Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.718
Filtrar
1.
Zhongguo Zhen Jiu ; 44(8): 871-5, 2024 Aug 12.
Artículo en Chino | MEDLINE | ID: mdl-39111783

RESUMEN

Based on the function of xi-cleft points and shu-streams points and in association with the anatomic structure where the acupoints are located, Cixi (stimulating meridian qi at xi-cleft points) is used for regulating the physical appearance, while Tongshu (promoting the qi circulation of shu-stream points) is for regulating the spirit. The depth and direction of needle insertion are controlled and deqi is determined by muscle twitching so as to relax the muscles. Rehabilitation training is combined to restore the foot proprioceptive sensibility. The above comprehensive method co-works on correcting post-stroke foot inversion and recovering walking ability in the patients.


Asunto(s)
Terapia por Acupuntura , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Rehabilitación de Accidente Cerebrovascular/métodos , Puntos de Acupuntura , Pie/fisiopatología , Adulto , Terapia Combinada
2.
Int J Biol Macromol ; 277(Pt 4): 134540, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111465

RESUMEN

Algal proteins are an emerging source of functional foods. Herein, Chlorella pyrenoidosa protein (CPP)/xanthan gum-based hydrogels (HG) and beeswax-gelled oleogels (OG) are adopted to fabricate bigels. The phase inversion of bigels can be regulated by the ratio of OG and HG: As the OG increased, bigels turn from OG-in-HG (OG/HG) to a semicontinuous state and then HG-in-OG (HG/OG). In OG/HG bigels (OG ≤ 50 %), hydrophilic CPP acts as the emulsifier at the interface of OG and HG, while beeswax emulsifies the system in HG/OG bigels (OG = 80 %). A semicontinuous bigel appears during the transition between HG/OG and OG/HG. The increase of OG can enhance the viscoelasticity, hardness, adhesiveness, chewiness, and thermal stability. OG/HG bigels exhibit stronger thixotropic recovery and oil-holding capacity than HG/OG bigels. In the in-vitro digestion and food 3D printing, the high specific surface area and the highest thixotropic recovery caused by the emulsion structure of the OG/HG bigel (OG = 50 %) are conducive to the release of free fatty acids and molding of 3D-printed objects, respectively. This study provides a new approach to structure the gelled water-oil system with CPP and helps to develop edible algal proteins-based multiphase systems in food engineering or pharmacy.

3.
Clin Case Rep ; 12(8): e9288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114841

RESUMEN

Key Clinical Message: The diagnosis of chronic uterine inversion occurs after birth or secondary to pathologies of the pelvic region organs. Especially, the diagnosis and treatment of isolated chronic inversion rapidly under appropriate conditions seem to reduce maternal morbidity and mortality. Abstract: Chronic uterine inversion is a rare clinical diagnosis and difficult to diagnose and treat. This is a 22-year-old patient with no particular history known for a month for uterine fibroid with a polyp, who gave birth through the cervix in the context of subfertility for a year. Non puerperal uterine inversion is a rare clinical condition, and it should be kept in mind that this may be uterine inversion when mass lesions causing clinical complaints are detected, especially in the vulva, vagina, and cervix uteri region. The quality of life of the patients is increased by reducing the morbidity and mortality rates by making a diagnosis with a good clinical and ultrasonographic evaluation.

4.
Sci Total Environ ; : 175362, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117199

RESUMEN

Information about sea surface nitrate (SSN) concentrations is crucial for estimating oceanic new productivity and for carbon cycle studies. Due to the absence of optical properties in SSN and the intricate relationships with environmental factors affecting spatiotemporal dynamics, developing a more representative and widely applicable remote sensing inversion algorithm for SSN is challenging. Most methods for the remote estimation of SSN are based on data-driven neural networks or deep learning and lack mechanistic descriptions. Since fitting functions between the SSN and sea surface temperature (SST), mixed layer depth (MLD), and chlorophyll (Chl) content have been established for the open ocean, it is important to include the remote sensing indicator photosynthetically active radiation (PAR), which is critical in nitrate biogeochemical processes. In this study, we employed an algorithm for estimating the monthly average SSN on a global 1° by 1° resolution grid; this algorithm relies on the empirical relationship between the World Ocean Atlas 2018 (WOA18) monthly interpolated climatology of nitrate in each 1°â€¯× 1° grid and the estimated monthly SST and PAR datasets from Moderate Resolution Imaging Spectroradiometer (MODIS) and MLD from the Hybrid Coordinate Ocean Model (HYCOM). These results indicated that PAR potentially affects SSN. Furthermore, validation of the SSN model with measured nitrate data from different months and locations for the years 2018-2023 yielded a high prediction accuracy (N = 12,846, R2 = 0.93, root mean square difference (RMSE) = 3.12 µmol/L, and mean absolute error (MAE) = 2.22 µmol/L). Further independent validation and sensitivity tests demonstrated the validity of the algorithm for retrieving SSN.

5.
Laryngoscope Investig Otolaryngol ; 9(4): e1314, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39130211

RESUMEN

Objectives: Three-tesla MRI with gadolinium-based contrast agents is important in diagnosing Ménière's disease. However, contrast agents cannot be used in some patients. By using the compositional difference between the inner ear endolymph and perilymph, we performed basic and clinical research focused on potassium ions and protein to find the optimal parameters for visualizing endolymphatic hydrops on MRI without contrast. We then examined the relationship between severity stage and visualization rate of endolymphatic hydrops. Methods: In phantom experiments simulating the endolymph and perilymph, we explored MRI parameters that could be used to separate endolymph from perilymph by gradually changing the inversion time. We then used these parameters to perform both new non-contrast MRI and contrast MRI on the same day in Ménière's disease patients, and we compared the visualization rates of endolymphatic hydrops under the two modalities. Fifty patients were selected from 478 patients with Ménière's disease of different severity stages; 12 patients had asthma and allergy to contrast agents. Results: The higher the disease stage, the higher the endolymphatic hydrops visualization rate. The new non-contrast MRI gave significantly higher (p < .01) visualization rates of endolymphatic hydrops on the affected side in patients at Stage 3 or above than in Stages 1 and 2 combined. Conclusion: New non-contrast MRI with parameters focusing on the endolymph-perilymph difference in the density of protons surrounding the potassium ions and protein can produce images consistent with endolymphatic hydrops. We believe that this groundbreaking method will be useful for diagnosing Ménière's disease in patients. Evidence Level: Clinical studies are at evidence level 3 in non-randomized controlled trials.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39136722

RESUMEN

Separators play a critical role in lithium-ion batteries (LIBs) by facilitating lithium-ion (Li-ion) transport while enabling safe battery operation. However, commercial separators made from polypropylene (PP) or polyethylene (PE) impose a discrete processing step in current LIB manufacturing as they cannot be manufactured with the same slot-die coating process used to fabricate the electrodes. Moreover, commercial separators cannot accommodate newer manufacturing processes used to produce leading-edge microbatteries and flexible batteries with customized form factors. As a path toward rethinking LIB fabrication, we have developed a high-viscosity polymer composite separator slurry that enables the fabrication of both freestanding and direct-on-electrode films. A streamlined phase inversion process is used to impart porosity in cast separator films upon drying. To understand the impacts of material composition and rheology on phase inversion processing and separator performance, we investigated four different separator formulations. We used either diethylene glycol (DEG) or triethyl phosphate (TEP) as a nonsolvent, and either silica (SiO2) or alumina (Al2O3) as an inorganic additive in a polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) matrix. Through a down-selection process, we developed a TEP-SiO2 separator formulation that matched or outperformed a commercial Celgard 2325 (PP/PE/PP) separator and a Beyond Battery ceramic-coated PE (CC/PE/CC) separator under rate and cycle life tests in LiFePO4|Li4Ti5O12 (LFP|LTO) and LiNi0.5Mn0.3Co0.2O2|graphite (NMC-532|graphite) coin cells at C/10-1C rates. Our TEP-SiO2 slurry had a viscosity of 298 Pa s at a 1 s-1 shear rate and shear-thinning behavior. When deposited directly onto an LTO anode and cycled against an LFP cathode, the direct-on-electrode TEP-SiO2 separator increased the specific capacity by 58% and 304% at 2C rates relative to the PP/PE/PP and CC/PE/CC separators, respectively. Additionally, the freestanding TEP-SiO2 separator maintained dimensional stability when heated to 200 °C for 1 h and demonstrated a higher elastic modulus and hardness than the PP/PE/PP and CC/PE/CC separators when measured with nanoindentation.

7.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125033

RESUMEN

The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized nanoparticles appears promising, exhibiting tunable electrokinetic properties. Therefore, this study focused on determining the influence of the surface charge of cysteine (CYS)-stabilized AgNPs on their toxicity towards human normal B (COLO-720L) and T (HUT-78) lymphocyte cell lines. CYS-AgNPs were synthesized via the chemical reduction. Transmission electron microcopy (TEM) imaging revealed that they exhibited a quasi-spherical shape with an average size of 18 ± 3 nm. CYS-AgNPs remained stable under mild acidic (pH 4.0) and alkaline (7.4 and 9.0) conditions, with an isoelectric point observed at pH 5.1. Following a 24 h treatment of lymphocytes with CYS-AgNPs, concentration-dependent alterations in cell morphology were observed. Positively charged CYS-AgNPs notably decreased lymphocyte viability. Furthermore, they exhibited grater genotoxicity and more pronounced disruption of biological membranes compared to negatively charged CYZ-AgNPs. Despite both types of AgNPs interacting similarly with fetal bovine serum (FBS) and showing comparable profiles of silver ion release, the biological assays consistently revealed that the positively charged CYS-AgNPs exerted stronger effects at all investigated cellular levels. Although both types of CYS-AgNPs have the same chemical structure in their stabilizing layers, the pH-induced alterations in their surface charge significantly affect their biological activity.


Asunto(s)
Cisteína , Nanopartículas del Metal , Plata , Plata/química , Cisteína/química , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Humanos , Supervivencia Celular/efectos de los fármacos , Linfocitos/efectos de los fármacos , Línea Celular , Propiedades de Superficie , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
8.
Clin Imaging ; 113: 110242, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39088932

RESUMEN

PURPOSE: Acute nipple inversion can be unsettling for patients and is sometimes associated with an underlying breast malignancy. It also poses a diagnostic challenge with lack of consensus management guidelines. This study reviewed institutional experience with new nipple inversion, including malignant association, imaging utilization, and outcomes, in an effort to improve management. METHODS: A multisite institutional retrospective review was conducted of all breast imaging reports from 1/2010 to 6/2022 mentioning nipple inversion as an indication or finding. Patients with new nipple inversion, defined as arising since the time of last breast imaging exam or if reported as new by the patient/provider, were included for analysis. Retroareolar imaging findings, BI-RADS assessments/recommendations, pathology obtained from percutaneous or excisional biopsies, and follow-up imaging and clinical exams were collated. Cases of chronic or stable nipple inversion were excluded. Descriptive statistics were performed. RESULTS: A total of 414 patients had new nipple inversion, 387/414 (93.5 %) with benign or negative results at initial imaging and 27/414 (6.5 %) with malignant lesions. Diagnostic mammography/ultrasound detected 25/27 (92.6 %) cancers (sensitivity 92.6 %, specificity 75.5 %, PPV 20.8 %, NPV 99.3 %). Of 62 breast MRI exams performed in patients with negative mammogram/ultrasound, no cancers were detected in the retroareolar space with 2 incidental malignant lesions discovered distant from the nipple. CONCLUSION: Diagnostic mammography/ultrasound is reliable in workups of acute nipple inversion, with a high sensitivity and NPV for excluding malignancy. Breast MRI and surgical referral should be reserved for patients with suspicious associated symptoms or clinical findings.

9.
Heliyon ; 10(12): e32726, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975154

RESUMEN

COVID-19 (Coronavirus), an acute respiratory disorder, is caused by SARS-CoV-2 (coronavirus severe acute respiratory syndrome). The high prevalence of COVID-19 infection has drawn attention to a frequent illness symptom: olfactory and gustatory dysfunction. The primary purpose of this manuscript is to create a Computer-Assisted Diagnostic (CAD) system to determine whether a COVID-19 patient has normal, mild, or severe anosmia. To achieve this goal, we used fluid-attenuated inversion recovery (FLAIR) Magnetic Resonance Imaging (FLAIR-MRI) and Diffusion Tensor Imaging (DTI) to extract the appearance, morphological, and diffusivity markers from the olfactory nerve. The proposed system begins with the identification of the olfactory nerve, which is performed by a skilled expert or radiologist. It then proceeds to carry out the subsequent primary steps: (i) extract appearance markers (i.e., 1 s t and 2 n d order markers), morphology/shape markers (i.e., spherical harmonics), and diffusivity markers (i.e., Fractional Anisotropy (FA) & Mean Diffusivity (MD)), (ii) apply markers fusion based on the integrated markers, and (iii) determine the decision and corresponding performance metrics based on the most-promising classifier. The current study is unusual in that it ensemble bags the learned and fine-tuned ML classifiers and diagnoses olfactory bulb (OB) anosmia using majority voting. In the 5-fold approach, it achieved an accuracy of 94.1%, a balanced accuracy (BAC) of 92.18%, precision of 91.6%, recall of 90.61%, specificity of 93.75%, F1 score of 89.82%, and Intersection over Union (IoU) of 82.62%. In the 10-fold approach, stacking continued to demonstrate impressive results with an accuracy of 94.43%, BAC of 93.0%, precision of 92.03%, recall of 91.39%, specificity of 94.61%, F1 score of 91.23%, and IoU of 84.56%. In the leave-one-subject-out (LOSO) approach, the model continues to exhibit notable outcomes, achieving an accuracy of 91.6%, BAC of 90.27%, precision of 88.55%, recall of 87.96%, specificity of 92.59%, F1 score of 87.94%, and IoU of 78.69%. These results indicate that stacking and majority voting are crucial components of the CAD system, contributing significantly to the overall performance improvements. The proposed technology can help doctors assess which patients need more intensive clinical care.

10.
Sci Rep ; 14(1): 15266, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961121

RESUMEN

The Central Eastern Desert and Red Sea region have emerged as a significant area of interest for geothermal energy exploration, owing to their unique geological characteristics and active tectonic activity. This research aims to enhance our understanding of the region's geothermal potential through a comprehensive analysis of gravity and magnetic data. By utilizing a 3D gravity inversion model, a detailed examination of subsurface structures and density variations was conducted. Similarly, a 3D magnetic inversion model was employed to investigate subsurface magnetic properties. Integration result from the Pygimli library ensured robustness and accuracy in the inversion results. Furthermore, a temperature model was developed using the WINTERC-G model and inversion techniques, shedding light on the thermal structure and potential anomalies in the study area. The analysis of the Bouguer gravity map, 3D gravity inversion model, and magnetic data inversion yielded significant findings. The Red Sea exhibited higher gravity values compared to the onshore Eastern Desert, attributed to the presence of a thinner and denser oceanic crust as opposed to the less dense continental crust in the Eastern Desert. The 3D gravity inversion model revealed distinct variations in density, particularly high-density zones near the surface of the Red Sea, indicating underlying geological structures and processes. Conversely, density gradually decreased with depth along the onshore line, potentially influenced by a higher concentration of crustal fractures. The magnetic data inversion technique provided additional insights, highlighting areas with demagnetized materials, indicative of elevated temperatures. These findings were consistent with the correlation between high-density areas and low magnetic susceptibility values, reinforcing the proposition of increased heat transfer from the Red Sea. Comparative analysis of temperature profiles further confirmed the presence of elevated temperatures in promising zones, emphasizing the geothermal potential associated with heat transfer from the Red Sea.This research contributes to the understanding of the geothermal resources in the Central Eastern Desert and Red Sea region. The results from gravity and magnetic data inversions, combined with temperature profiles, provide valuable information for future geothermal exploration and utilization efforts. The findings underscore the importance of geothermal energy in achieving sustainability and contribute to the global discourse on renewable energy sources.

11.
J Comput Chem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979915

RESUMEN

The minimization of the commutator of the Fock and density matrices as the error matrix in the direct inversion of the iterative subspace (CDIIS) developed by Pulay is a powerful self-consistent field (SCF) acceleration technique for the construction of optimum Fock matrix, if initiated with a fair initial guess. In this work, we present an alternative minimized error matrix to the commutator in the CDIIS, namely the residual or the gradient of the energy-functional for a Slater determinant subject to the orthonormality constraints among orbitals, representing the search for a newly improved Fock matrix in the direction of the residual in the direct inversion of the iterative subspace (RDIIS). Implemented in the computational chemistry package GAMESS, the RDIIS is compared with the standard CDIIS and the second order SCF orbital optimization (SOSCF) for tested molecules started with a crude guess. As a result, the RDIIS stably and efficiently performs the SCF convergence acceleration. Furthermore, the RDIIS is considerably independent on the subspace size with the concentrated linear coefficients accounting proportionally for the Fock matrices close to the current iteration.

12.
Psychon Bull Rev ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980570

RESUMEN

Bias in perceptual decision making can have both sensory and decisional origins. These distinct sources of bias are typically seen as static and stable over time. However, human behavior is dynamic and constantly adapting. Yet it remains unclear how sensory and decisional biases progress in distinct ways over time. We addressed this question by tracking the dynamics of sensory and decisional biases during a task that involves a visual illusion. Observers saw multiple pairs of peripherally presented faces that induce a strong illusion making the faces appear distorted and grotesque. The task was to judge whether one of the last two faces had true physical distortion (experimentally introduced in half of the trials). Initially, participants classified most faces as distorted as exemplified by a liberal response bias. However, over the course of the experiment, this response bias gradually disappeared even though the distortion illusion remained equally strong, as demonstrated by a separate subjective rating task without artificially distorted faces. The results suggest that the sensory bias was progressively countered by an opposite decisional bias. This transition was accompanied by an increase in reaction times and a decrease in confidence relative to a condition that does not induce the visual illusion. All results were replicated in a second experiment with inverted faces. These findings demonstrate that participants dynamically adjust their decisional bias to compensate for sensory biases, and that these two biases together determine how humans make perceptual decisions.

13.
Magn Reson Med ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987979

RESUMEN

PURPOSE: Fluid-sensitive turbo spin echo (TSE) MRI with short-TI inversion-recovery preparation for fat suppression (STIR) plays a critical role in the diagnostics of the musculoskeletal system (e.g., close to metal implants). Potential advantages of 3D acquisitions, however, are difficult to exploit due to long acquisition times. Shortening the TR incurs a signal loss, and a driven-equilibrium (DE) extension reduces fluid signal even further. METHODS: The phase of the flip-back pulse was changed by 180° relative to the conventional implementation (i.e., 90° along the positive x-axis (90°x) instead of -90°x). After signal modeling and numerical simulations, the modification was implemented in STIR-TSE sequences and tested on a clinical 3T system. Imaging was performed in the lumbar spine, and long-TR images without DE were acquired as reference. CSF SNR and fluid-muscle contrast were measured and compared between the sequences. Imaging was repeated in a metal implant phantom. RESULTS: A shortening of TR by 43%-57% reduced the CSF SNR by 39%-59%. A conventional DE module further reduced SNR to 26%-40%, whereas the modified DE recovered SNR to 59%-108% compared with the long-TR acquisitions. Fluid-tissue contrast was increased by about 340% with the modified DE module compared with the conventional extension. Similar results were obtained in implant measurements. CONCLUSIONS: The proposed DE element for TSE-STIR sequences has the potential to accelerate the acquisition of fluid-sensitive images. DE-STIR may work most efficiently for 3D acquisitions, in which no temporo-spatial interleaving of inversion and imaging pulses is possible.

14.
Chemistry ; : e202401308, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997795

RESUMEN

Most redox processes that break/form bonds involve net 2e- changes, and many are coupled to protons. Yet most proton-coupled electron transfer (PCET) studies focus on 1e-/1H+ reactions. Reported here is a family of molecular models that undergo tunable 2e-/2H+ redox changes. Complexes [(X2bpy)RuII(en*)2](PF6)2 and [(X2bpy)RuIV(en*-H)2](PF6)2 have been synthesized with bpy = 2,2'-bipyridine with 4,4'-subtitutions X = -NMe2, -OMe, -Me, -H, -CF3; and en* = 2,3-dimethyl-2,3-butanediamine. They have been characterized by IR, UV-vis, and NMR spectroscopies, XRD, electrochemistry, mass spectrometry, DFT and (TD)DFT computations. The introduction of electron-withdrawing and donating groups at the 4,4'-position of the bpy ligand affects the complexes' redox potentials, pKa's, and Bond Dissociation Free Energies (BDFEs) of the N-H bonds in the en* ligands. The average BDFEs for the overall 2e-/2H+ PCET span over 5 kcal/mol. Notably, these complexes all show marked potential inversion over an extended range, ΔpKa > 25 units and ΔE0 > 1.4 V. Potential inversion remains despite the electronic influence of bpy's substitutions which regulate N-H properties several bonds apart by trans-effect over dπ-molecular orbitals at Ru-center. The experimental and computational results presented in this work support the presence of strong coupling between electrons and protons, for modelling insights of 2e-/2H+ transfer reactivity.

15.
Sci Rep ; 14(1): 16044, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992223

RESUMEN

With the high yield of many wells represented by Well JT1 in the Maokou Formation, has catalyzed a surge in exploration activities along the platform margin facies of the Maokou Formation in central Sichuan and further showed the significant exploration potential of the Maokou Formation in the northern slope. However, the fracture cave body of the Maokou Formation exhibits a high degree of development, strong longitudinal and horizontal heterogeneity, large formation pressure differences, and drilling events such as gas kicks and lost circulation occur frequently, which seriously affects the efficient implementation of drilling. Understanding the spatial distribution of the three-pressure in the formation can help better deal with and solve the above problems. Therefore, in order to help the safe, high-quality and rapid drilling of the Maokou Formation in the study area, and enhance the efficiency of oil and gas development, this paper explores the research on the prediction method of the three-pressure of jointing well-seismic data based on the geomechanical experimental data and the actual drilling data. In the process of prediction of pore pressure, this study found that the pore pressure and formation velocity in the study area have an exponential relationship. In order to enhance the applicability of the Filippone's method in the study area and improve the prediction accuracy of pore pressure, the linear relationship between pore pressure and formation velocity in the Filippone's method is modified to an exponential relationship, and a pore pressure prediction model suitable for the work area was established. Based on the Mohr-Coulomb criterion and Huang's model, the prediction models of collapse pressure and fracture pressure applicable to the study area were established, respectively. Then, the elastic parameters were obtained through pre-stack inversion, and the three-pressure bodies were calculated based on the elastic parameter bodies. The results indicate that: (1) The three-pressure prediction method of the jointing well-seismic data in this paper can predict the formation's longitudinal and transverse pressure anomaly zones in advance. (2) The Maokou Formation in the study area is characterized by abnormally high pressure, to balance the pressure of the high-ground formation, high-density drilling fluid is necessary. (3) The prediction results of three-pressure in this paper are highly consistent with the actual drilling engineering events, which verifies the reliability of the three-pressure prediction results presented in this study. The results of the study can provide a basis for decision-making in drilling geological design, such as the determination of drilling fluid density, the evaluation of borehole stability and other engineering problems that require support from three-pressure data.

16.
CHEST Pulm ; 2(2)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38993972

RESUMEN

BACKGROUND: Short-term increases in air pollution are associated with poor asthma and COPD outcomes. Short-term elevations in fine particulate matter (PM2.5) due to wildfire smoke are becoming more common. RESEARCH QUESTION: Are short-term increases in PM2.5 and ozone in wildfire season and in winter inversion season associated with a composite of emergency or inpatient hospitalization for asthma and COPD? STUDY DESIGN AND METHODS: Case-crossover analyses evaluated 63,976 and 18,514 patients hospitalized for primary discharge diagnoses of asthma and COPD, respectively, between January 1999 and March 2022. Patients resided on Utah's Wasatch Front where PM2.5 and ozone were measured by Environmental Protection Agency-based monitors. ORs were calculated using Poisson regression adjusted for weather variables. RESULTS: Asthma risk increased on the same day that PM2.5 increased during wildfire season (OR, 1.057 per + 10 µg/m3; 95% CI, 1.019-1.097; P = .003) and winter inversions (OR, 1.023 per +10 µg/m3; 95% CI, 1.010-1.037; P = .0004). Risk decreased after 1 week, but during wildfire season risk rebounded at a 4-week lag (OR, 1.098 per +10 µg/m3; 95% CI, 1.033-1.167). Asthma risk for adults during wildfire season was highest in the first 3 days after PM2.5 increases, but for children, the highest risk was delayed by 3 to 4 weeks. PM2.5 exposure was weakly associated with COPD hospitalization. Ozone exposure was not associated with elevated risks. INTERPRETATION: In a large urban population, short-term increases in PM2.5 during wildfire season were associated with asthma hospitalization, and the effect sizes were greater than for PM2.5 during inversion season.

17.
Chirality ; 36(8): e23701, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39034270

RESUMEN

Azobenzene (Azo) liquid-crystalline polymers are intriguing due to their unique photo-induced isomerization and supramolecular chirality. However, clarification on multicomponent chiral induction towards Azo polymers remains ambiguous and challenging. Herein, chiral solvents and amines were employed to control the chiroptical activity of achiral Azo polymers. Methyl L-/D-lactate was added as the poor solvent and chiral inducer to achieve the first chiral induction in Azo aggregates. Chiral amines were utilized for the second chiral induction based on the acid-base interactions between the carboxyl groups of polymers and amines. The chiral enhancement and inversion of Azo units could be observed through the synergistic or antagonistic effect between solvents and amines. The impacts of solvent, chemical structures, feed ratio, enantiomeric excess, and temperature on supramolecular chirality were systematically studied. Furthermore, this system displayed the chiroptical switching property and chiral recovery under reversible irradiation.

18.
MethodsX ; 13: 102799, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39022180

RESUMEN

This paper provides a step-by-step description of integrated methodology for quantification and prediction of gas (methane, CH4) content dynamics in shallow aquatic sediments under changing spatial and temporal conditions. Presence of gas bubbles even in small concentrations significantly affects sediment compressibility, which in turn decreases sound speed in sediment. Our integrated methodology consists of two basic steps. In the first step, free gas content is evaluated by acoustic applications based on the sound speed inferred from the reflection coefficient from gassy bottom. The experimental bottom reflections are registered and compared to the simulated ones, using a geoacoustic inversion technique. The best match between the model and the experiment provides sediment sound speed estimate, which is converted into free gas content using a basic relation. In the second step, a multivariate linear regression is fitted for gas content and closed form expression of gas content dependence on the following predictors, which change spatially and temporally over the aquatic ecosystem, is obtained: 1) water depth, 2) short-leaving CH4 production rate peaks fueled by punctuated organic matter deposition; and 3) CH4 bubble dissolution rates.•Gas content and sound speed in the sediment are estimated via the geoacoustic inversion technique by matching the experimentally recorded and simulated bottom reflections•Only single source and receiver are required for the acoustic methodology•A multivariate linear regression is fitted for gas content to indicate its dependence on various predictors that change spatially and temporally over the lake.

19.
G3 (Bethesda) ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031588

RESUMEN

Drosophila subobscura is distributed across Europe, the Near East, and the Americas, while its sister species, D. madeirensis, is endemic to the island of Madeira in the Atlantic Ocean. D. subobscura is known for its strict light-dependence in mating and its unique courtship displays, including nuptial gift giving. D. subobscura has also attracted the interest of researchers because of its abundant variations in chromosomal polymorphisms correlated to the latitude and season, which have been used as a tool to track global climate warming. Although D. madeirensis can be an important resource for understanding the evolutionary underpinning of these genetic characteristics of D. subobscura, little work has been done on the biology of this species. Here, we used a HiFi long-read sequencing dataset to produce a de novo genome assembly for D. madeirensis. This assembly comprises a total of 111 contigs spanning 135.5 Mb, and has an N50 of 24.2 Mb and a BUSCO completeness score of 98.6%. Each of the six chromosomes of D. madeirensis consisted of a single contig except for some centromeric regions. Breakpoints of the chromosomal inversions between D. subobscura and D. madeirensis were characterized using this genome assembly, updating some of the previously identified locations.

20.
Materials (Basel) ; 17(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998448

RESUMEN

Waterborne polyurethane asphalt emulsion (WPUA) is an environmentally friendly bituminous material, whose performance is highly dependent on the phase structure of the continuous phase. In this paper, WPUAs in the vicinity of phase inversion were prepared using waterborne polyurethane (WPU) and asphalt emulsion. The chemical structures, thermal stability, dynamic mechanical properties, phase-separated morphology and mechanical performance of WPUAs were studied. Fourier-transform infrared (FTIR) spectra revealed that there are no -NCO bonds in either the pure WPU or WPUAs. Moreover, the preparation of WPUA is a physical process. The addition of WPU weakens the thermal stability of asphalt emulsion. WPU improves the storage modulus of asphalt emulsion at lower and higher temperatures. The glass transition temperatures of the WPUA films are higher than that of the pure WPU film. When the WPU concentration increases from 30 wt% to 40 wt%, phase inversion occurs; that is, the continuous phase shifts from asphalt to WPU. The WPUA films have lower tensile strength and toughness than the pure WPU film. However, the elongations at break of the WPUA films are higher than that of the pure WPU film. Both the tensile strength and toughness of the WPUA films increase with the WPU concentration. Due to the occurrence of phase inversion, the elongation at break, tensile strength and toughness of the WPUA film containing 30 wt% WPU are increased by 29%, 250% and 369%, respectively, compared to the film with 40 wt% WPU.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA