Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Int J Clin Pediatr Dent ; 17(4): 461-466, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39144166

RESUMEN

Aim: The in vitro study aimed to evaluate and compare the antimicrobial efficacy of Elettaria cardamomum (0.5%) mouthwash, Camellia sinensis (0.5%) mouthwash, and 0.12% chlorhexidine gluconate mouthwash against Streptococcus mutans. Materials and methods: A total of 60 samples of the five mouthwash preparations were prepared to check for their antimicrobial efficacy. The zone of inhibition (ZOI) against S. mutans was measured as a diameter in mm, and the minimum inhibitory concentration (MIC) of mouthwash preparations was measured as µg/mL. All the groups were compared statistically using the Mann-Whitney U test and the Kruskal-Wallis test. Results: The highest ZOI was observed in group V chlorhexidine gluconate [mean: 20.8, standard deviation (SD): 0.58], followed by group III C. sinensis (alcohol-free) (mean: 15.5, SD: 0.67), group IV C. sinensis (alcohol-based) (mean: 14.08, SD: 0.66), and group II E. cardamomum (alcohol-based) (mean: 13.2, SD: 0.45). The least ZOI was observed in group I E. cardamomum (alcohol-free) (mean: 10.7, SD: 0.45). This difference was statistically significant (p < 0.01). The MIC was similar in all the groups (p = 0.13). Conclusion: Chlorhexidine gluconate 0.12% mouthwash showed the best antimicrobial action; however, C. sinensis mouthwash showed potential against S. mutans. E. cardamomum mouthwash exhibited limited antimicrobial activity. How to cite this article: Deolikar S, Jawdekar A, Saraf T, et al. Comparative Evaluation of the Antimicrobial Efficacy of Elettaria cardamomum (0.5%) Mouthwash, Camellia sinensis (0.5%) Mouthwash, and 0.12% Chlorhexidine Gluconate Mouthwash against Streptococcus mutans: An In Vitro Study. Int J Clin Pediatr Dent 2024;17(4):461-466.

2.
Int J Clin Pediatr Dent ; 17(4): 433-436, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39144173

RESUMEN

Background: In pulpectomy, to remove the inflamed or diseased pulp tissues and smear layer, the root canal is disinfected with mechanical instrumentation and copious irrigation. Aim: The purpose of this present study is to evaluate the antibacterial efficacy of etidronic acid as an irrigant in primary teeth. Materials and methods: A total of 60 necrotic primary teeth in children aged 3-8 years were included. Of these, 30 were irrigated with 2% chlorhexidine (CHX) gluconate (group I) and 30 with 9% etidronic acid (group II). Two microbiological samples were collected with sterile paper points from the canal in both groups during the pulpectomy process-first after access opening and before the first irrigation (S1), and second after instrumentation and final irrigation, before filling (S2). The presence of Enterococcus faecalis was determined using colony-forming units per milliliter (CFU/mL) in all samples (S1 and S2). Results: After analyzing the samples before and after irrigation in groups I and II, there was a statistically significant reduction in CFU/mL (p < 0.05). Group II had a statistically significant advantage when the two groups were compared after irrigation. Conclusion: As a result, etidronic acid can be recommended as a pulpectomy irrigating solution for necrotic primary teeth. How to cite this article: Supraja AN, Arali V, Rapala H, et al. Evaluation of Antimicrobial Efficacy of Etidronic Acid against Enterococcus faecalis in Primary Teeth: An In Vivo Study. Int J Clin Pediatr Dent 2024;17(4):433-436.

3.
Polymers (Basel) ; 16(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000716

RESUMEN

The widespread prevalence of periprosthetic joint infections (PJIs) poses significant challenges in orthopedic surgeries, with pathogens such as Staphylococcus epidermidis being particularly problematic due to their capability to form biofilms on implants. This study investigates the efficacy of an innovative silver nitrate-embedded poly-L-lactide biopolymer coating designed to prevent such infections. The methods involved applying varying concentrations of silver nitrate to in vitro setups and recording the resultant bacterial growth inhibition across different serum environments, including human serum and various animal sera. Results highlighted a consistent and significant inhibition of S. epidermidis growth at all tested concentrations in each type of serum without adverse interactions with serum proteins, which commonly compromise antimicrobial efficacy. This study concludes that the silver nitrate-embedded biopolymer coating exhibits potent antibacterial properties and has potential for use in clinical settings to reduce the incidence of PJIs. Furthermore, the findings underscore the importance of considering serum interactions in the design and testing of antimicrobial implants to ensure their effectiveness in actual use scenarios. These promising results pave the way for further research to validate and refine this technology for clinical application, focusing on optimizing silver ion release and assessing biocompatibility in vivo.

4.
Antimicrob Resist Infect Control ; 13(1): 49, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730473

RESUMEN

BACKGROUND: Following publication of the 2009 World Health Organizations Guidelines for Hand Hygiene in Health Care, a debate has emerged regarding the relative antimicrobial efficacy of the different formats (rinse, gel, foam) of ABHRs and their ability to contribute to reduction of healthcare-associated infections (HAIs). METHODS: Data regarding the in-vivo antimicrobial efficacy of ABHRs and other factors that likely affect their effectiveness in reducing HAIs were reviewed, and a comprehensive review of studies that reported the effectiveness of each of the three ABHR formats to improve hand hygiene compliance and reduce HAIs was conducted. RESULTS: The amount of rubbing time it takes for hands to feel dry (dry time) is the major driver of ABHR antimicrobial efficacy. ABHR format is not a major factor, and several studies found that rinse, gel, and foam ABHRs have comparable in-vivo antimicrobial efficacy. Other factors that likely impact the ability of ABHRs to reduce transmission of healthcare-associated pathogens and HAIs include ABHR formulation, the volume applied to hands, aesthetic characteristics, skin tolerance, acceptance by healthcare personnel, and hand hygiene compliance rates. When accompanied by complementary strategies, promoting the use of each of the three ABHR formats has been associated with improvements in hand hygiene compliance rates. A review of 67 studies failed to identify an ABHR format that was significantly more effective in yielding statistically significant reductions in transmission of healthcare-associated pathogens or HAIs. CONCLUSIONS: Current evidence is insufficient to definitively determine if one ABHR format is more effective in reducing transmission of healthcare-associated pathogens and HAIs. More rigorous studies such as multicenter randomized controlled trials comparing the different formats are needed to establish if one format is significantly more effective in reducing HAIs.


Asunto(s)
Infección Hospitalaria , Desinfección de las Manos , Humanos , Infección Hospitalaria/prevención & control , Higiene de las Manos , Geles , Antiinfecciosos Locales/farmacología , Adhesión a Directriz
5.
Appl Environ Microbiol ; 90(6): e0038424, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786363

RESUMEN

Carpet cleaning guidelines currently do not include the use of an antimicrobial, except after a bodily fluid event. To address this gap, we compared the efficacy of three antimicrobials-two hydrogen peroxide-based (H2O2) products (A and B) and one chlorine-based product (C)-and a steam treatment against two norovirus surrogates, specifically feline calicivirus (FCV) and Tulane virus (TuV). These tests were performed on nylon carpets with either water-permeable or waterproof backing types. The effect of repeated antimicrobial use on carpet properties was also evaluated. For a carpet with water-permeable backing, products A, B, and C achieved a 0.8, 3.1, and 0.9 log10 PFU/coupon reduction of FCV and 0.3, 2.5, and 0.4 log10 TCID50/coupon reduction of TuV, respectively, following a 30 min contact time. For carpet with waterproof backing, only product B achieved a 5.0 log10 PFU/coupon reduction of FCV and >3.0 log10 TCID50/coupon reduction of TuV, whereas products A and C achieved a 2.4 and 1.6 log10 PFU/coupon reduction of FCV and a 1.2 and 1.2 log10 TCID50/coupon reduction of TuV, respectively. Steam treatment achieved a ≥ 5.2 log10 PFU/coupon reduction of FCV and a > 3.2 log10 TCID50/coupon reduction of TuV in 15 seconds on the carpet with both backing types. The repeated use of products A and B decreased the tensile strength of the carpet backing, while use of product B resulted in cracks on carpet fibers. Overall, steam treatment for 15 seconds was efficacious on both carpet types, but only product B achieved efficacy after a 30-minute exposure on the carpet with waterproof backing.IMPORTANCECarpets are common in long-term care facilities, despite its potential as a vehicle for transmission of agents associated with healthcare-associated infections, including human norovirus (NoV). Presently, our understanding of carpet disinfection is limited; hence, there are no commercial antimicrobials against norovirus available for use on carpets. Our findings showed that steam treatment, which minimally affected the properties of carpet fibers and backing, was more efficacious against human norovirus surrogates on carpets compared to the three chemical antimicrobials tested. Additionally, the two surrogates were more sensitive to chemical antimicrobials on the carpet with waterproof backing compared to carpets with water-permeable backing. These findings can inform development of antimicrobials for use on carpets contaminated with human norovirus.


Asunto(s)
Norovirus , Vapor , Norovirus/efectos de los fármacos , Calicivirus Felino/efectos de los fármacos , Animales , Desinfectantes/farmacología , Nylons/farmacología , Antiinfecciosos/farmacología , Humanos , Desinfección/métodos , Peróxido de Hidrógeno/farmacología , Estados Unidos , Pisos y Cubiertas de Piso , United States Environmental Protection Agency , Carpas
6.
Nanotechnology ; 35(35)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38806018

RESUMEN

Nanotechnology has gained immense popularity and observed rapid development due to the remarkable physio-chemical properties of nanoparticles (NPs) and related nanomaterials. The green production of NPs has many benefits over traditional techniques because the current procedures are expensive, time-consuming, and involve harmful substances that limit their applicability. This study aimed to use a novel green source, theSalsola imbricata(SI) plant, which is commonly found in Central Asia and known for its medicinal properties as a reducing and stabilizing agent for the synthesis of AgNPs. The current study also utilized efficient statistical design, the Plackett-Burman Design (PBD) of Experiment method to synthesize the NPs. The characterization of NPs was carried out using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM). The PBD results showed that only two out of four factorsi.e.AgNO3concentration and incubation time, were significant for the synthesis of SI-AgNPs. While remaining factors, incubation temperature and plant extract: AgNO3ratio were non-significant. The SEM analysis result showed that SI-AgNPs had a size of 20-50 nm. The SI-AgNPs demonstrated strong antibacterial activity against oral pathogens such asS. mutans and Lactobacillus acidophilus, with the highest efficacy observed at a concentration of 2 mg ml-1. The addition of SI-AgNPs in glass ionomer cement significantly increased the antibacterial activity of GIC againstS. mutans. Based on the results of the current study, the plant based AgNPs can be further evaluated in detail as alternate antimicrobial agent either alone or in combination with other antimicrobial agents for different dental applications.


Asunto(s)
Antibacterianos , Cementos de Ionómero Vítreo , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Streptococcus mutans , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Nanopartículas del Metal/química , Cementos de Ionómero Vítreo/química , Cementos de Ionómero Vítreo/farmacología , Streptococcus mutans/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Lactobacillus acidophilus/efectos de los fármacos , Tecnología Química Verde/métodos , Espectroscopía Infrarroja por Transformada de Fourier
7.
Appl Microbiol Biotechnol ; 108(1): 351, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819646

RESUMEN

The design, development, and obtaining of nanostructured materials, such as polymeric nanoparticles, have garnered interest due to loading therapeutic agents and its broad applicability. Polymeric nanoparticle synthesis employs advanced techniques such as the double emulsion approach and the pH-driven method, allowing the efficient incorporation of active compounds into these matrices. These loading methods ensure compound stability within the polymeric structure and enable control of the release of therapeutic agents. The ability of loaded polymeric nanoparticles to transport and release therapeutic agents on target manner represents a significant advancement in the quest for effective therapeutic solutions. Amid escalating concerns regarding antimicrobial resistance, interventions using polymeric nanostructures stand out for the possibility of carrying antimicrobial agents and enhancing antibacterial action against antibiotic-resistant bacteria, making a new therapeutic approach or complement to conventional treatments. In this sense, the capability of these polymeric nanoparticles to act against Escherichia coli underscores their relevance in controlling bacterial infections. This mini-review provides a comprehensive synthesis of promising techniques for loading therapeutic agents into polymeric nanoparticles highlighting methodologies and their implications, addressing prospects of combating bacterial infections caused by E. coli. KEY POINTS: • The double emulsion method provides control over size and release of bioactives. • The pH-driven method improves the solubility, stability, and release of active. • The methods increase the antibacterial action of those encapsulated in PNPs.


Asunto(s)
Antibacterianos , Emulsiones , Infecciones por Escherichia coli , Escherichia coli , Nanopartículas , Polímeros , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Emulsiones/química , Polímeros/química , Polímeros/farmacología , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Productos Biológicos/química , Productos Biológicos/farmacología
8.
Int J Food Microbiol ; 419: 110749, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38788343

RESUMEN

This study investigated the synergistic effects of ammonium persulfate (PS) and ultrasound (US) on the inactivation of Escherichia coli O157:H7 in buffered peptone water (BPW) and orange juice products. A comprehensive assessment of PS concentrations ranging from 1 to 300 mM, considering not only the statistical significance but also the reliability and stability of the experimental outcomes, showed that 150 mM was the optimal PS concentration for the inactivation of E. coli O157:H7. Additionally, US output intensities varying from 30 % to 60 % of the maximum US intensity were evaluated, and 50 % US amplitude was found to be the optimal US condition. A 50 % amplitude setting on the sonicator corresponds to half of its maximum displacement, approximately 60 µm, based on a maximum amplitude of 120 µm. The inactivation level of E. coli O157:H7 was significantly enhanced by the combined treatment of PS and US, compared to each treatment of PS and US alone. In the BPW, a 10-min treatment with the combination of PS and US resulted in a significant synergistic inactivation, achieving up to a log reduction of 3.86 log CFU/mL. Similarly, in orange juice products, a 5-min treatment with the combination of PS and US yielded a significant synergistic inactivation, with a reduction reaching 5.90 log CFU/mL. Although the treatment caused a significant color change in the sample, the visual differences between the treated and non-treated groups were not pronounced. Furthermore, the combined treatment in orange juice demonstrated significantly enhanced antimicrobial efficacy relative to BPW. Despite identical 5-min treatment periods, the application in orange juice resulted in a substantially higher log reduction of E. coli O157:H7, achieving 7.16 log CFU/mL at a reduced PS concentration of 30 mM, whereas the same treatment in BPW yielded only a 2.89 log CFU/mL reduction at a PS concentration of 150 mM, thereby highlighting its significantly superior antimicrobial performance in orange juice. The mechanism underlying microbial inactivation, induced by the combined treatment of PS and US, was identified as significant cell membrane damage. This damage is mediated by sulfate radicals, generated through the sono-activation of persulfate. In addition, the low pH of orange juice, measured at 3.7, is likely to have further deteriorated the E. coli O157:H7 cells compared to BPW (pH 7.2), by disrupting their cell membranes, proton gradients, and energy metabolism. These findings underscore the effectiveness of PS and US integration as a promising approach for non-thermal pasteurization in the food industry. Further research is needed to optimize treatment parameters and fully explore the practical application of this technique in large-scale food processing operations. Sensory evaluation and nutritional assessment are also necessary to address the limitations of PS.


Asunto(s)
Sulfato de Amonio , Citrus sinensis , Recuento de Colonia Microbiana , Escherichia coli O157 , Jugos de Frutas y Vegetales , Escherichia coli O157/efectos de los fármacos , Escherichia coli O157/crecimiento & desarrollo , Jugos de Frutas y Vegetales/microbiología , Citrus sinensis/química , Sulfato de Amonio/farmacología , Sulfato de Amonio/química , Peptonas/farmacología , Peptonas/química , Microbiología de Alimentos , Viabilidad Microbiana/efectos de los fármacos , Agua/química , Agua/farmacología
9.
AMB Express ; 14(1): 62, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811509

RESUMEN

Targeted bactericidal nanosystems hold significant promise to improve the efficacy of existing antimicrobials for treatment of severe bacterial infections by minimizing the side effects and lowering the risk of antibiotic resistance development. In this work, Silver Oxytetracycline Nano-structure (Ag-OTC-Ns) was developed for selective and effective eradication of Klebsiella pneumoniae pulmonary infection. Ag-OTC-Ns were prepared by simple homogenization-ultrasonication method and were characterized by DLS, Zeta potential, TEM and FT-IR. The antimicrobial activity of Ag-OTC-Ns was evaluated in vitro using broth micro-dilution technique and time-kill methods. Our study showed that MICs of AgNO3, OTC, AgNPs and Ag-OTC-Ns were 100, 100, 50 and 6.25 µg/ml, respectively. Ag-OTC-Ns demonstrated higher bactericidal efficacy against the targeted Klebsiella pneumoniae at 12.5 µg/ml compared to the free Oxytetracycline, AgNO3 and AgNPs. In vivo results confirmed that, Ag-OTC-Ns could significantly eradicate K. pneumoniae from mice lung in compare with free Oxytetracycline, AgNO3 and AgNPs. In addition, Ag-OTC-Ns could effectually diminish the inflammatory biomarkers levels of Interferon Gamma and IL-12, and as a result it could effectively lower lung damage in K. pneumoniae infected mice. Ag-OTC-Ns has no significant toxicity on tested mice along the experimental period, there was no sign of behavioral abnormality in the surviving mice indicating that the Ag-OTC-Ns is safe at the used concentration. Furthermore, capability of 5 kGy Gamma ray to sterilize Ag-OTC-Ns solution without affecting it stability was proven.

10.
J Conserv Dent Endod ; 27(4): 419-423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38779216

RESUMEN

Introduction: Success of endodontic treatment relies on minimizing microbial load by chemo-mechanical preparation and intra-canal medication(ICM). Calcium hydroxide based ICMs have known disadvantages. Calcium silicate-based cements(CSC) exhibit antibacterial activity, thus promoting researchers to experiment with their formulations to use them as ICMs. Aim: Evaluation and comparison of the antimicrobial efficacy of two experimental CSC (MTA & Biodentine + 2%chlorhexidine) and Bio-C Temp against E.faecalis. Methods and Material: Test materials were divided into four groups namely Group1-Bio-C Temp, Group2-UltraCAL XS, Group3-Biodentine+2%CHX and Group4-MTA+2%CHX. Direct contact test was done by placing a standardized suspension of E.faecalis on test materials and bacterial growth was assessed spectrophotometrically using ELISA at one, three and seven days. Statistical Analysis: Data was analysed using one-way ANOVA, Tukey's multiple post hoc test and paired-t test. Results: Intragroup comparison revealed decreased mean optical density(OD) in groups 1, 2, and 4; no significant difference in group 3. Intergroup comparison showed statistical differences in mean OD values between groups (3 and 4); groups (1 and 2) at days one(p-0.018) and three(p-0.035), but no difference individually. Group 4 showed the highest antimicrobial efficacy on day seven. Conclusion: MTA+2%CHX & Biodentine+2%CHX showed better antimicrobial efficacy and hence could be used as potential ICMs.

11.
Plants (Basel) ; 13(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674563

RESUMEN

The development of new natural antibiotics is considered as the heart of several investigations in the nutraceutical field. In this work, leaves of Quercus ilex L. treated by tropospheric ozone (O3) and nitrogen (N) deposition, exhibited a clear antimicrobial efficacy against five multi-drug resistant (MDR) bacterial strains (two gram-positive and three gram-negative). Under controlled conditions, it was studied how simulated N deposition influences the response to O3 and the antibacterial and antioxidant activity, and antioxidant performance. The extraction was performed by ultra-pure acetone using two different steps. A higher antioxidant activity was measured in the presence of interaction between O3 and N treatments on Quercus leaves. At the same time, all organic extracts tested have shown bacteriostatic activity against all the tested strains with a MIC comprised between 9 and 4 micrograms/mL, and a higher antioxidant efficacy shown by spectrophotometric assay. Stronger antimicrobial activity was found in the samples treated with O3, whereas N-treated plants exhibited an intermediate antibacterial performance. This performance is related to the stimulation of the non-enzymatic antioxidant system induced by the oxidative stress, which results in an increase in the production of antimicrobial bioactive compounds.

12.
J Conserv Dent Endod ; 27(3): 252-256, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38634035

RESUMEN

Objective: The objective of this study was to ascertain the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of royal jelly (RJ) against three microorganisms frequently linked with endodontic infections: Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Materials and Methods: Freshly harvested RJ was prepared at different concentrations (20%, 10%, 5%, 2.5%, and 1.25%) in distilled water. The microbial cultures of the target organisms were prepared. MIC was determined using a broth dilution technique, monitoring microbial growth. MBC was determined by inoculating agar plates with samples from tubes showing no apparent growth and evaluating the presence of bacterial or fungal growth following the incubation period. Results: For S. aureus, the MIC and MBC were 5 mg/ml of RJ. For E. faecalis, the MIC and MBC were 10 mg/ml of RJ. For C. albicans, both MIC and MBC were 10 mg/ml of RJ. The findings demonstrated RJ's potential to inhibit and eliminate these pathogenic microorganisms, making it a potential candidate for endodontic infection control. Conclusion: The antimicrobial properties of RJ against S. aureus, E. faecalis, and C. albicans present a promising avenue for enhancing infection control in endodontics. Additional investigations are needed to refine its use in clinical settings, especially in cases with mixed microbial infections.

13.
Drug Dev Ind Pharm ; 50(5): 432-445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38526993

RESUMEN

OBJECTIVE: The purpose of this research was to determine any connections between the characteristics of oleogels made of beeswax and the impact of mango butter. METHODS: Oleogel was prepared through inverted tube methods, and optimized through oil binding capacity. Other evaluations like bright field and polarized microscopy, Fourier-transform infrared (FTIR) spectroscopy, crystallization kinetics, mechanical study, and X-ray diffractometry (XRD). The drug release kinetic studies and in vitro antibacterial studies were performed. RESULTS: FTIR study reveals that the gelation process does not significantly alter the chemical composition of the individual components. Prepared gel exhibiting fluid-like behavior or composed of brittle networks is particularly vulnerable to disruptions in their network design. The incorporation of mango butter increases the drug permeation. In-vitro microbial efficacy study was found to be excellent. CONCLUSION: The studies revealed that mango butter can be used to modify the physico-chemical properties of the oleogels.


Asunto(s)
Mangifera , Compuestos Orgánicos , Aceites de Plantas , Ceras , Ceras/química , Mangifera/química , Compuestos Orgánicos/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Semillas/química , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Administración Tópica , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Liberación de Fármacos
14.
Cureus ; 16(2): e54668, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38524038

RESUMEN

BACKGROUND:  Enterococcus faecalis biofilm formation within root canals poses a challenging problem in endodontics, often leading to treatment failure. To combat this issue, nanotechnology offers a promising avenue for enhancing antimicrobial efficacy. This study explores the potential synergistic effects of combining nanoscale silica particles with conventional antibiotics, including doxycycline, metronidazole, and ciprofloxacin, against E. faecalis biofilms. The unique characteristics of silica nanoparticles, such as their increased reactivity and ability to be functionalized with other compounds, make them ideal candidates for augmenting antibiotic efficacy. This research investigates the antimicrobial properties of these silica-based combinations and their potential to eliminate or inhibit E. faecalis biofilms more effectively than conventional treatments.  Methodology: The methods involved the preparation of nanostructured silica particles and their combination with doxycycline, Flagyl, and ciprofloxacin at subinhibitory concentrations. These combinations were then tested against E. faecalis biofilms using the agar well diffusion technique. RESULTS: Preliminary results suggested that the synergistic interactions between silica nanoparticles and antibiotics can significantly enhance antimicrobial efficacy. The combined treatment exhibited superior inhibitory effects on E. faecalis compared to antibiotics or silica nanoparticles alone (P < 0.05).  Conclusions: This study sheds light on the potential of nanoscale silica-based combinations to address the challenges posed by E. faecalis biofilms in endodontics. Understanding the mechanisms of synergy between nanoparticles and antibiotics can pave the way for the development of more effective and targeted strategies for root canal disinfection, ultimately improving the success rates of endodontic treatments.

15.
Front Pharmacol ; 15: 1285946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318142

RESUMEN

Objective: To compare the intervention effects and pharmacoeconomic advantages of Fufang Huangbai Fluid (FFHB) hydropathic compress versus Antimicrobial Calcium Alginate Wound Dressing (ACAWD) in the treatment of diabetic foot infections (DFI). Methods: Patients with DF who were hospitalized in the peripheral vascular Department of Dongzhimen Hospital of Beijing University of Chinese Medicine from December 2020 to February 2022 and met the inclusion and excluding criteria were allocated into the experimental group and control group through minimization randomization. The experimental group was treated with FFHB hydropathic compress for 2 weeks, while the control group was treated with ACAWD for the same duration. The wound healing of both groups was monitored for 1 month post-discharge. Clinical data from all eligible patients were collected, and differences in various indices between cohorts were analyzed. Results: 22 in the experimental group (including two fell off) and 20 in the control group. After the treatment, the negative rate of wound culture in the experimental group was 30% and that in the control group was 10%, There was no significant difference in the negative rate of wound culture and change trend of minimum inhibitory concentration (MIC) value of drug sensitivity (p > 0.05). The infection control rate of the experimental group was 60%, and that of the control group was 25%. The difference between the two groups was statistically significant (χ2 = 5.013, p = 0.025). The median wound healing rate of the experimental group was 34.4% and that of the control group was 33.3%. There was no significant difference between the two groups (p > 0.05). During the follow-up 1 month later, the wound healing rate in the experimental group was higher, and the difference was statistically significant (p = 0.047). Pharmacoeconomic evaluations indicated that the experimental group had greater cost-effectiveness compared to the control group. Conclusion: In the preliminary study, FFHB demonstrated comparable pathogenic and clinical efficacy to ACAWD in the treatment of mild DF infection, and exhibited superior pharmacoeconomic advantages. With the aid of infection control, the wound healing rate in the FFHB group showed notable improvement. Nevertheless, due to the limited sample size, larger-scale studies are warranted to further validate these findings. Clinical Trial Registration: (https://www.chictr.org.cn/showproj.aspx?proj=66175), identifier (ChiCTR2000041443).

16.
Antibiotics (Basel) ; 13(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38247601

RESUMEN

Since burn wound infections caused by Pseudomonas aeruginosa (PA) lead to major complications and sepsis, this study evaluates the antimicrobial efficacy of the wound irrigation solutions Prontosan (PRT), Lavanox (LAV), citric acid (CA) and mafenide acetate (MA) using microbiology assays and an ex vivo skin wound model. In suspension assays, all the solutions showed significant reductions in bacterial number (log10 reduction: CA 5.77; LAV 4.91; PRT 4.74; MA 1.23). The biofilm assay revealed that PRT and LAV reduced biofilm formation by ~25% after a 15 min treatment, while PRT was most effective after a 24 h treatment (~68%). The number of PA in biofilms measured directly after a 15 min treatment was reduced most effectively with CA and LAV (log10 reductions ~2.5), whereas after a 24 h treatment, all solutions achieved only 1.36-1.65 log10 reductions. In the skin wound model, PRT and LAV provided the highest bacterial reduction after a 15 min treatment (log10 reduction 1.8-1.9), while MA was more effective after a 22 h treatment (log10 reduction 3.6). The results demonstrated the antimicrobial efficacy of all solutions against PA. Further investigation is needed to explore the potential clinical applications of a combination or alternating use of these solutions for infection prophylaxis and treatment of wound infections caused by PA.

17.
Biology (Basel) ; 13(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275735

RESUMEN

The survival and spread of foodborne and nosocomial-associated bacteria through high-touch surfaces or contamination-prone sites, in either healthcare, domestic or food industry settings, are not always prevented by the employment of sanitary hygiene protocols. Antimicrobial surface coatings have emerged as a solution to eradicate pathogenic bacteria and prevent future infections and even outbreaks. Standardised antimicrobial testing methods play a crucial role in validating the effectiveness of these materials and enabling their application in real-life settings, providing reliable results that allow for comparison between antimicrobial surfaces while assuring end-use product safety. This review provides an insight into the studies using ISO 22196, which is considered the gold standard for antimicrobial surface coatings and examines the current state of the art in antimicrobial testing methods. It primarily focuses on identifying pitfalls and how even small variations in methods can lead to different results, affecting the assessment of the antimicrobial activity of a particular product.

18.
BMC Oral Health ; 23(1): 985, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066495

RESUMEN

BACKGROUND: Flexible denture base polymers have gained popularity in modern dentistry however, their biofilm formation tendency, adversely affecting the oral tissue heath, remains a concern. Consequently, this study aimed to evaluate surface roughness and biofilm formation tendency of two types of denture base resins manufactured with two techniques before and after surface coating with chlorohexidine (CHX) NPs. MATERIALS AND METHODS: Acetal (AC) and Polymethyl-methacrylate (PMMA) resins manufactured by conventional and CAD/CAM methods were shaped into disk (10 X 10 X 1 mm). They were dipped for 8 h and 24 h in colloidal suspension prepared by mixing aqueous solution of CHX digluconate and hexa-metaphosphate (0.01 M). Surface roughness, optical density (OD) of microbial growth media and biofilm formation tendency were evaluated directly after coating. Elutes concentrations of released CHX were evaluated for 19 days using spectrophotometer. Three-way ANOVA and Tukey's post-hoc statistical analysis were used to assess the outcomes. RESULTS: AC CAD/CAM groups showed statistically significant higher roughness before and after coating (54.703 ± 4.32 and 77.58 ± 6.07 nm, respectively). All groups showed significant reduction in OD and biofilm formation tendency after surface coating even after 19 days of CHX NPs release. CONCLUSIONS: Biofilm formation tendency was highly relevant to surface roughness of tested resins before coating. After CHX NPs coating all tested groups showed significant impact on microbial growth and reduction in biofilm formation tendency with no relation to surface roughness. Significant antimicrobial effect remained even after 19 days of NPs release and specimens storage.


Asunto(s)
Bases para Dentadura , Polimetil Metacrilato , Humanos , Acetales , Propiedades de Superficie , Ensayo de Materiales , Metacrilatos
19.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698066

RESUMEN

Bacteriophages (phages), highly prevalent in aquatic and terrestrial environments, have emerged as novel antimicrobial agents in food and agricultural systems. Owing to their efficient and unique infection mechanism, phages offer an alternative to antibiotic therapy as they specifically target their host bacteria without causing antibiotic resistance. However, the real-world applications of phages as antimicrobials are still limited due to their low survivability under harsh conditions and reduced antimicrobial efficacy. There is an unmet need to understand the challenges of using phages in food and agricultural systems and potential strategies to enhance their stability and delivery. This review overviews the challenges of using phages, including acidic conditions, improper temperatures, UV-light irradiation, desiccation, and inefficient delivery. It also summarizes novel strategies such as encapsulation, embedding, and immobilization, which enable improved viability and enhanced delivery. The protein capsid and nucleic acid components of phages are delicate and sensitive to physicochemical stresses. Incorporating phages into biocompatible materials can provide a physical barrier for improving phage stability and enhancing phage delivery, resulting in a high antimicrobial efficacy. In conclusion, the development of phage delivery systems can significantly overcome the challenges associated with phage treatments and reduce the risk of foodborne diseases in the industry.

20.
Vet Sci ; 10(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624297

RESUMEN

Despite much focus on mastitis as an endemic disease, clinical and subclinical mastitis remains an important problem for many herds. Reducing the usage of antibiotics for mastitis treatment allows the risks to be minimized related to the development of antimicrobial resistance and the excretion of antibiotics into the environment. The aim of the study was to determine the physico-chemical properties, stability and antimicrobial effect of a newly formulated biocide for post-milking udder hygiene containing a thickener made from hydroxypropyl guar gum, an antiseptic chlorhexidine digluconate and teat skin-friendly components including glycerol, Mentha Arvensis herbal oil and Aesculus hippocastanum extract. Hydroxypropyl guar gum was used as a thickener to provide the physical parameters and to retain the viscosity at 1438 mPa.s. The physical and chemical properties of the product, including the 12-month stability, were tested in long-term and accelerated stability studies. The product was effective against the primary mastitis pathogens, including Staphylococcus aureus, Streptococcus uberis, Escherichia coli, Candida albicans and Aspergillus niger.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA