Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Health Sci Eng ; 21(1): 21-34, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37159743

RESUMEN

Rapid urbanization and consuming lifestyles have intensified air pollution in urban areas. Air pollution in megacities has imposed severe environmental damages to human health. Proper management of the issue necessitates identification of the share of emission sources. Therefore, numerous research works have studied the apportionment of the total emissions and observed concentrations among different emissions sources. In this research, a comprehensive review is conducted to compare the source apportioning results for ambient air PM2.5 in the megacity of Tehran, the capital of Iran. One hundred seventy-seven pieces of scientific literatures, published between 2005 and 2021, were reviewed. The reviewed research are categorized according to the source apportioning methods: emission inventory (EI), source apportionment (SA), and sensitivity analysis of the concentration to the emission sources (SNA). The possible reasons for inconsistency among the results are discussed according to the scope of the studies and the implemented methods. Although 85% of the reviewed original estimates identify that mobile sources contribute to more thant 60% of Tehran air pollution, the distribution of vehicle types and modes are clearly inconsistent among the EI studies. Our review suggests that consistent results in the SA studies in different locations in central Tehran may indicate the reliability of this method for the identification of the type and share of the emission sources. In contrast, differences among the geographical and sectoral coverage of the EI studies and the disparities among the emission factors and activity data have caused significant deviations among the reviewed EI studies. Also, it is shown that the results of the SNA studies are highly dependent on the categorization type, model capabilities and EI presumptions and data input to the pollutant dispersion modelings. As a result, integrated source apportioning in which the three methods complement each other's results is necessary for consistent air pollution management in megacities. Supplementary information: The online version contains supplementary material available at 10.1007/s40201-023-00855-0.

2.
Molecules ; 25(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992854

RESUMEN

Surface water quality strongly depends on anthropogenic activity. Among the main anthropogenic sources of this activity are the wastewater treatment plant (WWTP) effluents. The discharged loads of nutrients and suspended solids could provoke serious problems for receiving water bodies and significantly alter the surface water quality. This study presents inventory analysis and chemometric assessment of WWTP effluents based on the mandatory monitoring data. The comparison between the Bulgarian WWTPs and previously reported data from other countries reveals that discharged loads from investigated WWTPs are lower. This is particularly valid for total suspended solids (TSS). The low TSS loads are the reason for the deviations of the typical calculated WWTP effluent ratios of Bulgarian WWTPs compared to the WWTPs worldwide. The performed multivariate analysis reveals the hidden factors that determine the content of WWTP effluents. The source apportioning based on multivariate curve resolution analysis provides detailed information for source contribution profiles of the investigated WWTP effluent loads and elucidate the difference between WWTPs included in this study.


Asunto(s)
Monitoreo del Ambiente , Eliminación de Residuos Líquidos , Aguas Residuales/química , Purificación del Agua , Bulgaria
3.
Sci Total Environ ; 502: 236-45, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25260169

RESUMEN

Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control.


Asunto(s)
Contaminantes Atmosféricos/análisis , Alquenos/análisis , Monitoreo del Ambiente , China , Hidrocarburos/análisis , Ozono/análisis , Ozono/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA