protein contribute to cell homeostatic processes, enabling basal cell functions, allowing the cell to respond and adapt to variations of its environment, and globally maintaining the constancy of the milieu interieur (the body's inner environment) to sustain human health. Abnormal protein PTMs are, however, associated with several disease states, such as cancers, metabolic disorders, or neurodegenerative diseases. Abnormal PTMs alter the functional properties of the protein or even cause a loss of protein function. One example of dramatic PTMs concerns the cellular prion protein (PrPC), a GPI-anchored signaling molecule at the plasma membrane, whose irreversible post-translational conformational conversion (PTCC) into pathogenic prions (PrPSc) provokes neurodegeneration. PrPC PTCC into PrPSc is an additional type of PTM that affects the tridimensional structure and physiological function of PrPC and generates a protein conformer with neurotoxic properties. PrPC PTCC into PrPSc in neurons is the first step of a deleterious sequence of events at the root of a group of neurodegenerative disorders affecting both humans (Creutzfeldt-Jakob diseases for the most representative diseases) and animals (scrapie in sheep, bovine spongiform encephalopathy in cow, and chronic wasting disease in elk and deer). There are currently no therapies to block PrPC PTCC into PrPSc and stop neurodegeneration in prion diseases. Here, we review known PrPC PTMs that influence PrPC conversion into PrPSc. We summarized how PrPC PTCC into PrPSc impacts the PrPC interactome at the plasma membrane and the downstream intracellular controlled protein effectors, whose abnormal activation or trafficking caused by altered PTMs promotes neurodegeneration. We discussed these effectors as candidate drug targets for prion diseases and possibly other neurodegenerative diseases.

9.
Proc Natl Acad Sci U S A ; 121(30): e2318982121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012828

RESUMEN

The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 450 million years ago and is still widely found in all major land plant lineages. Despite its broad taxonomic distribution, little is known about the molecular components underpinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE KINASE (ARK) is required for sustaining AM symbiosis in distantly related angiosperms. Here, we demonstrate that ARK has an equivalent role in symbiosis maintenance in the bryophyte Marchantia paleacea and is part of a broad AM genetic program conserved among land plants. In addition, our comparative transcriptome analysis identified evolutionarily conserved expression patterns for several genes in the core symbiotic program required for presymbiotic signaling, intracellular colonization, and nutrient exchange. This study provides insights into the molecular pathways that consistently associate with AM symbiosis across land plants and identifies an ancestral role for ARK in governing symbiotic balance.


Asunto(s)
Embryophyta , Regulación de la Expresión Génica de las Plantas , Micorrizas , Proteínas de Plantas , Simbiosis , Simbiosis/genética , Micorrizas/fisiología , Micorrizas/genética , Embryophyta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/microbiología , Filogenia
10.
Adv Sci (Weinh) ; : e2310285, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013081

RESUMEN

Successful dental pulp regeneration is closely associated with rapid revascularization and angiogenesis, processes driven by the Jagged1(JAG1)/Notch signaling pathway. However, soluble Notch ligands have proven ineffective in activating this pathway. To overcome this limitation, a Notch signaling hydrogel is developed by indirectly immobilizing JAG1, aimed at precisely directing the regeneration of vascularized pulp tissue. This hydrogel displays favorable mechanical properties and biocompatibility. Cultivating dental pulp stem cells (DPSCs) and endothelial cells (ECs) on this hydrogel significantly upregulate Notch target genes and key proangiogenic markers expression. Three-dimensional (3D) culture assays demonstrate Notch signaling hydrogels improve effectiveness by facilitating encapsulated cell differentiation, enhancing their paracrine functions, and promoting capillary lumen formation. Furthermore, it effectively communicates with the Wnt signaling pathway, creating an odontoinductive microenvironment for pulp-dentin complex formation. In vivo studies show that short-term transplantation of the Notch signaling hydrogel accelerates angiogenesis, stabilizes capillary-like structures, and improves cell survival. Long-term transplantation further confirms its capability to promote the formation of pulp-like tissues rich in blood vessels and peripheral nerve-like structures. In conclusion, this study introduces a feasible and effective hydrogel tailored to specifically regulate the JAG1/Notch signaling pathway, showing potential in advancing regenerative strategies for dental pulp tissue.

11.
Reprod Biol ; 24(3): 100924, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013209

RESUMEN

Gestational Diabetes Mellitus (GDM) presents a significant health concern globally, necessitating a comprehensive understanding of its metabolic intricacies for effective management. MicroRNAs (miRNAs) have emerged as pivotal regulators in GDM pathogenesis, influencing glucose metabolism, insulin signaling, and lipid homeostasis during pregnancy. Dysregulated miRNA expression, both upregulated and downregulated, contributes to GDM-associated metabolic abnormalities. Ethnic and temporal variations in miRNA expression underscore the multifaceted nature of GDM susceptibility. This review examines the dysregulation of miRNAs in GDM and their regulatory functions in metabolic disorders. We discuss the involvement of specific miRNAs in modulating key pathways implicated in GDM pathogenesis, such as glucose metabolism, insulin signaling, and lipid homeostasis. Furthermore, we explore the potential diagnostic and therapeutic implications of miRNAs in GDM management, highlighting the promise of miRNA-based interventions for mitigating the adverse consequences of GDM on maternal and offspring health.

12.
Structure ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39013462

RESUMEN

The scaffold proteins JIP1 and JIP2 intervene in the c-Jun N-terminal kinase (JNK) pathway to mediate signaling specificity by coordinating the simultaneous assembly of multiple kinases. Using NMR, we demonstrate that JIP1 and JIP2 heterodimerize via their SH3 domains with the affinity of heterodimerization being comparable to homodimerization. We present the high-resolution crystal structure of the JIP2-SH3 homodimer and the JIP1-JIP2-SH3 heterodimeric complex. The JIP2-SH3 structure reveals how charge differences in residues at its dimer interface lead to formation of compensatory hydrogen bonds and salt bridges, distinguishing it from JIP1-SH3. In the JIP1-JIP2-SH3 complex, structural features of each homodimer are employed to stabilize the heterodimer. Building on these insights, we identify key residues crucial for stabilizing the dimer of both JIP1 and JIP2. Through targeted mutations in cellulo, we demonstrate a functional role for the dimerization of the JIP1 and JIP2 scaffold proteins in activation of the JNK signaling pathway.

13.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967226

RESUMEN

Robinow syndrome is a rare disease caused by variants of seven WNT pathway genes. Craniofacial features include widening of the nasal bridge and jaw hypoplasia. We used the chicken embryo to test whether two missense human FZD2 variants (1301G>T, p.Gly434Val; 425C>T, p.Pro142Lys) were sufficient to change frontonasal mass development. In vivo, the overexpression of retroviruses with wild-type or variant human FZD2 inhibited upper beak ossification. In primary cultures, wild-type and variant human FZD2 significantly inhibited chondrogenesis, with the 425C>T variant significantly decreasing activity of a SOX9 luciferase reporter compared to that for the wild type or 1301G>T. Both variants also increased nuclear shuttling of ß-catenin (CTNNB1) and increased the expression of TWIST1, which are inhibitory to chondrogenesis. In canonical WNT luciferase assays using frontonasal mass cells, the variants had dominant-negative effects on wild-type FZD2. In non-canonical assays, the 425C>T variant failed to activate the reporter above control levels and was unresponsive to exogenous WNT5A. This is the first single amino acid change to selectively alter ligand binding in a FZD receptor. Therefore, FZD2 missense variants are pathogenic and could lead to the altered craniofacial morphogenesis seen in Robinow syndrome.


Asunto(s)
Condrogénesis , Anomalías Craneofaciales , Receptores Frizzled , Animales , Embrión de Pollo , Humanos , Pico , beta Catenina/metabolismo , Núcleo Celular/metabolismo , Condrogénesis/genética , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Enanismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Deformidades Congénitas de las Extremidades , Cráneo/patología , Cráneo/embriología , Proteína 1 Relacionada con Twist/metabolismo , Proteína 1 Relacionada con Twist/genética , Anomalías Urogenitales , Vía de Señalización Wnt
14.
Artículo en Inglés | MEDLINE | ID: mdl-39013640

RESUMEN

Periodontitis and peri-implantitis are inflammatory diseases of infectious etiology that lead to the destruction of the supporting tissues located around teeth or implants. Although both pathologies share several characteristics, it is also known that they show important differences which could be due to the release of particles and metal ions from the implant surface. The activation of the inflammasome pathway is one of the main triggers of the inflammatory process. The inflammatory process in patients who suffer periodontitis or peri-implantitis has been mainly studied on cells of the immune system; however, it is also important to consider other cell types with high relevance in the regulation of the inflammatory response. In that context, mesenchymal stromal cells (MSCs) play an essential role in the regulation of inflammation due to their ability to modulate the immune response. This study shows that the induction of NLRP3 and absent in melanoma 2 (AIM2) inflammasome pathways mediated by bacterial components increases the secretion of active IL-1ß and the pyroptotic process on human alveolar bone-derived mesenchymal stromal cells (hABSCs). Interestingly, when bacterial components are combined with titanium ions, NLRP3 expression is further increased while AIM2 expression is reduced. Furthermore, decrease of NLRP3 or AIM2 expression in hABSCs partially reverses the negative effect observed on the progression of the inflammatory process as well as on cell survival. In summary, our data suggest that the progression of the inflammatory process in peri-implantitis could be more acute due to the combined action of organic and inorganic components.

15.
Trends Plant Sci ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013704

RESUMEN

Warm temperatures and heat stress trigger distinct plant responses. Recently, Li et al. and Tan et al. identified HSFA1 heat shock transcription factors (HSFs) as central gatekeepers of high-temperature signaling, integrating warm temperature and heat shock responses (HSRs) in arabidopsis (Arabidopsis thaliana). HSFA1d stabilizes phytochrome-interacting factor 4 (PIF4) and activates HSFA2, establishing a crosstalk between thermomorphogenesis and thermotolerance.

16.
Neurosci Bull ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014176

RESUMEN

Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.

17.
J Nat Med ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014275

RESUMEN

Inflammation-induced intestinal epithelial barrier (IEB) dysfunction is one of the important reasons for the occurrence and development of intestinal inflammatory-related diseases, including ulcerative colitis (UC), Crohn's disease and necrotizing enterocolitis (NEC). Dragon's blood (DB) is a traditional Chinese medicine and has been clinically used to treat UC. However, the protective mechanism of DB on intestinal inflammatory-related diseases has still not been elucidated. The present study aimed to explore the protection mechanism of DB on IEB dysfunction in rat ileum and human colorectal adenocarcinoma cells (Caco-2)/human umbilical vein endothelial cells (HUVECs) coculture system induced by lipopolysaccharide (LPS). DB could ameliorate rat ileum mucosa morphological injury, reduce the accumulation of lipid-peroxidation products and increase the expression of junction proteins. DB also alleviated LPS-induced Caco-2 cells barrier integrity destruction in Caco-2/ HUVECs coculture system, leading to increased trans-endothelial electrical resistance (TEER), reduced cell permeability, and upregulation of expressions of F-actin and junction proteins. DB contributed to the assembly of actin cytoskeleton by upregulating the FAK-DOCK180-Rac1-WAVE2-Arp3 pathway and contributed to the formation of intercellular junctions by downregulating TLR4-MyD88-NF-κB pathway, thus reversing LPS-induced IEB dysfunction. These novel findings illustrated the potential protective mechanism of DB on intestinal inflammatory-related diseases and might be useful for further clinical application of DB.

18.
J Nutr Biochem ; : 109702, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39025456

RESUMEN

Recent research has revealed that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) constitutes a significant risk factor in the development of esophageal cancer. Several investigations have elucidated the beneficial impact of folic acid (FA) in safeguarding esophageal epithelial cells against MNNG-induced damage. Therefore, we hypothesized that FA might prevent MNNG-induced proliferation of esophageal epithelial cells by interfering with the PI3K/AKT/mTOR signaling pathway. In vivo experiments, we found that FA antagonized MNNG-induced proliferation of rat esophageal mucosal epithelial echinocytes and activation of the PI3K/AKT/mTOR signaling pathway. In our in vitro experiments, it was observed that acute exposure to MNNG for 24 h led to a decrease in proliferative capacity and inhibition of the PI3K/AKT/mTOR signaling pathway in an immortalized human normal esophageal epithelial cell line (Het-1A), which was also ameliorated by supplementation with FA. We successfully established a Het-1A-T-cell line by inducing malignant transformation in Het-1A cells through exposure to MNNG. Notably, the PI3K/AKT2/mTOR pathway showed early suppression followed by activation during this transition. Next, we observed that FA inhibited cell proliferation and activation of the PI3K/AKT2/mTOR signaling pathway in Het-1A-T malignantly transformed cells. We further investigated the impact of 740Y-P, a PI3K agonist, and LY294002, a PI3K inhibitor, on Het-1A-T-cell proliferation. Overall, our findings show that FA supplementation may be beneficial in safeguarding normal esophageal epithelial cell proliferation and avoiding the development of esophageal cancer by decreasing the activation of the MNNG-induced PI3K/AKT2/mTOR signaling pathway.

19.
Front Endocrinol (Lausanne) ; 15: 1412411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015185

RESUMEN

Early in the development of Type 2 diabetes (T2D), metabolic stress brought on by insulin resistance and nutrient overload causes ß-cell hyperstimulation. Herein we summarize recent studies that have explored the premise that an increase in the intracellular Ca2+ concentration ([Ca2+]i), brought on by persistent metabolic stimulation of ß-cells, causes ß-cell dysfunction and failure by adversely affecting ß-cell function, structure, and identity. This mini-review builds on several recent reviews that also describe how excess [Ca2+]i impairs ß-cell function.


Asunto(s)
Señalización del Calcio , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Estrés Fisiológico , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Humanos , Señalización del Calcio/fisiología , Animales , Estrés Fisiológico/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Calcio/metabolismo , Resistencia a la Insulina/fisiología
20.
Front Oncol ; 14: 1389136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015499

RESUMEN

PRKCI is abnormally expressed in various cancers, but its role in osteosarcoma is unknown. This study aimed to explore the biological function of PRKCI in osteosarcoma and its potential molecular mechanism. PRKCI expression was evaluated in osteosarcoma cell lines using Western blot analysis and reverse transcription PCR. The CCK-8 assay, colony formation assay, flow cytometry, Transwell assay, and wound-healing assay were used to detect the proliferation, colony-forming capacity, cell cycle, migration, and invasion of osteosarcoma cells when PRKCI was overexpressed or knocked down. The interaction between PRKCI and SQSTM1 was explored using immunoprecipitation. Finally, the protein molecule expression of the Akt/mTOR signaling pathway in osteosarcoma was detected when PRKCI was knocked down. Our study found that PRKCI was overexpressed in osteosarcoma cell lines. The overexpression of PRKCI promoted the proliferation and colony-forming capacity of osteosarcoma cells, while silencing PRKCI inhibited the proliferation, colony-forming capacity, migration, and invasion of osteosarcoma cells and arrested the cell cycle at the G2/M phase. Both PRKCI and SQSTM1 were overexpressed in osteosarcoma. The expression of PRKCI was only related to histological type, while that of SQSTM1 was not related to clinical characteristics. The expression of PRKCI and SQSTM1 in osteosarcoma was higher than that in chondrosarcoma. Knockdown of PRKCI inhibited the proliferation of osteosarcoma cells by inactivating the Akt/mTOR signaling pathway, suggesting that PRKCI was a potential target for osteosarcoma therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...