Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473718

RESUMEN

The apetala2/ethylene response factor (AP2/ERF) gene family plays a crucial role in regulating plant growth and development and responding to different abiotic stresses (e.g., drought, heat, cold, and salinity). However, the knowledge of the ERF family in pearl millet remains limited. Here, a total of 167 high-confidence PgERF genes are identified and divided into five subgroups based on gene-conserved structure and phylogenetic analysis. Forty-one pairs of segmental duplication are found using collinear analysis. Nucleotide substitution analysis reveals these duplicated pairs are under positive purification, indicating they are actively responding to natural selection. Comprehensive transcriptomic analysis reveals that PgERF genesare preferentially expressed in the imbibed seeds and stem (tilling stage) and respond to heat, drought, and salt stress. Prediction of the cis-regulatory element by the PlantCARE program indicates that PgERF genes are involved in responses to environmental stimuli. Using reverse transcription quantitative real-time PCR (RT-qPCR), expression profiles of eleven selected PgERF genes are monitored in various tissues and during different abiotic stresses. Transcript levels of each PgERF gene exhibit significant changes during stress treatments. Notably, the PgERF7 gene is the only candidate that can be induced by all adverse conditions. Furthermore, four PgERF genes (i.e., PgERF22, PgERF37, PgERF88, and PgERF155) are shown to be involved in the ABA-dependent signaling pathway. These results provide useful bioinformatic and transcriptional information for understanding the roles of the pearl millet ERF gene family in adaptation to climate change.


Asunto(s)
Pennisetum , Filogenia , Proteínas de Plantas/genética , Etilenos
2.
Cells ; 11(16)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-36010560

RESUMEN

Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage: how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.


Asunto(s)
Frutas , Solanum lycopersicum , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Frutas/genética , Solanum lycopersicum/genética , Factores de Transcripción/metabolismo
3.
Plant J ; 111(2): 473-495, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35562858

RESUMEN

Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.


Asunto(s)
Arabidopsis , Phytophthora , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Phytophthora/fisiología , Fitomejoramiento , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
4.
Plant Biol (Stuttg) ; 24(5): 897-909, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35301790

RESUMEN

Ethylene response factors (ERFs) comprise one of the largest transcription factor families in many plant species. Tobacco (Nicotiana tabacum) ERF3 (NtERF3) and other ERF-associated amphiphilic repression (EAR) motif-containing ERFs are known to function as transcriptional repressors. NtERF3 and several repressor-type ERFs induce cell death in tobacco leaves and are also associated with a defence response against tobacco mosaic virus (TMV). We investigated whether transcriptional activator-type NtERFs function together with NtERF3 in the defence response against TMV infection by performing transient ectopic expression, together with gene expression, chromatin immunoprecipitation (ChIP) and promoter analyses. Transient overexpression of NtERF2 and NtERF4 induced cell death in tobacco leaves, albeit later than that induced by NtERF3. Fusion of the EAR motif to the C-terminal end of NtERF2 and NtERF4 abolished their cell death-inducing ability. The expression of NtERF2 and NtERF4 was upregulated at the early phase of N gene-triggered hypersensitive response (HR) against TMV infection. The cell death phenotype induced by overexpression of wild-type NtERF2 and NtERF4 was suppressed by co-expression of an EAR motif-deficient form of NtERF3. Furthermore, ChIP and promoter analyses suggested that NtERF2, NtERF3 and NtERF4 positively or negatively regulate the expression of NtERF3 by binding to its promoter region. Overall, our results revealed the cell death-inducing abilities of genes encoding activator-type NtERFs, including NtERF2 and NtERF4, suggesting that the HR-cell death signalling via the repressor-type NtERF3 is competitively but coordinately regulated by these NtERFs.


Asunto(s)
Nicotiana , Proteínas de Plantas , Muerte Celular , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/metabolismo
5.
Plant Sci ; 299: 110599, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32900437

RESUMEN

Monilinia spp. may infect stone fruit at any growth stage, although susceptibility to brown rot depends on both host properties and climatological conditions. This said, no studies deciphering the host response in the interaction between peach blossoms and Monilinia spp. are yet available. This study presents an in-depth characterization of the role of ethylene in the interaction of 'Merrill O'Henry' peach petals (Prunus persica (L.) Batch) with Monilinia laxa and M. fructicola. We investigated the physiological responses of the host and the fungi to the application of ethylene and 1-methylcyclopropene (1-MCP) as well as the molecular patterns associated with the biosynthetic and ethylene-dependent responses during the interaction of both Monilinia species with the host. The incidence of both species was differentially affected by 1-MCP and ethylene; M. laxa was favoured by the enhanced host ethylene production associated with the treatments whereas M. fructicola reduced its infection capacity. Such differences were host-dependent as treatments did not affect growth or colony morphology of Monilinia spp. Besides, host ethylene production was altered in M. laxa inoculated petals, either by the fungus or the host itself. Molecular analysis revealed some important ERFs that could be involved in the different ability of both species to activate a cascade response of peach petals against these pathogens.


Asunto(s)
Ascomicetos/fisiología , Ciclopropanos/administración & dosificación , Etilenos/biosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Prunus persica/fisiología , Etilenos/administración & dosificación , Flores/microbiología , Flores/fisiología , Prunus persica/microbiología
6.
Genes (Basel) ; 10(11)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739571

RESUMEN

Nicotine, the most abundant pyridine alkaloid in cultivated tobacco (Nicotiana tabacum L.), is a potent inhibitor of insect and animal herbivory and a neurostimulator of human brain function. Nicotine biosynthesis is controlled developmentally and can be induced by abiotic and biotic stressors via a jasmonic acid (JA)-mediated signal transduction mechanism involving members of the APETALA 2/ethylene-responsive factor (AP2/ERF) and basic helix-loop-helix (bHLH) transcription factor (TF) families. AP2/ERF and bHLH TFs work combinatorically to control nicotine biosynthesis and its subsequent accumulation in tobacco leaves. Here, we demonstrate that overexpression of the tobacco NtERF32, NtERF221/ORC1, and NtMYC2a TFs leads to significant increases in nicotine accumulation in T2 transgenic K326 tobacco plants before topping. Up to 9-fold higher nicotine production was achieved in transgenics overexpressing NtERF221/ORC1 under the control of a constitutive GmUBI3 gene promoter compared to wild-type plants. The constitutive 2XCaMV35S promoter and a novel JA-inducible 4XGAG promoter were less effective in driving high-level nicotine formation. Methyljasmonic acid (MeJA) treatment further elevated nicotine production in all transgenic lines. Our results show that targeted manipulation of NtERF221/ORC1 is an effective strategy for elevating leaf nicotine levels in commercial tobacco for use in the preparation of reduced risk tobacco products for smoking replacement therapeutics.


Asunto(s)
Nicotiana/metabolismo , Nicotina/biosíntesis , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Acetatos/metabolismo , Alcaloides/biosíntesis , Alcaloides/toxicidad , Anabasina/biosíntesis , Anabasina/toxicidad , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Secuencias Hélice-Asa-Hélice/genética , Nicotina/análogos & derivados , Nicotina/economía , Nicotina/toxicidad , Oxilipinas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Piridinas/toxicidad , Nicotiana/genética , Productos de Tabaco/economía , Productos de Tabaco/toxicidad , Factores de Transcripción/metabolismo
7.
New Phytol ; 224(4): 1585-1599, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31125440

RESUMEN

Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.


Asunto(s)
Populus/citología , Factor de Transcripción AP-2/metabolismo , Xilema/citología , Pared Celular/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Transducción de Señal , Factor de Transcripción AP-2/genética , Madera/química , Madera/citología , Difracción de Rayos X
8.
Planta ; 250(2): 563-572, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31123806

RESUMEN

MAIN CONCLUSION: This article unveiled that ethylene biosynthesis and signaling play a critical role in heat stress response of tomato plants under elevated CO2. Plant responses to elevated CO2 and heat stress are tightly regulated by an intricate network of phytohormones. Plants accumulate ethylene (ET), the smallest hormone, in response to heat stress; however, the role of ET and its signaling in elevated CO2-induced heat stress response remains largely unknown. In this study, we found that transcript levels of multiple genes relating to ET synthesis, signaling, and heat shock proteins (HSPs) were induced by elevated CO2 (800 µmol mol-1) compared to ambient CO2 (400 µmol mol-1) in tomato leaves under controlled temperature conditions (25 °C). Elevated CO2-induced responses to heat stress (42 °C) were closely associated with increased ET production and HSP70 expression at both transcript and protein levels. Pretreatment with an antagonist of ET, 1-methylcyclopropene that inhibits ET-dependent responses, abolished elevated CO2-induced stress response without affecting the ET production rate. In addition, silencing of ethylene response factor 1 (ERF1) compromised elevated CO2-induced responses to heat stress, which was associated with the concomitant reduction in the transcript of heat shock factor A2, HSP70 and HSP90, indicating that ERF1 is required for elevated CO2-induced responses to heat. All these results provide convincing evidence on the importance of ET biosynthesis and signaling in elevated CO2-induced heat stress response in tomato plants. Thus, the study advances our understanding of the mechanisms of elevated CO2-induced stress response and may potentially be useful for breeding heat-tolerant tomatoes in the era of climate change.


Asunto(s)
Dióxido de Carbono/farmacología , Etilenos/biosíntesis , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Calor , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Fitomejoramiento , Proteínas de Plantas/genética
9.
New Phytol ; 219(2): 631-640, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29701899

RESUMEN

Plant growth and development is coordinated by complex networks of interacting hormones, and cross-talk between ethylene and auxin signaling is essential for a wide range of plant developmental processes. Nevertheless, the molecular links underlying the interaction between the two hormones remain poorly understood. In order to decipher the cross-talk between the Ethylene Response Factor Sl-ERF.B3 and Sl-IAA27, mediating ethylene and auxin signaling, respectively, we combined reverse genetic approaches, physiological methods, transactivation experiments and electrophoretic mobility shift assays. Sl-ERF.B3 is responsive to both ethylene and auxin and ectopic expression of its dominant repressor version (ERF.B3-SRDX) results in impaired sensitivity to auxin with phenotypes recalling those previously reported for Sl-IAA27 downregulated tomato lines. The expression of Sl-IAA27 is dramatically reduced in the ERF.B3-SRDX lines and Sl-ERF.B3 is shown to regulate the expression of Sl-IAA27 via direct binding to its promoter. The data support a model in which the ethylene-responsive Sl-ERF.B3 integrates ethylene and auxin signaling via regulation of the expression of the auxin signaling component Sl-IAA27. The study uncovers a molecular mechanism that links ethylene and auxin signaling in tomato.


Asunto(s)
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/metabolismo , Clorofila/metabolismo , Cruzamientos Genéticos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Etilenos/farmacología , Fertilización , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Dominantes , Genes de Plantas , Ácidos Indolacéticos/farmacología , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Plantones/metabolismo
10.
New Phytol ; 213(4): 1667-1681, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28164334

RESUMEN

Recent studies indicate that the ETHYLENE RESPONSE FACTOR VII (ERF-VII) transcription factor is an important regulator of osmotic and hypoxic stress responses in plants. However, the molecular mechanism of ERF-VII-mediated transcriptional regulation remains unclear. Here, we investigated the role of ERF74 (a member of the ERF-VII protein family) by examining the abiotic stress tolerance of an ERF74 overexpression line and a T-DNA insertion mutant using flow cytometry, transactivation and electrophoretic mobility shift assays. 35S::ERF74 showed enhanced tolerance to drought, high light, heat and aluminum stresses, whereas the T-DNA insertion mutant erf74 and the erf74;erf75 double mutant displayed higher sensitivity. Using flow cytometry analysis, we found that erf74 and erf74;erf75 lines lack the reactive oxygen species (ROS) burst in the early stages of various stresses, as a result of the lower expression level of RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD). Furthermore, ERF74 directly binds to the promoter of RbohD and activates its expression under different abiotic stresses. Moreover, induction of stress marker genes and ROS-scavenging enzyme genes under various stress conditions is dependent on the ERF74-RbohD-ROS signal pathway. We propose a pathway that involves ERF74 acting as an on-off switch controlling an RbohD-dependent mechanism in response to different stresses, subsequently maintaining hydrogen peroxide (H2 O2 ) homeostasis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , NADPH Oxidasas/metabolismo , Estallido Respiratorio , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes Dominantes , Luz , Modelos Biológicos , Mutación/genética , Fenotipo , Pigmentación/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Unión Proteica/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio/efectos de la radiación , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de la radiación , Activación Transcripcional/genética
11.
Plant Cell Environ ; 40(1): 108-120, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27723941

RESUMEN

Understanding the response to cold temperature stress is relevant for both basic biology and application. Here we report on ERF105, which is a novel cold-regulated transcription factor gene of Arabidopsis that makes a significant contribution to freezing tolerance and cold acclimation. The expression of cold-responsive genes in erf105 mutants suggests that its action is linked to the CBF regulon mediating cold responses.


Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Congelación , Genes de Plantas , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Cinética , Metaboloma , Metabolómica , Mutación/genética , Especificidad de Órganos/genética , Plantas Modificadas Genéticamente , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Transcripción Genética
12.
New Phytol ; 203(1): 206-18, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24645853

RESUMEN

Fruit ripening involves a complex interplay between ethylene and ripening-associated transcriptional regulators. Ethylene Response Factors (ERFs) are downstream components of ethylene signaling, known to regulate the expression of ethylene-responsive genes. Although fruit ripening is an ethylene-regulated process, the role of ERFs remains poorly understood. The role of Sl-ERF.B3 in tomato (Solanum lycopersicum) fruit maturation and ripening is addressed here using a chimeric dominant repressor version (ERF.B3-SRDX). Over-expression of ERF.B3-SRDX results in a dramatic delay of the onset of ripening, enhanced climacteric ethylene production and fruit softening, and reduced pigment accumulation. Consistently, genes involved in ethylene biosynthesis and in softening are up-regulated and those of carotenoid biosynthesis are down-regulated. Moreover, the expression of ripening regulators, such as RIN, NOR, CNR and HB-1, is stimulated in ERF.B3-SRDX dominant repressor fruits and the expression pattern of a number of ERFs is severely altered. The data suggest the existence of a complex network enabling interconnection between ERF genes which may account for the pleiotropic alterations in fruit maturation and ripening. Overall, the study sheds new light on the role of Sl-ERF.B3 in the transcriptional network controlling the ripening process and uncovers a means towards uncoupling some of the main ripening-associated processes.


Asunto(s)
Frutas/fisiología , Proteínas de Plantas/metabolismo , Proteínas Represoras/metabolismo , Solanum lycopersicum/genética , Factores de Transcripción/metabolismo , Carotenoides/metabolismo , Etilenos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Licopeno , Solanum lycopersicum/fisiología , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Proteínas Represoras/genética , Factores de Transcripción/genética , beta Caroteno/metabolismo
13.
New Phytol ; 200(2): 511-522, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23815789

RESUMEN

Ethylene Response Factors (ERFs) are a large family of transcription factors that mediate responses to ethylene. Ethylene affects many aspects of wood development and is involved in tension wood formation. Thus ERFs could be key players connecting ethylene action to wood development. We identified 170 gene models encoding ERFs in the Populus trichocarpa genome. The transcriptional responses of ERF genes to ethylene treatments were determined in stem tissues of hybrid aspen (Populus tremula × tremuloides) by qPCR. Selected ethylene-responsive ERFs were overexpressed in wood-forming tissues and characterized for growth and wood chemotypes by FT-IR. Fifty ERFs in Populus showed more than five-fold increased transcript accumulation in response to ethylene treatments. Twenty-six ERFs were selected for further analyses. A majority of these were induced during tension wood formation. Overexpression of ERFs 18, 21, 30, 85 and 139 in wood-forming tissues of hybrid aspen modified the wood chemotype. Moreover, overexpression of ERF139 caused a dwarf-phenotype with altered wood development, and overexpression of ERF18, 34 and 35 slightly increased stem diameter. We identified ethylene-induced ERFs that respond to tension wood formation, and modify wood formation when overexpressed. This provides support for their role in ethylene-mediated regulation of wood development.


Asunto(s)
Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Populus/genética , Secuencia de Aminoácidos , Aminoácidos Cíclicos/farmacología , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Populus/anatomía & histología , Populus/crecimiento & desarrollo , Populus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Madera/anatomía & histología , Madera/genética , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/anatomía & histología , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA