Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Biophotonics ; : e202400376, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323178

RESUMEN

Zebrafish serves as a valuable model for studying tissue regeneration due to their comprehensive regenerative abilities, particularly in bone tissue. In this study, a Mueller matrix optical coherence tomography (OCT) system was applied to monitor the regenerative processes of zebrafish caudal fins in vivo. The analysis focused on evaluating the thickness of the caudal fin tip and the distribution of internal bone tissue during the regenerative process. Subsequently, the effect of ectoine solution on the regeneration process was observed and discussed. Our findings revealed that the caudal fin blastema did not exhibit phase-induced polarization characteristics in the Mueller matrix OCT images. Statistical analyses indicated that the caudal fins did not fully regenerate to their original state within 21 days. Furthermore, the results suggested that ectoine solution could enhance tissue regeneration. This approach provides a method for quantifying zebrafish caudal fin regeneration and advances observation techniques for biomedical and clinical applications.

2.
Bioresour Technol ; 413: 131493, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284374

RESUMEN

The 5-hydroxyectoine is a natural protective agent with long-lasting moisturising and radiation resistance properties. It can be naturally synthesized by some extremophiles using the "bacterial milking" process, but this can corrode bioreactors and downstream purification may cause environmental pollution. In this study, an engineered Escherichia coli (E. coli) strain was constructed for the 5-hydroxyectoine production. First, three ectoine hydroxylases were characterised and the enzyme from Halomonas elongata was the most effective. The L-2,4-diaminobutyrate transaminase mutant was introduced into the engineered strain, which could accumulate 2.8 g/L 5-hydroxyectoine in shake flasks. By activating the glyoxylate cycle and balancing the α-ketoglutarate distribution, the 5-hydroxyectoine titer was further increased to 3.4 g/L. Finally, the optimized strain synthesized 58 g/L 5-hydroxyectoine via a semi-continuous feeding process in a NaCl-free medium. Overall, this study reported the highest titer of 5-hydroxyectoine synthesized by E. coli and established a low-salt fermentation process through the aforementioned efforts.

3.
Microb Cell Fact ; 23(1): 237, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217338

RESUMEN

BACKGROUND: Ectoine as an amino acid derivative is widely applied in many fields, such as the food industry, cosmetic manufacturing, biologics, and therapeutic agent. Large-scale production of ectoine is mainly restricted by the cost of fermentation substrates (e.g., carbon sources) and sterilization. RESULTS: In this study, Halomonas cupida J9 was shown to be capable of synthesizing ectoine using xylose as the sole carbon source. A pathway was proposed in H. cupida J9 that synergistically utilizes both WBG xylose metabolism and EMP glucose metabolism for the synthesis of ectoine. Transcriptome analysis indicated that expression of ectoine biosynthesis module was enhanced under salt stress. Ectoine production by H. cupida J9 was enhanced by improving the expression of ectoine biosynthesis module, increasing the intracellular supply of the precursor oxaloacetate, and utilizing urea as the nitrogen source. The constructed J9U-P8EC achieved a record ectoine production of 4.12 g/L after 60 h of xylose fermentation. Finally, unsterile production of ectoine by J9U-P8EC from either a glucose-xylose mixture or corn straw hydrolysate was demonstrated, with an output of 8.55 g/L and 1.30 g/L of ectoine, respectively. CONCLUSIONS: This study created a promising H. cupida J9-based cell factory for low-cost production of ectoine. Our results highlight the potential of J9U-P8EC to utilize lignocellulose-rich agriculture waste for open production of ectoine.


Asunto(s)
Aminoácidos Diaminos , Biomasa , Fermentación , Halomonas , Lignina , Xilosa , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/biosíntesis , Lignina/metabolismo , Xilosa/metabolismo , Halomonas/metabolismo , Halomonas/genética , Tolerancia a la Sal , Glucosa/metabolismo
4.
Gene ; 930: 148860, 2024 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-39151675

RESUMEN

Since ectoine is a high-value product, overviewing strategies for identifying novel microbial sources becomes relevant. In the current study, by following a genome mining approach, the ectoine biosynthetic cluster in a tropical marine strain of Nocardiopsis dassonvillei (NCIM 5124) was located and compared with related organisms. Transcriptome analysis of Control and Test samples (with 0 and 5% NaCl, respectively) was carried out to understand salt induced stress response at the molecular level. There were 4950 differentially expressed genes with 25 transcripts being significantly upregulated in Test samples. NaCl induced upregulation of the ectoine biosynthesis cluster and some other genes (stress response, chaperone/Clp protease, cytoplasm, ribonucleoprotein and protein biosynthesis). The production of ectoine as a stress response molecule was experimentally validated via LCMS analysis. The investigation sheds light on the responses exhibited by this actinomycete in coping up with salt stress and provides a foundation for understanding salt induced molecular interactions.


Asunto(s)
Aminoácidos Diaminos , Transcriptoma , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/biosíntesis , Actinobacteria/genética , Actinobacteria/metabolismo , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Genoma Bacteriano , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Familia de Multigenes , Estrés Salino/genética , Cloruro de Sodio/farmacología
5.
Data Brief ; 54: 110272, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962192

RESUMEN

Genomes of Halomonas species have been studied using the BV-BRC Bioinformatics tool for the presence of CDS, non-CDS, AMR genes, VF genes, transporters, drug targets, GC content, and GC skew from outside to the center of the circular view, followed by phylogenetic analysis of unique 1, 4, 5, 6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (THMP) gene clusters for relatedness within the genus Halomonas. Protein structure and chemical structure of 1, 4, 5, 6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (THMP) encoded by the UspA gene in Halomonas strains and amino acid sequence of the novel UspA gene have been predicted by computational method.

6.
Sci Rep ; 14(1): 15704, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977706

RESUMEN

Halophiles are one of the classes of extremophilic microorganisms that can flourish in environments with very high salt concentrations. In this study, fifteen bacterial strains isolated from various crop rhizospheric soils of agricultural fields along the Southwest coastline of Saurashtra, Gujarat, and identified by 16S rRNA gene sequencing as Halomonas pacifica, H. stenophila, H. salifodinae, H. binhaiensis, Oceanobacillus oncorhynchi, and Bacillus paralicheniformis were investigated for their potentiality to produce extremozymes and compatible solute. The isolates showed the production of halophilic protease, cellulase, and chitinase enzymes ranging from 6.90 to 35.38, 0.004-0.042, and 0.097-0.550 U ml-1, respectively. The production of ectoine-compatible solute ranged from 0.01 to 3.17 mg l-1. Furthermore, the investigation of the ectoine-compatible solute production at the molecular level by PCR showed the presence of the ectoine synthase gene responsible for its biosynthesis in the isolates. Besides, it also showed the presence of glycine betaine biosynthetic gene betaine aldehyde dehydrogenase in the isolates. The compatible solute production by these isolates may be linked to their ability to produce extremozymes under saline conditions, which could protect them from salt-induced denaturation, potentially enhancing their stability and activity. This correlation warrants further investigation.


Asunto(s)
ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , ARN Ribosómico 16S/genética , Aminoácidos Diaminos/biosíntesis , Aminoácidos Diaminos/metabolismo , India , Productos Agrícolas/microbiología , Celulasa/metabolismo , Celulasa/genética , Celulasa/biosíntesis , Quitinasas/metabolismo , Quitinasas/genética , Tolerancia a la Sal/genética , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacillus/genética , Bacillus/metabolismo , Bacillus/aislamiento & purificación
7.
Int J Biol Macromol ; 275(Pt 2): 133612, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960226

RESUMEN

Ectoine, so-called tetrahydropyrimidine, is an important osmotic adjustment solute and widely applied in cosmetics and protein protectant. Some attempts have been made to improve the ectoine productivity. However, the strains with both high ectoine production capacity and high glucose conversion were still absent so far. Aim to construct a strain for efficiently producing ectoine, ectoine synthetic gene cluster ectABC from Pseudomonas stutzeri was overexpressed in E. coli BL21 (DE3). The ection production was improved by 382 % (ectoine titer increased from 1.73 g/L to 8.33 g/L) after the rational design of rate-limiting enzyme L-2,4-diaminobutyrate transaminase EctBps (protein engineering) combined with the metabolic engineering that focused on the enrichment and conversion of precursors. The final strain YW20 was applied to overproduce ectoine in fed-batch fermentation and yield 68.9 g/L of ectoine with 0.88 g/L/h of space-time yield and the highest glucose conversion reported [34 % (g/g)]. From the fermentation broth, ectoine was purified with 99.7 % purity and 79.8 % yield. This study successfully provided an engineered strain as well as an efficient method for the industrial bio-synthesis and preparation of ectoine.


Asunto(s)
Aminoácidos Diaminos , Escherichia coli , Ingeniería Metabólica , Ingeniería de Proteínas , Transaminasas , Ingeniería Metabólica/métodos , Aminoácidos Diaminos/biosíntesis , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/genética , Transaminasas/genética , Transaminasas/metabolismo , Ingeniería de Proteínas/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/enzimología , Glucosa/metabolismo , Familia de Multigenes
8.
N Biotechnol ; 83: 56-65, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38945523

RESUMEN

Chinese hamster ovary (CHO) cells represent the most preferential host cell system for therapeutic monoclonal antibody (mAb) production. Enhancing mAb production in CHO cells can be achieved by adding chemical compounds that regulate the cell cycle and cell survival pathways. This study investigated the impact of ectoine supplementation on mAb production in CHO cells. The results showed that adding ectoine at a concentration of 100 mM on the 3rd day of cultivation improved mAb production by improving cell viability and extending the culture duration. RNA sequencing analysis revealed differentially expressed genes associated with cell cycle regulation, cell proliferation, and cellular homeostasis, in particular promotion of cell cycle arrest, which was then confirmed by flow cytometry analysis. Ectoine-treated CHO cells exhibited an increase in the number of cells in the G0/G1 phase. In addition, the cell diameter was also increased. These findings support the hypothesis that ectoine enhances mAb production in CHO cells through mechanisms involving cell cycle arrest and cellular homeostasis. Overall, this study highlights the potential of ectoine as a promising supplementation strategy to enhance mAb production not only in CHO cells but also in other cell lines.


Asunto(s)
Aminoácidos Diaminos , Anticuerpos Monoclonales , Puntos de Control del Ciclo Celular , Cricetulus , Proteínas Recombinantes , Animales , Células CHO , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/biosíntesis , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacología , Aminoácidos Diaminos/farmacología , Aminoácidos Diaminos/biosíntesis , Supervivencia Celular/efectos de los fármacos , Cricetinae , Proliferación Celular/efectos de los fármacos
9.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1620-1643, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914483

RESUMEN

Compatible solutes are highly water-soluble organic osmolytes produced by microorganisms to adapt to extreme environments, such as high salinity and osmotic pressure. Among these, ectoine plays a crucial role in repairing and protecting nucleic acids, protein, biofilms, and cells. As a result, it has found widespread applications in cosmetics, biological agents, the enzyme industry, medicine, and other fields. Currently, the market value of ectoine is around US$ 1 000/kg, with a global demand reaching 15 000 tons per year. Although halophilic bacteria serve as the natural source of ectoine synthesis, its production in high-salinity media presents challenges such as equipment corrosion and high cost for industrial production. Advancements in functional genomics, systems biology, and synthetic biology have paved the way for the development of high-yielding cell factories through metabolic engineering, leading to significant progress. For example, engineered Escherichia coli achieved a maximum ectoine titer of 131.8 g/L, with a productivity of 1.37 g/(L·h). This review aims to explore the biosynthetic pathway, biochemical characteristics of key enzymes, and the biosynthesis of ectoine, shedding light on current research status and offering insights for industrial-scale ectoine production.


Asunto(s)
Aminoácidos Diaminos , Ingeniería Metabólica , Aminoácidos Diaminos/biosíntesis , Aminoácidos Diaminos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vías Biosintéticas , Hidroliasas
10.
Microb Cell Fact ; 23(1): 127, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698430

RESUMEN

BACKGROUND: Methane is a greenhouse gas with a significant potential to contribute to global warming. The biological conversion of methane to ectoine using methanotrophs represents an environmentally and economically beneficial technology, combining the reduction of methane that would otherwise be combusted and released into the atmosphere with the production of value-added products. RESULTS: In this study, high ectoine production was achieved using genetically engineered Methylomicrobium alcaliphilum 20Z, a methanotrophic ectoine-producing bacterium, by knocking out doeA, which encodes a putative ectoine hydrolase, resulting in complete inhibition of ectoine degradation. Ectoine was confirmed to be degraded by doeA to N-α-acetyl-L-2,4-diaminobutyrate under nitrogen depletion conditions. Optimal copper and nitrogen concentrations enhanced biomass and ectoine production, respectively. Under optimal fed-batch fermentation conditions, ectoine production proportionate with biomass production was achieved, resulting in 1.0 g/L of ectoine with 16 g/L of biomass. Upon applying a hyperosmotic shock after high-cell-density culture, 1.5 g/L of ectoine was obtained without further cell growth from methane. CONCLUSIONS: This study suggests the optimization of a method for the high production of ectoine from methane by preventing ectoine degradation. To our knowledge, the final titer of ectoine obtained by M. alcaliphilum 20ZDP3 was the highest in the ectoine production from methane to date. This is the first study to propose ectoine production from methane applying high cell density culture by preventing ectoine degradation.


Asunto(s)
Aminoácidos Diaminos , Metano , Methylococcaceae , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/biosíntesis , Metano/metabolismo , Methylococcaceae/metabolismo , Methylococcaceae/genética , Fermentación , Biomasa , Ingeniería Genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ingeniería Metabólica/métodos , Técnicas de Cultivo Celular por Lotes
11.
ACS Synth Biol ; 13(7): 2081-2090, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38607270

RESUMEN

Ectoine is a compatible solute that functions as a cell protector from various stresses, protecting cells and stabilizing biomolecules, and is widely used in medicine, cosmetics, and biotechnology. Microbial fermentation has been widely used for the large-scale production of ectoine, and a number of fermentation strategies have been developed to increase the ectoine yield, reduce production costs, and simplify the production process. Here, Corynebacterium glutamicum was engineered for ectoine production by heterologous expression of the ectoine biosynthesis operon ectBAC gene from Halomonas elongata, and a series of genetic modifications were implemented. This included introducing the de3 gene from Escherichia coli BL21 (DE3) to express the T7 promoter, eliminating the lysine transporter protein lysE to limit lysine production, and performing a targeted mutation lysCS301Y on aspartate kinase to alleviate feedback inhibition of lysine. The new engineered strain Ect10 obtained an ectoine titer of 115.87 g/L in an optimized fed-batch fermentation, representing the highest ectoine production level in C. glutamicum and achieving the efficient production of ectoine in a low-salt environment.


Asunto(s)
Aminoácidos Diaminos , Corynebacterium glutamicum , Escherichia coli , Fermentación , Halomonas , Ingeniería Metabólica , Aminoácidos Diaminos/biosíntesis , Aminoácidos Diaminos/metabolismo , Aminoácidos Diaminos/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ingeniería Metabólica/métodos , Halomonas/genética , Halomonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lisina/metabolismo , Lisina/biosíntesis , Regiones Promotoras Genéticas , Operón/genética , Aspartato Quinasa/genética , Aspartato Quinasa/metabolismo , Sistemas de Transporte de Aminoácidos Básicos
12.
J Biotechnol ; 388: 24-34, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599284

RESUMEN

This study marks the exploration into the production of ectoine, a valuable compound with significant potential as an antioxidant, osmoprotectant, anti-inflammatory agent, and stabilizer of cell membranes, proteins, and DNA integrity. Our focus centred on investigating the presence of ectoine and optimizing its production by the novel ectoine producer bacterial strain, Piscibacillus halophilus. For the optimization of ectoine production the effects of carbon and nitrogen sources, salt, pH, agitation and incubation period were optimized by one-factor-at-a-time. We started with an initial ectoine content of 46.92 mg/L, and through a series of optimization processes, we achieved a remarkable increase, resulting in an ectoine content of 1498.2 mg/L. The bacterial species P. halophilus achieved its highest ectoine production after 48 h of incubation, with conditions set at 10 % (w/v) salinity, pH of 7.50, and an agitation speed of 160 rpm. These precise conditions were found to be the most favourable for maximizing ectoine production by this strain. Besides, we have achieved successful purification of ectoine from the crude extract through a streamlined single-step process. This purification method has delivered an exceptional level of purity, surpassing 99.15 %, and an impressive yield of over 99 %. Importantly, we accomplished this using readily available and cost-effective strong acids (HCl) and strong bases (NaOH) to arrange pH gradients. The use of acid and base in the purification process of ectoine reflects an innovative and sustainable methodology.


Asunto(s)
Aminoácidos Diaminos , Aminoácidos Diaminos/metabolismo , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , Carbono/metabolismo
13.
Ocul Surf ; 32: 182-191, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490477

RESUMEN

PURPOSE: To explore novel role and molecular mechanism of a natural osmoprotectant ectoine in protecting corneal epithelial cell survival and barrier from hyperosmotic stress. METHODS: Primary human corneal epithelial cells (HCECs) were established from donor limbus. The confluent cultures in isosmolar medium were switched to hyperosmotic media (400-500 mOsM), with or without ectoine or rhIL-37 for different time periods. Cell viability and proliferation were evaluated by MTT or WST assay. The integrity of barrier proteins and the expression of cytokines and cathepsin S were evaluated by RT-qPCR, ELISA, and immunostaining with confocal microscopy. RESULTS: HCECs survived well in 450mOsM but partially damaged in 500mOsM medium. Ectoine well protected HCEC survival and proliferation at 500mOsM. The integrity of epithelial barrier was significantly disrupted in HCECs exposed to 450mOsM, as shown by 2D and 3D confocal immunofluorescent images of tight junction proteins ZO-1 and occludin. Ectoine at 5-20 mM well protected these barrier proteins under hyperosmotic stress. The expression of TNF-α, IL-1ß, IL-6 and IL-8 were dramatically stimulated by hyperosmolarity but significantly suppressed by Ectoine at 5-40 mM. Cathepsin S, which was stimulated by hyperosmolarity, directly disrupted epithelial barrier. Interestingly, anti-inflammatory cytokine IL-37 was suppressed by hyperosmolarity, but restored by ectoine at mRNA and protein levels. Furthermore, rhIL-37 suppressed cathepsin S and rescued cell survival and barrier in HCECs exposed to hyperosmolarity. CONCLUSION: Our findings demonstrate that ectoine protects HCEC survival and barrier from hyperosmotic stress by promoting IL-37. This provides new insight into pathogenesis and therapeutic potential for dry eye disease.


Asunto(s)
Aminoácidos Diaminos , Supervivencia Celular , Epitelio Corneal , Presión Osmótica , Humanos , Supervivencia Celular/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/patología , Células Cultivadas , Aminoácidos Diaminos/farmacología , Interleucina-1/metabolismo , Interleucina-1/farmacología , Ensayo de Inmunoadsorción Enzimática , Microscopía Confocal , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo
14.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519954

RESUMEN

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Asunto(s)
Aminoácidos Diaminos , Halomonas , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Presión Osmótica , Perfilación de la Expresión Génica , Peroxidasas/metabolismo
15.
Microorganisms ; 12(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543682

RESUMEN

A highly active alkaline phosphatase (ALP) of the protein structural family PhoA, from a mussel gut-associated strain of the marine bacterium Cobetia amphilecti KMM 296 (CmAP), was found to effectively dephosphorylate lipopolysaccharides (LPS). Therefore, the aim of this work was to perform a comprehensive bioinformatics analysis of the structure, and to suggest the physiological role of this enzyme in marine bacteria of the genus Cobetia. A scrutiny of the CmAP-like sequences in 36 available Cobetia genomes revealed nine homologues intrinsic to the subspecies C. amphilecti, whereas PhoA of a distant relative Cobetia crustatorum JO1T carried an inactive mutation. However, phylogenetic analysis of all available Cobetia ALP sequences showed that each strain of the genus Cobetia possesses several ALP variants, mostly the genes encoding for PhoD and PhoX families. The C. amphilecti strains have a complete set of four ALP families' genes, namely: PhoA, PafA, PhoX, and two PhoD structures. The Cobetia marina species is distinguished by the presence of only three PhoX and PhoD genes. The Cobetia PhoA proteins are clustered together with the human and squid LPS-detoxifying enzymes. In addition, the predicted PhoA biosynthesis gene cluster suggests its involvement in the control of cellular redox balance, homeostasis, and cell cycle. Apparently, the variety of ALPs in Cobetia spp. indicates significant adaptability to phosphorus-replete and depleted environments and a notable organophosphate destructor in eco-niches from which they once emerged, including Zostera spp. The ALP clusterization and degree of similarity of the genus-specific biosynthetic genes encoding for ectoine and polyketide cluster T1PKS, responsible for sulfated extracellular polysaccharide synthesis, coincide with a new whole genome-based taxonomic classification of the genus Cobetia. The Cobetia strains and their ALPs are suggested to be adaptable for use in agriculture, biotechnology and biomedicine.

16.
Mar Genomics ; 74: 101083, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485293

RESUMEN

Bacteria of the genus Oceanisphaera in the class Gammaproteobacteria are widely distributed in marine environments. Oceanisphaera sp. IT1-181 was isolated from intertidal sediment in the coastal region of the Chinese Great Wall Station on the Fildes Peninsula, King George Island, Antarctica. Here, we sequenced the complete genome of strain IT1-181, which contained a single chromosome of 3,572,184 bp (G + C content of 49.89 mol%) with five plasmids. A total of 3229 protein-coding genes, 88 tRNA genes, and 25 rRNA genes were obtained. Genome sequence analysis revealed that strain IT1-181 was not only a potentially novel species of the genus Oceanisphaera, but also harbored genes involved in biosynthesizing ectoine as well as poly-ß-hydroxybutyric acid (PHB). In addition, genes of a complete type I-E CRISPR-Cas system were found in the bacterium. The results indicate the potential of strain Oceanisphaera sp. IT1-181 in biotechnology and are helpful for us understanding its ecological roles in the changing Antarctic intertidal zone environment.


Asunto(s)
Aeromonadaceae , Agua de Mar , Agua de Mar/microbiología , Ácidos Grasos/análisis , Regiones Antárticas , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S , Técnicas de Tipificación Bacteriana , Plásmidos/genética , Bacterias/genética , Aeromonadaceae/genética , Análisis de Secuencia de ADN
17.
Antonie Van Leeuwenhoek ; 117(1): 35, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351143

RESUMEN

A Gram-stain-negative, oxidase-negative, rod-shaped, motile, facultatively anaerobic bacterial strain, designated as CY1220T, was isolated from an anaerobic fermentation liquid of food waste treatment plant. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain CY1220T belongs to the genus Thiopseudomonas, with the highest sequence similarity to Thiopseudomonas alkaliphila B4199T (95.91%), followed by Thiopseudomonas denitrificans X2T (95.56%). The genomic DNA G + C content of strain CY1220T was 48.6 mol%. The average nucleotide identity values and digital DNA-DNA hybridization values between strain CY1220T and the type species of T. alkaliphila and T. denitrificans were in the range of 70.8-71.6% and 19.2-20.0%, respectively, below the thresholds for species delineation. The strain was able to grow utilizing acetic acid and butyric acid (AABA) as the sole carbon source in aerobic conditions. Genomic analysis predicted that the strain could synthesize vitamin B12 and ectoine. The predominant cellular fatty acids were C18:1 ω7c and/or C18:1 ω6c, C16:0, C16:1 ω7c and/or C16:1 ω6c and C12:0. The polar lipids comprised diphosphatidylglycerol, unknown polar lipid, phosphatidylethanolamine, phosphatidylglycerol, and phospholipid. Q-8 (2.1%) and Q-9 (97.9%) were detected as the respiratory quinones. Based on its phenotypic, genotypic and genomic characteristics, strain CY1220T represents a novel species in the genus Thiopseudomonas, for which the name Thiopseudomonas acetoxidans sp. nov. is proposed. The type strain is CY1220T (= GDMCC 1.3503 T = JCM 35747 T).


Asunto(s)
Alimento Perdido y Desperdiciado , Eliminación de Residuos , Fermentación , Filogenia , ARN Ribosómico 16S/genética , Butiratos , Anaerobiosis , Alimentos , Ácidos Grasos , Fosfolípidos , ADN , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Ubiquinona
18.
Pharmaceutics ; 16(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38399289

RESUMEN

Ectoine, a novel natural osmoprotectant, protects bacteria living in extreme environments. This study aimed to explore the therapeutic effect of ectoine for dry eye disease. An experimental dry eye model was created in C57BL/6 mice exposed to desiccating stress (DS) with untreated mice as controls (UT). DS mice were dosed topically with 0.5-2.0% of ectoine or a vehicle control. Corneal epithelial defects were detected via corneal smoothness and Oregon Green dextran (OGD) fluorescent staining. Pro-inflammatory cytokines and chemokines were evaluated using RT-qPCR and immunofluorescent staining. Compared with UT mice, corneal epithelial defects were observed as corneal smoothness irregularities and strong punctate OGD fluorescent staining in DS mice with vehicle. Ectoine treatment protected DS mice from corneal damage in a concentration-dependent manner, and ectoine at 1.0 and 2.0% significantly restored the corneal smoothness and reduced OGD staining to near normal levels. Expression of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) and chemokines CCL3 and CXCL11 was significantly elevated in the corneas and conjunctivas of DS mice, whereas 1.0 and 2.0% ectoine suppressed these inflammatory mediators to near normal levels. Our findings demonstrate that ectoine can significantly reduce the hallmark pathologies associated with dry eye and may be a promising candidate for treating human disease.

19.
Metab Eng ; 82: 238-249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38401747

RESUMEN

Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium. The final engineered H. bluephagenesis produced 85 g/L ectoine in 52 h under open unsterile incubation in a 7 L bioreactor in the absence of plasmid, antibiotic or inducer. Furthermore, it was successfully demonstrated the feasibility of decoupling salt concentration with ectoine synthesis and co-production with bioplastic P(3HB-co-4HB) by the engineered H. bluephagenesis. The unsterile fermentation process and significantly increased ectoine titer indicate that H. bluephagenesis as the chassis of Next-Generation Industrial Biotechnology (NGIB), is promising for the biomanufacturing of not only intracellular bioplastic PHA but also small molecular compound such as ectoine.


Asunto(s)
Aminoácidos Diaminos , Halomonas , Halomonas/genética , Aminoácidos Diaminos/genética , Antibacterianos , Biopolímeros
20.
Chemistry ; 30(23): e202304163, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38258332

RESUMEN

Ectoine synthase (EctC) catalyses the ultimate step of ectoine biosynthesis, a kosmotropic compound produced as compatible solute by many bacteria and some archaea or eukaryotes. EctC is an Fe2+-dependent homodimeric cytoplasmic protein. Using Mössbauer spectroscopy, molecular dynamics simulations and QM/MM calculations, we determined the most likely coordination number and geometry of the Fe2+ ion and proposed a mechanism of the EctC-catalysed reaction. Most notably, we show that apart from the three amino acids binding to the iron ion (Glu57, Tyr84 and His92), one water molecule and one hydroxide ion are required as additional ligands for the reaction to occur. They fill the first coordination sphere of the Fe2+-cofactor and act as critical proton donors and acceptors during the cyclization reaction.


Asunto(s)
Aminoácidos Diaminos , Hidroliasas , Hierro , Simulación de Dinámica Molecular , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Hierro/química , Hierro/metabolismo , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Biocatálisis , Bacterias/enzimología , Catálisis , Ciclización , Ligandos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA