Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(15): e2308415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38265890

RESUMEN

The topological Hall effect (THE) is the transport response of chiral spin textures and thus can serve as a powerful probe for detecting and understanding these unconventional magnetic orders. So far, the THE is only observed in either noncentrosymmetric systems where spin chirality is stabilized by Dzyaloshinskii-Moriya interactions, or triangular-lattice magnets with Ruderman-Kittel-Kasuya-Yosida-type interactions. Here, a pronounced THE is observed in a Fe-Co-Ni-Mn chemically complex alloy with a simple face-centered cubic (fcc) structure across a wide range of temperatures and magnetic fields. The alloy is shown to have a strong magnetic frustration owing to the random occupation of magnetic atoms on the close-packed fcc lattice and the direct Heisenberg exchange interaction among atoms, as evidenced by the appearance of a reentrant spin glass state in the low-temperature regime and the first principles calculations. Consequently, THE is attributed to the nonvanishing spin chirality created by strong spin frustration under the external magnetic field, which is distinct from the mechanism responsible for the skyrmion systems, as well as geometrically frustrated magnets.

2.
Chemistry ; 30(4): e202302954, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37903731

RESUMEN

Herein a series of chiral BTI radical anions bearing different chiral substituents were efficiently prepared by chemical reduction. X-ray crystallography revealed finely-tuned packing and helix assemblies of the radicals by the size of chiral substituents in crystalline state. In accordance with the crystalline-state packing, the powder ESR spectra indicate that 4 a- ⋅CoCp2 + and 4 c- ⋅CoCp2 + π-dimers exhibit thermally excited triplet states arising from strong spin-spin interactions, while discrete 4 b- ⋅CoCp2 + shows a broad doublet-state signal reflecting weak spin-spin interactions. The interplay between the unpaired electron spin and chiral substituents was studied by UV-Vis-NIR spectra, electronic circular dichroism (ECD) and TD DFT calculations. Different NIR absorptions of the radicals attributing to isolated SOMO→LUMO+1 (~889 nm) transitions were recorded. The emergence of Cotton effects (CEs) at the NIR region for 4 c- ⋅CoCp2 + radical enantiomers suggest the interplay between chirality and unpaired electron spin. The origin of the different circularly polarized light absorptions regarding SOMO derived transitions (around 880 nm) was attributed to chiral substitutes regulated electric and magnetic transition dipole moments of the unpaired electron participated transition.

3.
Nano Lett ; 23(12): 5680-5687, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37288825

RESUMEN

The quantum anomalous Hall effect (QAHE) is a highly researched topic in condensed matter physics due to its ability to enable dissipationless transport. Previous studies have mainly focused on the ferromagnetic QAHE, which arises from the combination of collinear ferromagnetism and two-dimensional (2D) Z2 topological insulator phases. In our study, we demonstrate the emergence of the spin-chirality-driven QAHE and the quantum topological Hall effect (QTHE) by sandwiching a 2D Z2 topological insulator between two chiral kagome antiferromagnetic single-layers synthesized experimentally. The QAHE is surprisingly realized with fully compensated noncollinear antiferromagnetism in contrast to conventional collinear ferromagnetism. The Chern number can be regulated periodically with the interplay between vector- and scalar-spin chiralities, and the QAHE emerges even without spin-orbit coupling, indicating the rare QTHE. Our findings open a new avenue for realizing antiferromagnetic quantum spintronics based on the unconventional mechanisms from chiral spin textures.

4.
Proc Natl Acad Sci U S A ; 118(33)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389668

RESUMEN

The long-range order of noncoplanar magnetic textures with scalar spin chirality (SSC) can couple to conduction electrons to produce an additional (termed geometrical or topological) Hall effect. One such example is the Hall effect in the skyrmion lattice state with quantized SSC. An alternative route to attain a finite SSC is via the spin canting caused by thermal fluctuations in the vicinity of the ferromagnetic ordering transition. Here, we report that for a highly conducting ferromagnet with a two-dimensional array of spin trimers, the thermally generated SSC can give rise to a gigantic geometrical Hall conductivity even larger than the intrinsic anomalous Hall conductivity of the ground state. We also demonstrate that the SSC induced by thermal fluctuations leads to a strong response in the Nernst effect. A comparison of the sign and magnitude of fluctuation-Nernst and Hall responses in fundamental units indicates the need for a momentum-space picture to model these thermally induced signals.

5.
Nano Lett ; 21(10): 4280-4286, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33979154

RESUMEN

Topological Hall effect (THE) has been used as a powerful tool to unlock spin chirality in novel magnetic materials. Recent focus has been widely paid to THE and possible chiral spin textures in two-dimensional (2D) layered magnetic materials. However, the room-temperature THE has been barely reported in 2D materials, which hinders its practical applications in 2D spintronics. In this paper, we report a possible THE signal featuring antisymmetric peaks in a wide temperature window up to 320 K in Cr1.2Te2, a new quasi-2D ferromagnetic material. The temperature, thickness, and magnetic field dependences of the THE lead to potential spin chirality origin that is associated with the spin canting under external magnetic fields. Our work holds promise for practical applications in future chiral spin-based vdW spintronic devices.

6.
Chemistry ; 24(56): 14896-14900, 2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30136321

RESUMEN

Single-crystal EPR experiments show that the highly symmetric antiferromagnetic half-integer spin triangle [Fe3 O(O2 CPh)6 (py)3 ]ClO4 ⋅py (1, py=pyridine) possesses a ST =1/2 ground state exhibiting high g-anisotropy due to antisymmetric exchange (Dzyaloshinskii-Moriya) interactions. EPR experiments under static electric fields parallel to the triangle's plane (i.e., perpendicular to the magnetic z-axis) reveal that this ground state couples to externally applied electric fields. This magnetoelectric coupling causes an increase in the intensity of the intradoublet EPR transition and does not affect its resonance position when B0 ∥z. The results are discussed on the basis of theoretical models correlating the spin chirality of the ground state with the magnetoelectric effect.

7.
Chemistry ; 22(5): 1779-88, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26748964

RESUMEN

The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (µSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that µSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA