Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros











Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274948

RESUMEN

A nanostructured material, ordered mesoporous carbon (OMC), was synthesised in metal- and halide-free form and its use for the sequestration of crystal violet, a hazardous triphenylmethane dye, is reported for the first time. The OMC material is characterised using scanning transmission electron microscopy with energy-dispersive spectroscopy for chemical analysis, by Fourier-transform infrared spectroscopy, and by nitrogen gas physisorption. The ideal conditions for the uptake of crystal violet dye were determined in batch experiments covering the standard parameters: pH, concentration, contact time, and adsorbent dosage. Experimental data are validated by applying Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherms. The thermodynamic parameters, ΔH°, ΔG°, and ΔS°, are calculated and it has been found that the adsorption process is spontaneous and endothermic with increasing disorder. An in-depth analysis of the kinetics of the adsorption process, order of the reaction and corresponding values of the rate constants was performed. The adsorption of crystal violet over OMC has been found to follow pseudo-second-order kinetics through a film diffusion process at all temperatures studied. Continuous flow column operations were performed using fixed bed adsorption. Parameters including percentage saturation of the OMC bed are evaluated. The exhausted column was regenerated through a desorption process and column efficiency was determined.

2.
Mikrochim Acta ; 191(7): 428, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940957

RESUMEN

A novel nitrogen-doped ordered mesoporous carbon (OMC) pore-embedded growth Pt-Ru-Fe nanoparticles (Pt1-Ru7.5-Fex@N-OMCs) composite was designed and synthesized for the first time. SBA-15 was used as a template, and dopamine was used as a carbon and nitrogen source and metal linking reagent. The oxidative self-polymerization reaction of dopamine was utilized to polymerize dopamine into two-dimensional ordered SBA-15 template pores. Iron porphyrin was introduced as an iron source at the same time as polymerization of dopamine, which was introduced inside and outside the pores using dopamine-metal linkage. Carbonization of polydopamine, nitrogen doping and iron nanoparticle formation were achieved by one-step calcination. Then the templates were etched to form Fex@N-OMCs, and finally the Pt1-Ru7.5-Fex@N-OMCs composites were stabilized by the successful introduction of platinum-ruthenium nanoparticles through the substitution reaction. The composite uniformly embeds the transition metal nanoparticles inside the OMC pores with high specific surface area, which limits the size of the metal nanoparticles inside the pores. At the same time, the metal nanoparticles are also loaded onto the surface of the OMCs, realizing the uniform loading of metal nanoparticles both inside and outside the pores. This enhances the active sites of the composite, promotes the mass transfer process inside and outside the pores, and greatly enhances the electrocatalytic performance of the catalyst. The material shows high electrocatalytic performance for adrenaline, which is characterized by a wide linear range, high sensitivity and low detection limit, and can realize the detection of actual samples.

3.
Int J Biol Macromol ; 267(Pt 1): 131471, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599419

RESUMEN

The conversion of glucose into fructose can transform cellulose into high-value chemicals. This study introduces an innovative synthesis method for creating an MgO-based ordered mesoporous carbon (MgO@OMC) catalyst, aimed at the efficient isomerization of glucose into fructose. Throughout the synthesis process, lignin serves as the exclusive carbon precursor, while Mg2+ functions as both a crosslinking agent and a metallic active center. This enables a one-step synthesis of MgO@OMC via a solvent-induced evaporation self-assembly (EISA) method. The synthesized MgO@OMCs exhibit an impeccable 2D hexagonal ordered mesoporous structure, in addition to a substantial specific surface area (378.2 m2/g) and small MgO nanoparticles (1.52 nm). Furthermore, this catalyst was shown active, selective, and reusable in the isomerization of glucose to fructose. It yields 41 % fructose with a selectivity of up to 89.3 % at a significant glucose loading of 7 wt% in aqueous solution over MgO0.5@OMC-600. This performance closely rivals the current maximum glucose isomerization yield achieved with solid base catalysts. Additionally, the catalyst retains a fructose selectivity above 60 % even after 4 cycles, a feature attributable to its extended ordered mesoporous structure and the spatial confinement effect of the OMCs, bestowing it with high catalytic efficiency.


Asunto(s)
Carbono , Fructosa , Glucosa , Lignina , Óxido de Magnesio , Fructosa/química , Lignina/química , Glucosa/química , Carbono/química , Porosidad , Óxido de Magnesio/química , Catálisis , Isomerismo
4.
J Colloid Interface Sci ; 665: 286-298, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38531274

RESUMEN

Tailoring porous host materials, as an effective strategy for storing sulfur and restraining the shuttling of soluble polysulfides in electrolyte, is crucial in the design of high-performance lithium-sulfur (Li-S) batteries. However, for the widely studied conductive hosts such as mesoporous carbon, how the aspect ratio affects the confining ability to polysulfides, ion diffusion as well as the performances of Li-S batteries has been rarely studied. Herein, ordered mesoporous carbon (OMC) is chosen as a proof-of-concept prototype of sulfur host, and its aspect ratio is tuned from over âˆ¼ 2 down to below âˆ¼ 1.2 by using ordered mesoporous silica hard templates with variable length/width scales. The correlation between the aspect ratio of OMCs and the electrochemical performances of the corresponding sulfur-carbon cathodes are systematically studied with combined electrochemical measurements and microscopic characterizations. Moreover, the evolution of sulfur species in OMCs at different discharge states is scrutinized by small-angle X-ray scattering. This study gives insight into the aspect ratio effects of mesoporous host on battery performances of sulfur cathodes, providing guidelines for designing porous host materials for high-energy sulfur cathodes.

5.
Bioelectrochemistry ; 156: 108613, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995504

RESUMEN

Cancer antigen 125 (CA125)1 is the most important biological screening indicator used to monitor epithelial ovarian cancers, and it plays a vital role in distinguishing ovarian cancers from benign diseases. Biosensors show great potential in the analysis and detection of disease markers. In this study, we designed electrochemical sensors based on three-dimensional amino-functionalized reduced graphene oxide (3D-rGOF-NH2),2 MgAl layered double hydroxide nanocomposites containing ordered mesoporous carbon (CMK-3),3 and ferrocene carboxylic acids(Fc-COOH)4for the detection of CA125. 3D-rGOF-NH2 possesses good conductivity, a large surface area, and high porosity, enabling more immobilized nanoparticles to be deposited on its surface with excellent stability. CMK-3@Fc@MgAl-LDH nanocomposite was used as a carrier to enhance the immobilization of antibodies and the loading of Fc, conductors to enhance conductivity, and enhancers to gradually amplify the signal of Fc. The surface morphology, elemental composition, and surface groups of the materials were characterized using scanning electron microscopy (SEM),5 transmission electron microscopy (TEM),6 and X-ray diffraction (XRD)7 techniques. The response signal of the electrochemical sensor was measured by DPV. Under the optimal conditions, the electrochemical sensor obtained a linear detection range of 0.01 U/mL-100 U/mL with a detection limit of 0.00417 U/mL.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Nanocompuestos , Humanos , Antígeno Ca-125 , Técnicas Biosensibles/métodos , Anticuerpos Inmovilizados/química , Inmunoensayo/métodos , Nanocompuestos/química , Grafito/química , Técnicas Electroquímicas/métodos , Límite de Detección , Nanopartículas del Metal/química , Oro/química
6.
Angew Chem Int Ed Engl ; 62(46): e202306791, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37779352

RESUMEN

The electrocatalytic sulfur reduction reaction (SRR) would allow the production of renewable high-capacity rechargeable lithium-sulfur (Li-S) batteries using sustainable and nontoxic elemental sulfur as a cathode material, but its slow reaction rate causes a serious shuttle effect and dramatically reduces the capacity. We found that a catalyst composed of Pd nanoparticles supported by ordered mesoporous carbon (Pd/OMC) had a high reaction rate in the SRR, and a Li-S battery assembled with this catalyst had a low shuttle constant of 0.031 h-1 and a high-rate performance with a specific capacity of 1527 mAh g-1 at 0.1 C which is close to the theoretical value. The high activity of Pd/OMC with a d-orbital vacancy of 0.87 e was predicted from a volcano relationship between the d charge for the metal and the adsorption activation entropy and reaction rate for the SRR by examining Pd, Au, Pt, Rh, and Ru transition-metal nanocatalysts. The strategy of using a single electronic structure descriptor to design high-efficiency SRR catalysts has suggested a way to produce practical Li-S batteries.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37605418

RESUMEN

BACKGROUND: A drug delivery system is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. Such systems release the drugs at specific amounts in a specific site. The carbon based-nanomaterials have been actively used as drug carriers to treat various cancer. OBJECTIVE: This study aimed to evaluate the cytotoxic effects of DOX-GO, DOX-OMC and DOX-CNT in colon cancer cells (HT29). METHODS: We reported platforms based on graphene oxide (GO), ordered mesoporous carbon (OMC) and carbon nanotubes (CNT) to conjugate with doxorubicin (DOX). The conjugation of DOX with carbon nanomaterial was investigated by UV-Vis spectroscopy, field emission scanning electron microscope (FE-SEM) and cyclic voltammetry (CV) methods. RESULTS: We showed that graphene oxide was a highly efficient matrix. Efficient loading of DOX, 89%, 78%, and 73.5% at pH 7.0 was seen onto GO, OMC and CNT, respectively. Upon pH 4. 0 after 15 h, 69%, 61% and 61% of DOX could be released from the DOX-GO, DOX-OMC and DOX-CNT, respectively, which illustrated the significant benefits of the developed approach for carbon nanomaterial applications. In vitro cytotoxicity analysis showed greater cytotoxicity of DOX/GO, DOX/OMC and DOX/CNT in comparison with GO, OMC and CNT against HT29 colon cancer cells with cell viability of 22%, 40% and 44% after 48 h for DOX-GO, DOX-OMC and DOX-CNT, respectively. CONCLUSION: The nanohybrids based on DOX-carbon nanomaterial, because of their unique physical and chemical properties, will remarkably enhance the anti-cancer activity.

8.
Adv Sci (Weinh) ; 10(23): e2302490, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37300359

RESUMEN

Organic electrode materials for lithium-ion batteries have attracted significant attention in recent years. Polymer electrode materials, as compared to small-molecule electrode materials, have the advantage of poor solubility, which is beneficial for achieving high cycling stability. However, the severe entanglement of polymer chains often leads to difficulties in preparing nanostructured polymer electrodes, which is vital for achieving fast reaction kinetics and high utilization of active sites. This study demonstrates that these problems can be solved by the in situ electropolymerization of electrochemically active monomers in nanopores of ordered mesoporous carbon (CMK-3), combining the advantages of the nano-dispersion and nano-confinement effects of CMK-3 and the insolubility of the polymer materials. The as-prepared nanostructured poly(1-naphthylamine)/CMK-3 cathode exhibits a high active site utilization of 93.7%, ultrafast rate capability of 60 A g-1 (≈320 C), and an ultralong cycle life of 10000 cycles at room temperature and 45000 cycles at -15 °C. The study herein provides a facile and effective method that can simultaneously solve both the dissolution problem of small-molecule electrode materials and the inhomogeneous dispersion issue of polymer electrode materials.

9.
ACS Appl Mater Interfaces ; 15(50): 57905-57912, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37040434

RESUMEN

Ordered mesoporous carbons (OMCs) are promising materials for cathode materials of a Zn ion hybrid capacitor (Zn HC) due to their high surface area and interconnected porous structure. Graphitization of the framework and nitrogen doping have been used to improve the energy storage performance of the OMCs by enhancing electrical conductivity, pseudocapacitive reaction sites, and surface affinity toward aqueous electrolytes. Thus, when both methods are simultaneously implemented to the OMCs, the Zn HC would have improved energy storage performance. Herein, we introduce a facile synthetic method for N-doped mesoporous graphitic carbon (N-mgc) by utilizing polystyrene-block-poly(2-vinlypyridine) copolymer (PS-b-P2VP) as both soft-template and carbon/nitrogen sources. Co-assembly of PS-b-P2VP with Ni precursors for graphitization formed a mesostructured composite, which was converted to N-doped graphitic carbon through catalytic pyrolysis. After selective removal of Ni, N-mgc was prepared. The obtained N-mgc exhibited interconnected mesoporous structure with high nitrogen content and high surface area. When N-mgc was employed as a cathode material in Zn ion HC, excellent energy storage performance was achieved: a high specific capacitance (43 F/g at 0.2 A/g), a high energy density of 19.4 Wh/kg at a power density of 180 W/kg, and reliable cycle stability (>3000 cycles).

10.
Sci Total Environ ; 875: 162725, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906022

RESUMEN

Heterogeneous electro-Fenton with in situ generated H2O2 and •OH is a cost-effective method for the degradation of refractory organic pollutants, in which the catalyst is an important factor affecting its degradation performance. Metal-free catalysts can avoid the potential risk of metal dissolution. However, it remains great challenge to develop efficient metal-free catalyst for electro-Fenton. Herein, ordered mesoporous carbon (OMC) was designed as a bifunctional catalyst for efficient H2O2 and •OH generation in electro-Fenton. The electro-Fenton system showed fast perfluorooctanoic acid (PFOA) degradation with kinetics constant of 1.26 h-1 and high total organic carbon (TOC) removal efficiency of 84.0 % after 3 h reaction. The •OH was the main species responsible for PFOA degradation. Its generation was promoted by the abundant oxygen functional groups such as C-O-C and the nano-confinement effect of mesoporous channels on OMCs. This study indicated that OMC is an efficient catalyst for metal-free electro-Fenton system.

11.
ACS Nano ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607402

RESUMEN

Lithium-sulfur (Li-S) batteries exhibit unparalleled theoretical capacity and energy density than conventional lithium ion batteries, but they are hindered by the dissatisfactory "shuttle effect" and the sluggish conversion kinetics owing to the low lithium ion transport kinetics, resulting in rapid capacity fading. Herein, a catalytic two-dimensional heterostructure composite is prepared by evenly grafting mesoporous carbon on the MXene nanosheet (denoted as OMC-g-MXene), serving as interfacial kinetic accelerators in Li-S batteries. In this design, the grafted mesoporous carbon in the heterostructure can not only prevent the stack of MXene nanosheets with the enhanced mechanical property but also offer a facilitated pump for accelerating ion diffusion. Meanwhile, the exposed defect-rich OMC-g-MXene heterostructure inhibits the polysulfide shuttling with chemical interactions between OMC-g-MXene and polysulfides and thus simultaneously enhances the electrochemical conversion kinetics and efficiency, as fully investigated by in situ/ex situ characterizations. Consequently, the cells with OMC-g-MXene ion pumps achieve a high cycling capacity (966 mAh g-1 at 0.2 C after 200 cycles), a superior rate performance (537 mAh g-1 at 5 C), and an ultralow decaying rate of 0.047% per cycle after 800 cycles at 1 C. Even employed with a high sulfur loading of 7.08 mg cm-2 under lean electrolyte, an ultrahigh areal capacity of 4.5 mAh cm-2 is acquired, demonstrating a future practical application.

12.
Chemosphere ; 313: 137448, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36462564

RESUMEN

Ordered mesoporous carbons (OMCs) with controlled mesopore lengths and volumes were synthesized and investigated to remove the model dye methylene blue (MB) from aqueous solutions. The pore size, specific surface area, pore volume, and pore length of OMCs (CMK-3, sCMK-3, and sCMK-5) were analyzed and benchmarked against commercial activated carbon (AC). CMK-3 and sCMK-3 had narrow pore size distributions (PSDs) centered at ∼4.4 nm, whereas the PSD of sCMK-5 was bimodal, derived from the same pores as CMK-3 (∼4.4 nm) and the inner diameter of the carbon nanotubes (∼5.8 nm). The pore length decreased from 743 nm for CMK-3 to 173 nm for sCMK-3 and 169 nm for sCMK-5, facilitating the MB accessibility and efficient utilization of internal mesopores. The MB adsorption on the prepared adsorbents was well described by a pseudo-second-order kinetic model (R2 > 0.999), and the initial adsorption rate (h) on sCMK-5 was 34.07-fold faster than that on commercial AC. The Langmuir model adequately explained the equilibrium adsorption data, and the increase in the Langmuir maximal adsorption capacity (qm) of the OMCs was proportional to the specific surface area. The MB adsorption on sCMK-5 was endothermic and spontaneous, and proceeded primarily through physical adsorption as well as chemisorption reacting with oxygen atoms in hydroxyl groups. The prepared adsorbents were also suitable for polishing textile wastewater containing color-causing substances along with the background organic matter. These OMCs are promising for treating wastewater as efficient adsorbents for large molecular pollutants such as dyes.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Aguas Residuales , Colorantes , Carbón Orgánico , Agua , Adsorción , Cinética , Azul de Metileno
13.
Mikrochim Acta ; 189(11): 431, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36284001

RESUMEN

A highly sensitive kanamycin electrochemiluminescence (ECL) switch sensor was constructed. A signal element consisting of ordered mesoporous carbon loaded with indium oxide nanoparticles/carbon quantum dots (OMC/In2O3/C-dots) was assembled on the surface of a gold electrode. Then, a molecularly imprinted polymer (MIP) was prepared on the modified electrode surface using kanamycin as the template molecule and o-aminophenol as the functional monomer. After kanamycin elution, the prepared sensor retained specific kanamycin recognition sites. OMC/In2O3 effectively amplified the ECL signal of the C-dots, thereby enhancing the detection sensitivity, whereas kanamycin quenched the signal. Therefore, the imprinted sites acted as a switch, providing a new method for detecting kanamycin. Under the optimal experimental conditions, the concentration of kanamycin was proportional to the degree of ECL quenching within a linear range of 5-4500 × 10-12 mol L-1 at 0.8 V (vs. Ag/AgCl electrode electrode), and the detection limit was 5.8 × 10-13 mol L-1. When applied to the detection of kanamycin in actual samples, such as chicken, duck, pork, and milk, the recovery for spiked samples was in the range 92.7-110%.


Asunto(s)
Impresión Molecular , Nanopartículas , Puntos Cuánticos , Kanamicina , Carbono , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Oro
14.
ACS Appl Mater Interfaces ; 14(38): 43690-43700, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112494

RESUMEN

Block-copolymer-derived ordered mesoporous carbon (OMC) materials have great potential in many applications, such as adsorption, catalysis, and energy conversions; however, their formation process and the kinetic mechanism remain unclear. Herein, a N-doped OMC (N-OMC) with sp2-bonded C atoms is developed via self-assembly of the polystyrene-block-poly(4-vinyl pyridine) block copolymer. By correlating the external morphologies with the internal chemical states, the formation process can be concluded as follows: (1) pore evolution via polystyrene domain degradation and (2) regularization and graphitization of the residual carbon via the removal of sp3 C atoms. In addition, the thickness of the N-OMC shows a power function relationship with the spin-coating rate, and the N content can be incredibly increased up to 26.34 at. % in an NH3 carbonization atmosphere. With the as-prepared N-OMC as the support for loading of the pseudo-atomic-scale Pt (Pt/N-OMC), a high electrochemical active surface area value of 99.64 m2·g-1 and a half-wave potential (E1/2) of 0.850 VRHE are achieved, showing great potential in developing single-atom electrocatalysts.

15.
Adv Mater ; 34(40): e2205372, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35973696

RESUMEN

Maintaining the high catalytic activity of the oxygen reduction reaction (ORR) while reducing costs is a long-standing effort to promote the application of polymer electrolyte fuel cells. Here, the binding of nitrogen-containing ligands and carbon black is enhanced by controlling the pyrolysis conditions of a FeSO4 , 1,10-phenanthroline (phen), carbon black mixture, which significantly improves the ORR catalytic activity of the pyrolysis products. Preheating is proposed as a process improvement method using a heat treatment at a temperature between the melting and boiling points of phen before high-temperature pyrolysis, which achieves an effective combination of phen and carbon black, and enhances the interaction between phen and ferrous ions. This method substantially increases the number of FeNx active centers in the pyrolysis product, resulting in an impressive Fe-N/C catalyst with half-wave potential (E1/2 ) up to 0.93 V and a diffusion-limited current density (jL ) of 5.9 mA cm-2 and no obvious decay after 20 000 cyclic voltammetry cycles in 0.1 m KOH, which are all among the best-reported data known to date. The interaction between the ratio of Fe/phen and the pyrolysis conditions is also investigated. Under the right conditions, cheap raw materials can also generate highly catalytically active sites.

16.
Bioelectrochemistry ; 148: 108230, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36029760

RESUMEN

An electrochemical immunosensor based on the modification of nanocomposite was constructed to detect the lung cancer marker Cytokeratin 19 fragment antigen 21-1 (CYFRA21-1). Ordered mesoporous carbon CMK-3 was selected to mix with carboxylated multi-walled carbon nanotubes (CMWCNTs), and their combination could enhance electron transfer efficiency and amplify the electrochemical signal. Furthermore, aurum nanoparticles (AuNPs) were further mixed with the hybrid carbon nanomaterials, which bind antibodies via Au-S bonds and provide numerous of binding sites for antibodies. Finally, CYFRA21-1 could be detected by specific immune response between antigen and antibody by improving the immunosensor sensitivity. The characterization of scanning electron microscopy (SEM) showed that AuNPs were embedded on the surface and interstices of CMK-3@CMWCNTs. The curves of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that the immunsensor was successfully constructed. The constructed immunosensor had a linear range of 0.5 pg/mL to 105 pg/mL for the detection of CYFRA21-1 in serum, and the correlation coefficient (r) was 0.998, with a detection limit of 0.2 pg/mL. Thus, this method is selective and sensitive for getting the accurate and reliable detection results and provides a new method for the CYFRA21-1 ultrasensitive detection in serum.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanocompuestos , Nanotubos de Carbono , Antígenos de Neoplasias , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Oro/química , Inmunoensayo , Queratina-19 , Límite de Detección , Nanopartículas del Metal/química , Nanocompuestos/química , Nanotubos de Carbono/química
17.
Biosensors (Basel) ; 12(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36005022

RESUMEN

Herein, a novel electrochemical aptasensor using a broad-spectrum aptamer as a biorecognition element was constructed based on a screen-printed carbon electrode (SPCE) for simultaneous detection of aminoglycoside antibiotics (AAs). The ordered mesoporous carbon (OMC) was firstly modified on 2D Ti3C2 MXene. The addition of OMC not only effectively improved the stability of the aptasensor, but also prevented the stacking of Ti3C2 sheets, which formed a good current passage for signal amplification. The prepared OMC@Ti3C2 MXene functioned as a nanocarrier to accommodate considerable aptamers. In the presence of AAs, the transport of electron charge on SPCE surface was influenced by the bio-chemical reactions of the aptamer and AAs, generating a significant decline in the differential pulse voltammetry (DPV) signals. The proposed aptasensor presented a wide linear range and the detection limit was 3.51 nM. Moreover, the aptasensor, with satisfactory stability, reproducibility and specificity, was successfully employed to detect the multi-residuals of AAs in milk. This work provided a novel strategy for monitoring AAs in milk.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Aminoglicósidos , Animales , Antibacterianos , Carbono , Técnicas Electroquímicas , Electrodos , Límite de Detección , Leche , Reproducibilidad de los Resultados , Titanio
18.
Bioelectrochemistry ; 147: 108209, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35850057

RESUMEN

Rapid and sensitive tuberculosis (TB) diagnoses remain big challenges to current detection tools. In this work, a sensitive electrochemical aptasensor was constructed for the determination of Mycobacterium tuberculosis antigen MPT64 using a new redox nanoprobe. We found that anthraquinone derivative, anthraquinone-2-carboxylic acid (AQCA), a redox mediator, could be confined in ordered mesoporous carbon material of CMK-3. Due to the large loading amount of AQCA, as well as the confined space and electron transfer promotion effect of CMK-3, the obtained AQCA/CMK-3 nanohybrid with mass ratio of 2:1 showed excellent electroactivity and was employed as a new redox nanoprobe for signal amplification for the first time. Additionally, urchin-like Ce-MOFs were used to load a large amount of deposited gold nanocrystals (dep-Au), leading to dense immobilization of capture probe. The proposed electrochemical aptasensor for MPT64 detection showed a good linear relationship in the range from 100 fg/mL to 10 ng/mL with a low detection limit of 67.6 fg/mL. Besides, the aptasensor was utilized to detect MTP64 in human serum samples for TB diagnosis and presented satisfactory results.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Mycobacterium tuberculosis , Antraquinonas , Antígenos Bacterianos/metabolismo , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Carbono/química , Técnicas Electroquímicas/métodos , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción
19.
Water Res ; 221: 118797, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35841795

RESUMEN

The carbon-catalyzed persulfate-based advanced oxidation process (PS-AOP) has recently received much focus owing to the green, economical, and sustainable nature of carbon catalysts. In this study, sulfur-doped ordered mesoporous carbons (S-OMCs) were utilized to activate peroxydisulfate (PDS) for ciprofloxacin (CIP) removal. A synthesis temperature gradient was set to regulate the defect level of S-OMCs, since the thermal decomposition of oxygen- and sulfur-containing groups at different temperatures could release S and O and then create defects. In all S-OMCs/PDS systems, 1O2 dominated CIP degradation. Interestingly, a high linear correlation (R2 = 0.9091) between defect level and 1O2 yield was found, confirming the structure-activity relationship between defects and 1O2 generation. Moreover, the impacts of several important reaction conditions and water matrix on S-OMC-1000/PDS activation system were surveyed. In the S-OMC-1000/PDS activation system, CIP removal could attain 85.84% under the condition of unadjusted pH (pH = 5.3) and small amount of S-OMC-1000 (50 mg/L). The S-OMC-1000/PDS activation system also exhibited relatively stable or even better performance in the presence of common inorganic anions and natural organic matter (NOM), manifesting its good potential for practical applications. In addition, the reusability of S-OMC-1000 was investigated. This study provides a practical and high-efficiency way for decontaminating antibiotic-polluted water, and gives an alternative approach for identifying the active site of catalysts.


Asunto(s)
Carbono , Azufre , Carbono/química , Catálisis , Ciprofloxacina , Oxígeno , Agua
20.
Int J Biol Macromol ; 213: 610-620, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35671906

RESUMEN

The synthesis of ordered mesoporous carbons (OMCs) with hierarchical pore structure is significant for supercapacitor applications as electrode material. In this study, the ordered mesoporous carbons with hierarchical pore structure (HOMC) are synthesized via solvent evaporation induced self-assembly (EISA) method using lignin from walnut shell as carbon precursor and Co2+ ion as crosslinking agent, followed by removal of metal by diluted acid and chemical activation with KHCO3. The prepared HOMC material has a large specific surface area of 2033 m2 g-1 and high pore volume of 1.59 cm3 g-1, and it shows good electrochemical performance as the electrode of supercapacitor with high specific supercapacitances of 286 and 206 F g-1 in 6 M KOH aqueous solutions at 0.2 and 20 A g-1, respectively. The assembled HOMC-based symmetric supercapacitors provides a specific energy density of 13.5 Wh kg-1 at a high power density of 44.3 kW kg-1 and keep good cycling stability after 5000 cycle tests. The superior electrochemical performance is ascribed to the long range ordered parallel mesoporous channels, hierarchical porous structure, high specific surface area and appropriate microporous/mesoporous ratio. The materials prepared in this study have the potential to be used in the fields of adsorption, energy storage and capacitance deionization.


Asunto(s)
Carbono , Lignina , Carbono/química , Capacidad Eléctrica , Electrodos , Lignina/química , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA