Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 15(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39194661

RESUMEN

Cationic gemini surfactants have emerged as potential gene delivery agents as they can co-assemble with DNA due to a strong electrostatic association. Commonly, DNA complexation is enhanced by the inclusion of a helper lipid (HL), which also plays a key role in transfection efficiency. The formation of lipoplexes, used as non-viral vectors for transfection, through electrostatic and hydrophobic interactions is affected by various physicochemical parameters, such as cationic surfactant:HL molar ratio, (+/-) charge ratio, and the morphological structure of the lipoplexes. Herein, we investigated the DNA complexation ability of mixtures of serine-based gemini surfactants, (nSer)2N5, and monoolein (MO) as a helper lipid. The micelle-forming serine surfactants contain long lipophilic chains (12 to 18 C atoms) and a five CH2 spacer, both linked to the nitrogen atoms of the serine residues by amine linkages. The (nSer)2N5:MO aggregates are non-cytotoxic up to 35-90 µM, depending on surfactant and surfactant/MO mixing ratio, and in general, higher MO content and longer surfactant chain length tend to promote higher cell viability. All systems efficaciously complex DNA, but the (18Ser)2N5:MO one clearly stands as the best-performing one. Incorporating MO into the serine surfactant system affects the morphology and size distribution of the formed mixed aggregates. In the low concentration regime, gemini-MO systems aggregate in the form of vesicles, while at high concentrations the formation of a lamellar liquid crystalline phase is observed. This suggests that lipoplexes might share a similar bilayer-based structure.

2.
Nano Lett ; 24(22): 6743-6752, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38783628

RESUMEN

Lipid nanoparticles (LNPs) represent the forefront of mRNA delivery platforms, yet achieving precise delivery to specific cells remains a challenge. The current targeting strategies complicate the formulation and impede the regulatory approval process. Here, through a straightforward regulation of helper lipids within LNPs, we introduce an engineered LNP designed for targeted delivery of mRNA into hepatocytes for metabolic dysfunction-associated fatty liver disease (MAFLD) treatment. The optimized LNP, supplied with POPC as the helper lipid, exhibits a 2.49-fold increase in mRNA transfection efficiency in hepatocytes compared to that of FDA-approved LNPs. CTP:phosphocholine cytidylyltransferase α mRNA is selected for delivery to hepatocytes through the optimized LNP system for self-calibration of phosphatidylcholine levels to prevent lipid droplet expansion in MAFLD. This strategy effectively regulates lipid homeostasis, while demonstrating proven biosafety. Our results present a mRNA therapy for MAFLD and open a new avenue for discovering potent lipids enabling mRNA delivery to specific cells.


Asunto(s)
Hepatocitos , Nanopartículas , Fosfatidilcolinas , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Hepatocitos/metabolismo , Fosfatidilcolinas/química , Nanopartículas/química , Animales , Transfección/métodos , Citidililtransferasa de Colina-Fosfato/genética , Citidililtransferasa de Colina-Fosfato/metabolismo , Hígado Graso/terapia , Hígado Graso/genética , Hígado Graso/metabolismo , Lípidos/química , Técnicas de Transferencia de Gen , Ratones , Liposomas
3.
Eur J Pharm Biopharm ; 182: 92-102, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509322

RESUMEN

Gemini surfactants (GS) have been explored as non-viral gene delivery systems. Nevertheless, their cytotoxicity and the limitations in the in vivo studies have impeded their development. To attenuate toxicity and further explore their possibilities in gene delivery, a series of GS (18-7-18)-based gene delivery systems complexed with red blood cell membranes (RBCM) or/and DOPE-PEG2000 (DP) were prepared and evaluated. EGFP-encoding plasmids were delivered via GS-based complexes and the efficiency of gene transfection was evaluated by imaging of the major organs after intravenous administration in mice and qPCR quantification in hepatocytes. In order to assess the safety of GS-based complexes, the hemolysis test, serum biochemical indices, H&E staining and CCK-8 test were examined. The results revealed that EGFP was primarily expressed in livers, and all complexes showed minimal acute toxicity to major organs. Moreover, we found that the dual incorporation of RBCM and DP could significantly elevate the transfection efficiency and cell viability in hepatocytes. Overall, the results indicated that GS-based complexes possessed great potential as vectors for gene delivery both in vivo and in vitro and the dual incorporation of RBCM and DP could be a promising gene delivery approach with high transfection efficacy and low toxicity.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Animales , Ratones , Tensoactivos/química , Biomimética , ADN/química , Lípidos/química , Técnicas de Transferencia de Gen , Transfección , Plásmidos , Lipoproteínas
4.
Adv Drug Deliv Rev ; 188: 114416, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35787388

RESUMEN

Lipid nanoparticles (LNPs) play an important role in mRNA vaccines against COVID-19. In addition, many preclinical and clinical studies, including the siRNA-LNP product, Onpattro®, highlight that LNPs unlock the potential of nucleic acid-based therapies and vaccines. To understand what is key to the success of LNPs, we need to understand the role of the building blocks that constitute them. In this Review, we discuss what each lipid component adds to the LNP delivery platform in terms of size, structure, stability, apparent pKa, nucleic acid encapsulation efficiency, cellular uptake, and endosomal escape. To explore this, we present findings from the liposome field as well as from landmark and recent articles in the LNP literature. We also discuss challenges and strategies related to in vitro/in vivo studies of LNPs based on fluorescence readouts, immunogenicity/reactogenicity, and LNP delivery beyond the liver. How these fundamental challenges are pursued, including what lipid components are added and combined, will likely determine the scope of LNP-based gene therapies and vaccines for treating various diseases.


Asunto(s)
COVID-19 , Nanopartículas , Ácidos Nucleicos , Vacunas , COVID-19/prevención & control , Vacunas contra la COVID-19 , Terapia Genética , Humanos , Lípidos/química , Liposomas , Nanopartículas/química , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
5.
Mol Pharm ; 19(1): 91-99, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34913345

RESUMEN

Phosphatidylserine (PS) is a unique lipid that is recognized by the endogenetic receptor, T-cell immunoglobulin mucin protein 4 (Tim4), and PS-containing liposomes have potential use in therapeutic applications. We prepared PS-containing liposomes of various lipid compositions and examined how lipid membrane fluidity affects PS recognition by Tim4 and the resulting endocytosis efficiency into Hela cells. Surface plasmon resonance and laurdan studies showed that increasing lipid membrane fluidity increased the stability of the PS-Tim4 interaction but hampered the entry of liposomes into cells. These results show that endocytosis efficiency is determined by balancing opposing forces induced by membrane fluidity. We found that inclusion of the zwitterionic helper lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, into liposomes ensured efficient cellular internalization because the presence of this lipid provides an ideal balance of lipid fluidity and Tim4 affinity. The results showed that PS recognition by Tim4 and the resulting endocytosis efficiency can be maximized by modulating the membrane fluidity of liposomes by selecting a zwitterionic helper lipid. This study improves our understanding of how to rationally optimize nanotechnology for targeted drug delivery.


Asunto(s)
Endocitosis , Liposomas/metabolismo , Fluidez de la Membrana , Proteínas de la Membrana/metabolismo , Fosfatidilserinas , Endocitosis/efectos de los fármacos , Células HeLa , Humanos , Fluidez de la Membrana/efectos de los fármacos , Resonancia por Plasmón de Superficie
6.
J Colloid Interface Sci ; 584: 34-44, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33039681

RESUMEN

Non-viral gene therapy based on gene silencing with small interfering RNA (siRNA) has attracted great interest over recent years. Among various types of cationic complexation agents, amino acid-based surfactants have been recently explored for nucleic acid delivery due to their low toxicity and high biocompatibility. Monoolein (MO), in turn, has been used as helper lipid in liposomal systems due to its ability to form inverted nonbilayer structures that enhance fusogenicity, thus contributing to higher transfection efficiency. In this work, we focused on the development of nanovectors for siRNA delivery based on three gemini amino acid-based surfactants derived from serine - (12Ser)2N12, amine derivative; (12Ser)2COO12, ester derivative; and (12Ser)2CON12, amide derivative - individually combined with MO as helper lipid. The inclusion of MO in the cationic surfactant system influences the morphology and size of the mixed aggregates. Furthermore, the gemini surfactant:MO systems showed the ability to efficiently complex siRNA, forming stable lipoplexes, in some cases clearly depending on the MO content, without inducing significant levels of cytotoxicity. High levels of gene silencing were achieved in comparison with a commercially available standard indicating that these gemini:MO systems are promising candidates as lipofection vectors for RNA interference (RNAi)-based therapies.


Asunto(s)
Serina , Tensoactivos , Glicéridos , ARN Interferente Pequeño/genética , Transfección
7.
Int J Pharm ; 503(1-2): 115-26, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-26956159

RESUMEN

In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency.


Asunto(s)
Epitelio/metabolismo , Técnicas de Transferencia de Gen , Lípidos/química , Retina/metabolismo , Línea Celular , Supervivencia Celular , ADN/administración & dosificación , Endocitosis , Humanos , Liposomas , Plásmidos
8.
Adv Drug Deliv Rev ; 99(Pt A): 129-137, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26900977

RESUMEN

Lipid nanoparticles (LNPs) have shown promise as delivery vehicles for therapeutic oligonucleotides, including antisense oligos (ONs), siRNA, and microRNA mimics and inhibitors. In addition to a cationic lipid, LNPs are typically composed of helper lipids that contribute to their stability and delivery efficiency. Helper lipids with cone-shape geometry favoring the formation hexagonal II phase, such as dioleoylphosphatidylethanolamine (DOPE), can promote endosomal release of ONs. Meanwhile, cylindrical-shaped lipid phosphatidylcholine can provide greater bilayer stability, which is important for in vivo application of LNPs. Cholesterol is often included as a helper that improves intracellular delivery as well as LNP stability in vivo. Inclusion of a PEGylating lipid can enhance LNP colloidal stability in vitro and circulation time in vivo but may reduce uptake and inhibit endosomal release at the cellular level. This problem can be addressed by choosing reversible PEGylation in which the PEG moiety is gradually released in blood circulation. pH-sensitive anionic helper lipids, such as fatty acids and cholesteryl hemisuccinate (CHEMS), can trigger low-pH-induced changes in LNP surface charge and destabilization that can facilitate endosomal release of ONs. Generally speaking, there is no correlation between LNP activity in vitro and in vivo because of differences in factors limiting the efficiency of delivery. Designing LNPs requires the striking of a proper balance between the need for particle stability, long systemic circulation time, and the need for LNP destabilization inside the target cell to release the oligonucleotide cargo, which requires the proper selection of both the cationic and helper lipids. Customized design and empirical optimization is needed for specific applications.


Asunto(s)
Portadores de Fármacos , Lípidos , Nanopartículas , Oligonucleótidos/administración & dosificación , Animales , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Diseño de Fármacos , Humanos , Lípidos/administración & dosificación , Lípidos/química , Nanopartículas/administración & dosificación , Nanopartículas/química , Oligonucleótidos/química
9.
J Gene Med ; 18(1-3): 3-15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26519353

RESUMEN

BACKGROUND: To optimize synthetic gene delivery systems, there is a need to develop more efficient lipid formulations. Most cationic lipid formulations contain 'helper' neutral lipids because of their ability to increase DNA delivery, in particular by improving endosomal escape of DNA molecules via the pH-buffering effect of protonatable groups and/or fusion with the lipid bilayer of endosomes. METHODS: We evaluated the influence of the linker structure between the two oleyl chains in the helper lipid on transfection efficiency in cell lines, as well as in primary cells (hepatocytes/cardiomyocytes). We reported the synthesis of two new pH-buffering imidazole helper lipids characterized by a polar headgroup containing one (compound 6) or two (compound 5) imidazole groups and two oleyl chains linked by an amide group. We studied their association with the aminoglycoside lipidic derivative dioleylsuccinylparomomycin (DOSP), which contains two oleyl chains linked to the aminoglycoside polar headgroup via an amide function. We compared the morphology and transfection properties of such binary liposomes of DOSP/5 and DOSP/6 with those of liposomes combining DOSP with another imidazole-based dioleyl helper lipid (MM27) in which a phosphoramido group acts as a linker between the two oleyl chains and imidazole function. RESULTS: The phosphoramido linker in the helper lipid induces a major difference in terms of morphology and resistance to decomplexation at physical pH for DOSP/helper lipid complexes. CONCLUSIONS: This hybrid dioleyl linker composition of DOSP/MM27 led to higher transfection efficiency in cell lines and in primary cells compared to complexes with homogeneous dioleyl linker.


Asunto(s)
Imidazoles/química , Lípidos/química , Liposomas/química , Fosforamidas/química , Transfección/métodos , Animales , Cationes/química , ADN/química , Endosomas/metabolismo , Células HEK293 , Hepatocitos , Humanos , Imidazoles/síntesis química , Lípidos/síntesis química , Ratones , Microscopía Electrónica de Transmisión , Mioblastos , Cultivo Primario de Células , Ratas
10.
Biochim Biophys Acta ; 1848(12): 3113-25, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386397

RESUMEN

Lipidic amphiphiles equipped with the trans-2-aminocyclohexanol (TACH) moiety are promising pH-sensitive conformational switches ("flipids") that can trigger a lipid bilayer perturbation in response to increased acidity. Because pH-sensitivity was shown to improve the efficiency of several gene delivery systems, we expected that such flipids could significantly enhance the gene transfection by lipoplexes. Thus a series of novel lipids with various TACH-based head groups and hydrocarbon tails were designed, prepared and incorporated into lipoplexes that contain the cationic lipid 1,2-dioleoyl-3-trimethylammonio-propane (DOTAP) and plasmid DNA encoding a luciferase gene. B16F1 and HeLa cells were transfected with such lipoplexes in both serum-free and serum-containing media. The lipoplexes consisting of TACH-lipids exhibited up to two orders of magnitude better transfection efficiency and yet similar toxicity compared to the ones with the conventional helper lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol. Thus, the TACH-lipids can be used as novel helper lipids for efficient gene transfection with low cytotoxicity.


Asunto(s)
Ciclohexanoles/química , Técnicas de Transferencia de Gen , Lípidos/química , Animales , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Luciferasas/genética , Ratones , Conformación Molecular
11.
Nanomedicine ; 9(7): 849-54, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23428989

RESUMEN

This paper describes the synthesis of a combinatorial library of quaternized lipidoids (QLDs) and an evaluation of their abilities to facilitate in vitro DNA delivery. The QLDs alone showed low efficiency for DNA delivery. By formulating liposomes with a neutral helper lipid, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), the capability of QLDs for gene transfection is significantly enhanced due to the fusogenic properties of DOPE which facilitate endosomal escape and cargo delivery. We further optimized the liposome composition and DNA dose for gene transfection and investigated the structure-activity relationships of the lipidoid library in DNA delivery. FROM THE CLINICAL EDITOR: This paper describes the synthesis and evaluation of a combinatorial library of quaternized lipidoids to facilitate in vitro DNA delivery, which occurs at a low level but can be enhanced with DOPE. The authors also further optimized the liposome composition and DNA dose for delivery and investigated the structure-activity relationships of the lipidoid library.


Asunto(s)
ADN/metabolismo , Técnicas de Transferencia de Gen , Lípidos/química , Fosfatidiletanolaminas/química , Técnicas Químicas Combinatorias , Células HeLa , Humanos , Liposomas/química , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA