Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropsychologia ; 199: 108907, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38734179

RESUMEN

Studies of letter transposition effects in alphabetic scripts provide compelling evidence that letter position is encoded flexibly during reading, potentially during an early, perceptual stage of visual word recognition. Recent studies additionally suggest similar flexibility in the spatial encoding of syllabic information in the Korean Hangul script. With the present research, we conducted two experiments to investigate the locus of this syllabic transposition effect. In Experiment 1, lexical decisions for foveal stimulus presentations were less accurate and slower for four-syllable nonwords created by transposing two syllables in a base word as compared to control nonwords, replicating prior evidence for a transposed syllable effect in Korean word recognition. In Experiment 2, the same stimuli were presented to the right and left visual hemifields (i.e., RVF and LVF), which project both unilaterally and contralaterally to each participant's left and right cerebral hemisphere (i.e., LH and RH) respectively, using lateralized stimulus displays. Lexical decisions revealed a syllable transposition effect in the accuracy and latency of lexical decisions for both RVF and LVF presentations. However, response times for correct responses were longer in the LVF, and therefore the RH, as compared to the RVF/LH. As the LVF/RH appears to be selectively sensitive to the visual-perceptual attributes of words, the findings suggest that this syllable transposition effect partly finds its locus within a perceptual stage of processing. We discuss these findings in relation to current models of the spatial encoding of orthographic information during visual word recognition and accounts of visual word recognition in Korean.


Asunto(s)
Tiempo de Reacción , Lectura , Humanos , Femenino , Masculino , Adulto Joven , Tiempo de Reacción/fisiología , Lateralidad Funcional/fisiología , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa , Adulto , Campos Visuales/fisiología , Lenguaje
2.
J Mem Lang ; 77: 40-58, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25431521

RESUMEN

Recent research on the effects of letter transposition in Indo-European Languages has shown that readers are surprisingly tolerant of these manipulations in a range of tasks. This evidence has motivated the development of new computational models of reading that regard flexibility in positional coding to be a core and universal principle of the reading process. Here we argue that such approach does not capture cross-linguistic differences in transposed-letter effects, nor do they explain them. To address this issue, we investigated how a simple domain-general connectionist architecture performs in tasks such as letter-transposition and letter substitution when it had learned to process words in the context of different linguistic environments. The results show that in spite of of the neurobiological noise involved in registering letter-position in all languages, flexibility and inflexibility in coding letter order is also shaped by the statistical orthographic properties of words in a language, such as the relative prevalence of anagrams. Our learning model also generated novel predictions for targeted empirical research, demonstrating a clear advantage of learning models for studying visual word recognition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA