Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 491, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155382

RESUMEN

Cerium oxide (CeO2) nanospheres have limited enzymatic activity that hinders further application in catalytic therapy, but they have an "oxidation switch" to enhance their catalytic activity by increasing oxygen vacancies. In this study, according to the defect-engineering strategy, we developed PtCuOX/CeO2-X nanozymes as highly efficient SOD/CAT mimics by introducing bimetallic copper (Cu) and platinum (Pt) into CeO2 nanospheres to enhance the oxygen vacancies, in an attempt to combine near-infrared (NIR) irradiation to regulate microenvironment for osteoarthritis (OA) therapy. As expected, the Cu and Pt increased the Ce3+/Ce4+ ratio of CeO2 to significantly enhance the oxygen vacancies, and simultaneously CeO2 (111) facilitated the uniform dispersion of Cu and Pt. The strong metal-carrier interaction synergy endowed the PtCuOX/CeO2-X nanozymes with highly efficient SOD/CAT-like activity by the decreased formation energy of oxygen vacancy, promoted electron transfer, the increased adsorption energy of intermediates, and the decreased reaction activation energy. Besides, the nanozymes have excellent photothermal conversion efficiency (55.41%). Further, the PtCuOX/CeO2-X antioxidant system effectively scavenged intracellular ROS and RNS, protected mitochondrial function, and inhibited the inflammatory factors, thus reducing chondrocyte apoptosis. In vivo, experiments demonstrated the biosafety of PtCuOX/CeO2-X and its potent effect on OA suppression. In particular, NIR radiation further enhanced the effects. Mechanistically, PtCuOX/CeO2-X nanozymes reduced ras-related C3 botulinum toxin substrate 1 (Rac-1) and p-p65 protein expression, as well as ROS levels to remodel the inflammatory microenvironment by inhibiting the ROS/Rac-1/nuclear factor kappa-B (NF-κB) signaling pathway. This study introduces new clinical concepts and perspectives that can be applied to inflammatory diseases.


Asunto(s)
Cerio , Cobre , Osteoartritis , Platino (Metal) , Superóxido Dismutasa , Cerio/química , Cerio/farmacología , Cobre/química , Cobre/farmacología , Animales , Superóxido Dismutasa/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Platino (Metal)/química , Platino (Metal)/farmacología , Ratones , Oxígeno/metabolismo , Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Catalasa/química , Humanos , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Microambiente Celular/efectos de los fármacos , Masculino
2.
Int J Biol Macromol ; 278(Pt 1): 134582, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122068

RESUMEN

Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.

3.
J Dairy Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154726

RESUMEN

Colorimetric qualitative and sensitive quantitative detection of Salmonella Typhimurium (S. Typhimurium) holds significant importance for ensuring food safety and preventing foodborne illnesses. In the study, an ultra-high catalytic activity and biocompatible nickel-platinum nanoparticle (NiPt NP) nanozyme is successful synthesized to prepare a NLISA strategy for the detection of S. Typhimurium. The synthesized NiPt NPs exhibit high oxidase-like catalytic efficiency, with a Michaelis constant (Km) of 0.493 mM, similar to that of natural horseradish peroxidase (HRP). The maximal reaction velocity (Vmax) was determined to be 1.97 × 10-7 M·s-1 exhibiting a 1.97-fold higher than that of the HRP (1.0 × 10-7 M·s-1). Meanwhile, the antibody employed in this NiPt NPs-based NLISA exhibits exceptional capture efficacy, generating a stable immune complex with S. Typhimurium. The NiPt NPs-based NLISA demonstrates sensitivity, specificity, convenience, and cost-efficiency for the detection of S. Typhimurium. Under optimal conditions, this NiPt NPs-based NLISA demonstrates a quantitative range of 103∼106 cfu/mL with a detection limit as low as 103 cfu/mL. A single-blind experimental testing detects different concentrations of S. Typhimurium spiked skim milk, indicating the application potential of the proposed NLISA in real samples. In all, this research provides novel insights into the synthesis of nanozymes with excellent catalytic activity and their applications in S. Typhimurium biosensing.

4.
Chembiochem ; : e202400548, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166345

RESUMEN

Platinum (Pt) nanozymes with multiple intrinsic enzyme-mimicking activities have attracted extensive attention in biomedical fields due to their high catalytic activity, ease of modification, and convenient storage. However, the Pt nanozymes synthesized by the traditional method often suffer from uncontrollable morphology and poor stability under physicochemical conditions, resulting in unsatisfactory catalytic behavior in practical applications. To optimize the catalytic ability, biological templates have been introduced recently, which can guide the deposition of platinum ions on their surface to form specific morphologies and then stabilize the resulting Pt nanozymes. Given the promising potential of biotemplated Pt nanozymes in practical applications, it is essential to conduct a systematic and comprehensive review to summarize their recent research progress. In this review, we first categorize the biological templates and discussed the mechanisms as well as characteristics of each type of biotemplate in directing the growth of Pt nanozyme. Factors that impact the growth of biotemplated Pt nanozymes are then analyzed, followed by summarizing their biomedical application. Finally, the challenges and opportunities in this field are outlined. This review article aims to provide theoretical guidance for developing Pt nanozymes with robust functionalities in biomedical applications.

5.
Int J Biol Macromol ; : 134653, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128731

RESUMEN

The important role of Carbohydrate-binding module (CBM) in the cellulases catalytic activity has been widely studied. CBM3 showed highest affinity for cellulose substrate with 84.69 % adsorption rate among CBM1, CBM2, CBM3, and CBM4 in this study. How CBM affect the catalytic properties of GH5 endoglucanase III from Trichoderma viride (TvEG3) was systematically explored from two perspectives: the deletion of its own CBM(TvEG3dc) and the replacement of high substrate affinity CBM3 (TvEG3dcCBM3). Compared with TvEG3, TvEG3dc lost its binding ability on Avicel and filter paper, but its catalytic activity did not change significantly. The binding ability and catalytic activity of TvEG3dcCBM3 to Avicel increased 348.3 % and 372.51 % than that of TvEG3, respectively. The binding ability and catalytic activity of TvEG3dcCBM3 to filter paper decreased 51.7 % and 33.33 % than that of TvEG3, respectively. Further structural analysis of TvEG3, TvEG3dc, and TvEG3dcCBM3 revealed no changes in the positions and secondary structures of the key amino acids. These results demonstrated that its own CBM1 of TvEG3 did not affect its catalytic activity center, so it had no effect on its catalytic activity. But CBM3 changed the adsorption affinity for different substrates, which resulted in a change in the catalytic activity of the substrate.

6.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125016

RESUMEN

Besides outstanding catalytic performance, the stability of nitrogen-doped carbon materials during storage is equally crucial for practical applications. Therefore, we conducted the first investigation into the stability of highly nitrogen-doped activated carbon (AC-NC-T) obtained by modifying activated carbon with CO2/NH3 in different storage media (air, vacuum and N2). The results of the catalysis of the oxygen reduction reaction and the activation of peroxymonosulfate for degrading bisphenol A by AC-NC-T show that the catalytic activity of AC-NC-T stored in air decays most prominently, while the performance attenuated only marginally when stored in vacuum and N2. The results from N2 adsorption isotherms, Raman spectroscopy, elemental and X-ray photoelectron spectroscopy indicate that the decline in catalytic activity is due to the presence of oxygen in the environment, causing a decrease in absolute contents of pyridinic N (N-6) and graphitic nitrogen (N-Q). After being stored in an air atmosphere for 28 days, the absolute contents of N-6 and N-Q in AC-NC-950 decreased by 19.3% and 12.1%, respectively. However, when stored in a vacuum or N2, the reduction in both was less than 7%. This study demonstrates that reducing oxygen concentration during storage is crucial for preserving high catalytic activity of nitrogen-containing carbon materials.

7.
Polymers (Basel) ; 16(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125158

RESUMEN

L-asparaginases (ASP) and Doxorubicin (Dox) are both used in the treatment of leukemia, including in combination. We have attempted to investigate if their combination within the same targeted delivery vehicle can make such therapy more efficacious. We assembled a micellar system, where the inner hydrophobic core was loaded with Dox, while ASP would absorb at the surface due to electrostatic interactions. To make such absorption stronger, we conjugated the ASP with oligoamines, such as spermine, and the lipid components of the micelle-lipoic and oleic acids-with heparin. When loaded with Dox alone, the system yielded about a 10-fold improvement in cytotoxicity, as compared to free Dox. ASP alone showed about a 2.5-fold increase in cytotoxicity, so, assuming additivity of the effect, one could expect a 25-fold improvement when the two agents are applied in combination. But in reality, a combination of ASP + Dox loaded into the delivery system produced a synergy, with a whopping 50× improvement vs. free individual component. Pharmacokinetic studies have shown prolonged circulation of micellar formulations in the bloodstream as well as an increase in the effective concentration of Dox in micellar form and a reduction in Dox accumulation to the liver and heart (which reduces hepatotoxicity and cardiotoxicity). For the same reason, Dox's liposomal formulation has been in use in the treatment of multiple types of cancer, almost replacing the free drug. We believe that an opportunity to deliver a combination of two types of drugs to the same target cell may represent a further step towards improvement in the risk-benefit ratio in cancer treatment.

8.
Adv Sci (Weinh) ; : e2405192, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102342

RESUMEN

Radiotherapy (RT) is often administered, either alone or in combination with other therapies, for most malignancies. However, the degree of tumor oxygenation, damage to adjacent healthy tissues, and inaccurate guidance remain issues that result in discontinuation or failure of RT. Here, a multifunctional therapeutic platform based on Ir@WO3-x is developed which simultaneously addresses these critical issues above for precision radiosensitization. Ir@WO3-x nanoreactors exhibit strong absorption of X-ray, acting as radiosensitizers. Moreover, ultrasmall Ir enzyme-mimic nanocrystals (NCs) are decorated onto the surface of the nanoreactor, where NCs have catalyst-like activity and are sensitive to H2O2 in the tumor microenvironment (TME) under near infrared-II (NIR-II) light stimulation. They efficiently catalyze the conversion of H2O2 to O2, thereby ameliorating hypoxia, inhibiting the expression of HIF-1α, and enhancing RT-induced DNA damage in cancerous tissue, further improving the efficiency of RT. Additionally, in response to high H2O2 levels in TME, the Ir@WO3-x nanoreactor also exerts peroxidase-like activity, boosting exogenous ROS, which increases oxidative damage and enhances ROS-dependent death signaling. Furthermore, Ir@WO3-x can serve as a high-quality computed tomography contrast agent due to its high X-ray attenuation coefficient and generation of pronounced tumor-tissue contrast. This report highlights the potential of advanced health materials to enhance precision therapeutic modalities.

9.
J Colloid Interface Sci ; 675: 411-418, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38976967

RESUMEN

Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.

10.
ACS Appl Mater Interfaces ; 16(28): 36953-36961, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38976781

RESUMEN

Metal-organic frameworks (MOFs) are favorable hosting materials for fixing enzymes to construct enzyme@MOF composites and to expand the applications of biocatalysts. However, the rigid structure of MOFs without tunable hollow voids and a confinement effect often limits their catalytic activities. Taking advantage of the smart soft polymers to overcome the limitation, herein, a protection protocol to encapsulate the enzyme in zeolitic imidazolate framework-8 (ZIF-8) was developed using a glutathione-sensitive liposome (L) as a soft template. Glucose oxidase (GOx) and horseradish peroxidase (HRP) were first anchored on a light- and thermoresponsive porous poly(styrene-maleic anhydride-N,N-dimethylaminoethyl methacrylate-spiropyran) membrane (PSMDSP) to produce PSMDSP@GOx-HRP, which could provide a confinement effect by switching the UV irradiation or varying the temperature. Afterward, embedding PSMDSP@GOx-HRP in L and encapsulating PSMDSP@GOx-HRP@L into hollow ZIF-8 (HZIF-8) to form PSMDSP@GOx-HRP@HZIF-8 composites were performed, which proceeded during the crystallization of the framework following the removal of L by adding glutathione. Impressively, the biocatalytic activity of the composites was 4.45-fold higher than that of the free enzyme under UV irradiation at 47 °C, which could benefit from the confinement effect of PSMDSP and the conformational freedom of the enzyme in HZIF-8. The proposed composites contributed to the protection of the enzyme against harsh conditions and exhibited superior stability. Furthermore, a colorimetric assay based on the composites for the detection of serum glucose was established with a linearity range of 0.05-5.0 mM, and the calculated LOD value was 0.001 mM in a cascade reaction system. This work provides a universal design idea and a versatile technique to immobilize enzymes on soft polymer membranes that can be encapsulated in porous rigid MOF-hosts. It also holds potential for the development of smart polymer@enzyme@HMOFs biocatalysts with a tunable confinement effect and high catalytic performance.


Asunto(s)
Biocatálisis , Enzimas Inmovilizadas , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Temperatura , Polímeros/química , Zeolitas/química , Luz , Liposomas/química
11.
Protein Sci ; 33(8): e5098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980003

RESUMEN

Homocysteine thiolactone (HTL), a toxic metabolite of homocysteine (Hcy) in hyperhomocysteinemia (HHcy), is known to modify protein structure and function, leading to protein damage through formation of N-Hcy-protein. HTL has been highly linked to HHcy-associated cardiovascular and neurodegenerative diseases. The protective role of HTL hydrolases against HTL-associated vascular toxicity and neurotoxicity have been reported. Although several endogeneous enzymes capable of hydrolyzing HTL have been identified, the primary enzyme responsible for its metabolism remains unclear. In this study, three human carboxylesterases were screened to explore new HTL hydrolase and human carboxylesterase 1 (hCES1) demonstrates the highest catalytic activity against HTL. Given the abundance of hCES1 in the liver and the clinical significance of its single-nucleotide polymorphisms (SNPs), six common hCES1 nonsynonymous coding SNP (nsSNPs) variants were examined and characterized for their kinetic parameters. Variants E220G and G143E displayed 7.3-fold and 13.2-fold lower catalytic activities than its wild-type counterpart. In addition, the detailed catalytic mechanism of hCES1 for HTL hydrolysis was computational investigated and elucidated by Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) method. The function of residues E220 and G143 in sustaining its hydrolytic activity of hCES1 was analyzed, and the calculated energy difference aligns well with experimental-derived results, supporting the validity of our computational insights. These findings provide insights into the potential protective role of hCES1 against HTL-associated toxicity, and warrant future studies on the possible association between specific genetic variants of hCES1 with impaired catalytic function and clinical susceptibility of HTL-associated cardiovascular and neurodegenerative diseases.


Asunto(s)
Homocisteína , Polimorfismo de Nucleótido Simple , Humanos , Homocisteína/metabolismo , Homocisteína/química , Homocisteína/análogos & derivados , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Cinética
12.
J Agric Food Chem ; 72(28): 15778-15787, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38951118

RESUMEN

Enzymatic oxygenation of various cyclic ketones into lactones via Baeyer-Villiger monooxygenases (BVMOs) could provide a promising route for synthesizing fragrances and pharmaceutical ingredients. However, unsatisfactory catalytic activity and thermostability restricted their applications in the pharmaceutical and food industries. In this study, we successfully improved the catalytic activity and thermostability of a Baeyer-Villiger monooxygenase (OgBVMO) from Oceanicola granulosus by reshaping the binding pocket. As a result, mutant OgBVMO-Re displayed a 1.0- to 6.4-fold increase in the activity toward branched cyclic ketones tested, accompanied by a 3 °C higher melting point, and a 2-fold longer half-life time (t1/2 (45 °C)). Molecular dynamics simulations revealed that reshaping the binding pocket achieved strengthened motion correlation between amino acid residues, appropriate size of the substrate-binding pocket, beneficial surface characteristics, lower energy barriers, and shorter nucleophilic distance. This study well demonstrated the trade-off between the enzyme activity and thermostability by reshaping the substrate-binding pocket, paving the way for further engineering other enzymes.


Asunto(s)
Estabilidad de Enzimas , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Sitios de Unión , Cinética , Biocatálisis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Especificidad por Sustrato , Simulación de Dinámica Molecular , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calor , Cetonas/química , Cetonas/metabolismo
13.
Int J Biol Macromol ; 276(Pt 1): 133642, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964696

RESUMEN

Pullulanases are important starch-debranching enzymes that mainly hydrolyze the α-1,6-glycosidic linkages in pullulan, starch, and oligosaccharides. Nevertheless, their practical applications are constrained because of their poor activity and low thermostability. Moreover, the trade-off between activity and thermostability makes it challenging to simultaneously improve them. In this study, an engineered pullulanase was developed through reshaping the active-site tunnel and engineering the surface lysine residues using the pullulanase from Pyrococcus yayanosii CH1 (PulPY2). The specific activity of the engineered pullulanase was increased 3.1-fold, and thermostability was enhanced 1.8-fold. Moreover, the engineered pullulanase exhibited 11.4-fold improvement in catalytic efficiency (kcat/Km). Molecular dynamics simulations demonstrated an anti-correlated movement around the entrance of active-site tunnel and stronger interactions between the surface residues in the engineered pullulanase, which would be beneficial to the activity and thermostability improvement, respectively. The strategies used in this study and dynamic evidence for insight into enzyme performance improvement may provide guidance for the activity and thermostability engineering of other enzymes.


Asunto(s)
Dominio Catalítico , Estabilidad de Enzimas , Glicósido Hidrolasas , Lisina , Simulación de Dinámica Molecular , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Lisina/química , Lisina/metabolismo , Pyrococcus/enzimología , Ingeniería de Proteínas/métodos , Cinética , Temperatura
14.
Molecules ; 29(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064893

RESUMEN

The electrochemical nitrogen reduction reaction (NRR) is an attractive pathway for producing ammonia under ambient conditions. The development of efficient catalysts for nitrogen fixation in electrochemical NRRs has become increasingly important, but it remains challenging due to the need to address the issues of activity and selectivity. Herein, using density functional theory (DFT), we explore ten kinds of triple transition metal atoms (M3 = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) anchored on the C2N monolayer (M3-C2N) as NRR electrocatalysts. The negative binding energies of M3 clusters on C2N mean that the triple transition metal clusters can be stably anchored on the N6 cavity of the C2N structure. As the first step of the NRR, the adsorption configurations of N2 show that the N2 on M3-C2N catalysts can be stably adsorbed in a side-on mode, except for Zn3-C2N. Moreover, the extended N-N bond length and electronic structure indicate that the N2 molecule has been fully activated on the M3-C2N surface. The results of limiting potential screen out the four M3-C2N catalysts (Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N) that have a superior electrochemical NRR performance, and the corresponding values are -0.61 V, -0.67 V, -0.63 V, and -0.66 V, respectively, which are smaller than those on Ru(0001). In addition, the detailed NRR mechanism studied shows that the alternating and enzymatic mechanisms of association pathways on Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N are more energetically favorable. In the end, the catalytic selectivity for NRR on M3-C2N is investigated through the performance of a hydrogen evolution reaction (HER) on them. We find that Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N catalysts possess a high catalytic activity for NRR and exhibit a strong capability of suppressing the competitive HER. Our findings provide a new strategy for designing NRR catalysts with high catalytic activity and selectivity.

15.
J Mol Model ; 30(8): 263, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990394

RESUMEN

CONTEXT: The capacities of V-Si72, V-C72, and V-Al36N36 nanocages to catalyze the ORR processes have been investigated. The acceptable pathways of ORR processes on V-Si72, V-C72, and V-Al36N36 nanocages have been examined by DSD-PBEPBE-D3/aug-cc-pVDZ, PW91PW91/aug-cc-pVDZ, and COSMO model in the gas phase and water. The ΔGreaction values of reaction steps of ORR pathways on V-Si72, V-C72, and V-Al36N36 nanocages are calculated. The Eadoption and Eformation of V-Si72, V-C72, and V-Al36N36 nanocages are negative values and these nanostructures are stable materials. The H2O has the lowest Eadsorption on V-Si72, V-C72, and V-Al36N36 nanocages. The *OH formation, creation of *OH-OH*, and formation of O* are rate-determining steps of ORR mechanisms. The overpotential values of ORR processes on V-Si72, V-C72, and V-Al36N36 nanocages are 0.41, 0.37, and 0.30 V, respectively. The V-Al36N36 nanocage have lower overpotential for ORR processes than V-Si72 and V-C72 nanocages by DSD-PBEPBE-D3/aug-cc-pVDZ, PW91PW91/aug-cc-pVDZ, and COSMO model in the gas phase and water. The V-Al36N36 nanocage have more negative ∆Greaction for reaction steps of ORR than V-Si72 and V-C72 nanocages. The V-Al36N36 nanocage with lower overpotential is proposed as an effective catalyst for ORR processes via studied pathways. METHODS: The DSD-PBEPBE-D3/aug-cc-pVDZ method has been used to optimize and calculate the frequencies of V-Si72, V-C72, and V-Al36N36 nanocages in GAMESS software. The complexes of O, OH, OOH, and H2O with V-Si72, V-C72, and V-Al36N36 nanocages are optimized and frequencies are determined by the DSD-PBEPBE-D3/aug-cc-pVDZ method. The Gactivation and ∆Greaction of ORR pathways on V-Si72, V-C72, and V-Al36N36 nanocages are calculated by DSD-PBEPBE-D3/aug-cc-pVDZ, PW91PW91/aug-cc-pVDZ, and COSMO model in the gas phase and water.

16.
J Agric Food Chem ; 72(32): 18146-18154, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39075026

RESUMEN

Zearalenone (ZEN) is an estrogenic mycotoxin causing reproductive toxicity in livestock. Currently, lactone hydrolases are used in the enzymatic degradation of ZEN. However, most lactone hydrolases suffer from low degradation efficiency and poor thermal stability. ZHD518, as a documented neutral enzyme for ZEN degradation, exhibits high enzymatic activity under neutral conditions. In this study, a multifunctional peptide S1v1-(AEAEAHAH)2 was fused to the N-terminus of ZHD518. Compared with the wild-type enzyme, the peptide fusion significantly enhanced protein expression by 1.28 times, enzyme activity by 9.27 times, thermal stability by 37.08 times after incubation at 45 °C for 10 min and enzyme stability during long-term storage. Moreover, ZEN concentrations in corn bran, corn germ meal, and corn gluten powder decreased from 5.29 ± 0.04, 5.31 ± 0.03, and 5.30 ± 0.01 µg/g to 0.48 ± 0.05, 0.48 ± 0.06, and 0.21 ± 0.04 µg/g, respectively, following a 60 min treatment with S1v1-GS-ZHD518, resulting in degradation rates of 90.98, 91.00, and 95.32%, respectively. In conclusion, the properties of S1v1-GS-ZHD518, such as its efficient degradability, high temperature resistance and storage resistance, offer the possibility of its application in food or feed.


Asunto(s)
Estabilidad de Enzimas , Péptidos , Zea mays , Zearalenona , Zearalenona/química , Zearalenona/metabolismo , Zea mays/química , Zea mays/metabolismo , Zea mays/genética , Péptidos/química , Péptidos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrolasas/química , Lactonas/química , Lactonas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética
17.
ACS Appl Mater Interfaces ; 16(31): 40682-40694, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046105

RESUMEN

We propose a hydrogel immobilized with manganese porphyrin (MnP), a biomimetic superoxide dismutase (SOD), and catalase (CAT) to modulate reactive oxygen species (ROS) and hypoxia that impede the repair of large bone defects. Our hydrogel synthesis involved thiolated chitosan and polyethylene glycol-maleimide conjugated with MnPs (MnP-PEG-MAL), which enabled in situ gelation via a click reaction. Through optimization, a hydrogel with mechanical properties and catalytic effects favorable for bone repair was selected. Additionally, the hydrogel was incorporated with risedronate to induce synergistic effects of ROS scavenging, O2 generation, and sustained drug release. In vitro studies demonstrated enhanced proliferation and differentiation of MG-63 cells and suppressed proliferation and differentiation of RAW 264.7 cells in ROS-rich environments. In vivo evaluation of a calvarial bone defect model revealed that this multifunctional hydrogel facilitated significant bone regeneration. Therefore, the hydrogel proposed in this study is a promising strategy for addressing complex wound environments and promoting effective bone healing.


Asunto(s)
Hidrogeles , Especies Reactivas de Oxígeno , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Células RAW 264.7 , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Humanos , Oxígeno/química , Oxígeno/metabolismo , Porfirinas/química , Porfirinas/farmacología , Proliferación Celular/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Manganeso/química , Manganeso/farmacología , Diferenciación Celular/efectos de los fármacos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Superóxido Dismutasa/metabolismo
18.
Materials (Basel) ; 17(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930291

RESUMEN

Metallic glass is being gradually recognized for its unique disordered atomic configuration and excellent catalytic activity, so is of great significance in the field of catalysis. Recent reports have demonstrated that Fe-based metallic glass, as a competitive new catalyst, has good catalytic activity for the fields of environment and energy, including high catalytic efficiency and stability. This review introduces the latest developments in metallic glasses with various atomic components and their excellent catalytic properties as catalysts. In this article, the influence of Fe-based metallic glass catalysts on the catalytic activity of dye wastewater treatment and water-splitting is discussed. The catalytic performance in different atomic composition systems and different water environment systems, and the preparation parameters to improve the surface activity of catalysts, are reviewed. This review also describes several prospects in the future development and practical application of Fe-based metallic glass catalysts and provides a new reference for the synthesis of novel catalysts.

19.
Gels ; 10(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38920904

RESUMEN

Gold nanoparticles (AuNPs) possess attractive electronic, optical, and catalytic properties, enabling many potential applications. Poly(N-isopropyl acrylamide) (PNIPAAm) is a temperature-responsive polymer that changes its hydrophilicity upon a slight temperature change, and combining PNIPAAm with AuNPs allows us to modulate the properties of AuNPs by temperature. In a previous study, we proposed a simpler method for designing PNIPAAm-AuNP hybrid microgels, which used an AuNP monomer with polymerizable groups. The size of AuNPs is the most important factor influencing their catalytic performance, and numerous studies have emphasized the importance of controlling the size of AuNPs by adjusting their stabilizer concentration. This paper focuses on the effect of AuNP size on the catalytic activity of PNIPAAm-AuNP hybrid microgels prepared via the copolymerization of N-isopropyl acrylamide and AuNP monomers with different AuNP sizes. To quantitatively evaluate the catalytic activity of the hybrid microgels, we monitored the reduction of 4-nitrophenol to 4-aminophenol using the hybrid microgels with various AuNP sizes. While the hybrid microgels with an AuNP size of 13.0 nm exhibited the highest reaction rate and the apparent reaction rate constant (kapp) of 24.2 × 10-3 s-1, those of 35.9 nm exhibited a small kapp of 1.3 × 10-3 s-1. Thus, the catalytic activity of the PNIPAAm-AuNP hybrid microgel was strongly influenced by the AuNP size. The hybrid microgels with various AuNP sizes enabled the reversibly temperature-responsive on-off regulation of the reduction reaction.

20.
ACS Appl Mater Interfaces ; 16(26): 32983-32991, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38898566

RESUMEN

Chemodynamic therapy (CDT) has received widespread attention as a tumor optical treatment strategy in the field of malignant tumor therapy. Nonmetallic multifunctional nanomaterials as CDT agents, due to their low toxicity, long-lasting effects, and safety characteristics, have promising applications in the integrated diagnosis and treatment of cancer. Here, we modified the supramolecular framework of boron clusters, coupled with a variety of dyes to develop a series of metal-free agent compounds, and demonstrated that these nonmetallic compounds have excellent CDT activities through experiments. Subsequently, the best performing Methylene Blue/[closo-B12H12]2- (MB@B12H12) was used as an example. Through theoretical calculations, electron paramagnetic resonance spectroscopy, and 808 nm light irradiation, we confirmed that MB@B12H12 exhibited photothermal performance and CDT activity further. More importantly, we applied MB@B12H12 to melanoma cells and subcutaneous tumor, demonstrating its effective suppression of melanoma growth in vitro and in vivo through the synergistic effects of photothermal performance and CDT activity. This study emphasizes the generalizability of the coupling of dyes to [closo-B12H12]2- with important clinical translational potential for CDT reagents. Among them, MB@B12H12 may have a brighter future, paving the way for the rapid development of metal-free CDT reagents.


Asunto(s)
Antineoplásicos , Animales , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Catálisis , Terapia Fototérmica , Línea Celular Tumoral , Humanos , Boro/química , Supervivencia Celular/efectos de los fármacos , Azul de Metileno/química , Proliferación Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA