Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062597

RESUMEN

Synthetic antisense oligonucleotides (ASOs) are emerging as an attractive platform to treat various diseases. By specifically binding to a target mRNA transcript through Watson-Crick base pairing, ASOs can alter gene expression in a desirable fashion to either rescue loss of function or downregulate pathogenic protein expression. To be clinically relevant, ASOs are generally synthesized using modified analogs to enhance resistance to enzymatic degradation and pharmacokinetic and dynamic properties. Phosphorothioate (PS) belongs to the first generation of modified analogs and has played a vital role in the majority of approved ASO drugs, mainly based on the RNase H mechanism. In contrast to RNase H-dependent ASOs that bind and cleave target mature mRNA, splice-switching oligonucleotides (SSOs) mainly bind and alter precursor mRNA splicing in the cell nucleus. To date, only one approved SSO (Nusinersen) possesses a PS backbone. Typically, the synthesis of PS oligonucleotides generates two types of stereoisomers that could potentially impact the ASO's pharmaco-properties. This can be limited by introducing the naturally occurring phosphodiester (PO) linkage to the ASO sequence. In this study, towards fine-tuning the current strategy in designing SSOs, we reported the design, synthesis, and evaluation of several stereo-random SSOs on a mixed PO-PS backbone for their binding affinity, biological potency, and nuclease stability. Based on the results, we propose that a combination of PO and PS linkages could represent a promising approach toward limiting undesirable stereoisomers while not largely compromising the efficacy of SSOs.


Asunto(s)
Oligonucleótidos Antisentido , Empalme del ARN , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/genética , Humanos , Oligonucleótidos Fosforotioatos/química , Oligonucleótidos Fosforotioatos/metabolismo , Ribonucleasa H/metabolismo , Diseño de Fármacos
2.
Front Physiol ; 12: 689179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721051

RESUMEN

Splice-switching antisense oligonucleotide- (SSO-) mediated correction of framedisrupting mutation-containing premessenger RNA (mRNA) transcripts using exon skipping is a highly promising treatment method for muscular diseases such as Duchenne muscular dystrophy (DMD). Phosphorothioate (PS) chemistry, a commonly used oligonucleotide modification, has been shown to increase the stability of and improve the pharmacokinetics of SSOs. However, the effect of PS inclusion in 2'-O-methyl SSOs (2OMe) on cellular uptake and splice switching is less well-understood. At present, we demonstrate that the modification of PS facilitates the uptake of 2OMe in H2k-mdx myoblasts. Furthermore, we found a dependency of SSO nuclear accumulation and high splice-switching activity on PS inclusion in 2OMe (2OMePS), as tested in various reporter cell lines carrying pLuc/705. Increased exon-inclusion activity was observed in muscle, neuronal, liver, and bone cell lineages via both the gymnotic uptake and lipofection of 2OMePS. Using the photoactivatable ribonucleoside-enhanced crosslinking and a subsequent proteomic approach, we identified several 2OMePS-binding proteins, which are likely to play a role in the trafficking of 2OMePS to the nucleus. Ablation of one of them, Ncl by small-interfering RNA (siRNA) enhanced 2OMePS uptake in C2C12 myoblasts and upregulated luciferase RNA splicing in the HeLa Luc/705 reporter cell line. Overall, we demonstrate that PS inclusion increases nuclear delivery and splice switching in muscle, neuronal, liver, and bone cell lineages and that the modulation of 2OMePS-binding partners may improve SSO delivery.

3.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805378

RESUMEN

Our group previously developed a series of bridged nucleic acids (BNAs), including locked nucleic acids (LNAs), amido-bridged nucleic acids (AmNAs), and guanidine-bridged nucleic acids (GuNAs), to impart specific characteristics to oligonucleotides such as high-affinity binding and enhanced enzymatic resistance. In this study, we designed a series of LNA-, AmNA-, and GuNA-modified splice-switching oligonucleotides (SSOs) with different lengths and content modifications. We measured the melting temperature (Tm) of each designed SSO to investigate its binding affinity for RNA strands. We also investigated whether the single-stranded SSOs formed secondary structures using UV melting analysis without complementary RNA. As a result, the AmNA-modified SSOs showed almost the same Tm values as the LNA-modified SSOs, with decreased secondary structure formation in the former. In contrast, the GuNA-modified SSOs showed slightly lower Tm values than the LNA-modified SSOs, with no inhibition of secondary structures. We also evaluated the exon skipping activities of the BNAs in vitro at both the mRNA and protein expression levels. We found that both AmNA-modified SSOs and GuNA-modified SSOs showed higher exon skipping activities than LNA-modified SSOs but each class must be appropriately designed in terms of length and modification content.


Asunto(s)
Distrofina/genética , Guanidina/química , Oligonucleótidos/química , Oligonucleótidos/genética , Línea Celular , Distrofina/metabolismo , Exones , Marcación de Gen/métodos , Humanos , Ácidos Nucleicos/química , Oligonucleótidos/síntesis química , Empalme del ARN , Temperatura , Transfección
4.
Pharmaceutics ; 13(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477663

RESUMEN

Non-viral transfection reagents are continuously being developed in attempt to replace viral vectors. Among those non-viral vectors, dendrimers have gained increasing interest due to their unique molecular structure and multivalency. However, more improvements are still needed to achieve higher efficacy and lower toxicity. In this study, we have examined 18 peptide dendrimers conjugated to lipophilic moieties, such as fatty acids or hydrophobic amino acids, that were previously explored for siRNA. Reporter cells were employed to investigate the transfection of single strand splice-switching oligonucleotides (ONs) using these peptide dendrimers. Luciferase level changes reflecting efficiency varied with amino acid composition, stereochemistry, and complexation media used. 3rd generation peptide dendrimers with D-amino acid configuration were superior to L-form. Lead formulations with 3rd generation, D-amino acid peptide dendrimers increased the correction level of the delivered ON up to 93-fold over untreated HeLa Luc/705 cells with minimal toxicity. To stabilize the formed complexes, Polyvinyl alcohol 18 (PVA18) polymer was added. Although PVA18 addition increased activity, toxicity when using our best candidates G 2,3KL-(Leu)4 (D) and G 2,3KL-diPalmitamide (D) was observed. Our findings demonstrate the potential of lipid-conjugated, D-amino acid-containing peptide dendrimers to be utilized as an effective and safe delivery vector for splice-switching ONs.

5.
Biochimie ; 174: 34-43, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32315661

RESUMEN

The nuclease activity of deoxyribonuclease 1 (DNase I) is regulated by alternative splicing (AS) of its mRNA. The aim of this study was to define the ability of a splice-switching oligonucleotide (SSO) that base-paired with DNase I pre-mRNA to induce AS and inhibit nuclease activity in human T, B and NK lymphocytes. The SSO for DNase I could significantly downregulate the expression of full-length active DNase I and upregulate a truncated splice variant with a deleted exon 4. Such an induction of AS resulted in inhibition of nuclease activity and slowed apoptosis progression in anti-CD95/FAS stimulated lymphocytes. These results should facilitate further investigations of apoptosis regulation in lymphocytes and demonstrate that SSOs for DNase I are promising cytoprotective agents.


Asunto(s)
Apoptosis , Desoxirribonucleasa I/antagonistas & inhibidores , Linfocitos/citología , Oligonucleótidos/farmacología , Adolescente , Adulto , Empalme Alternativo , Supervivencia Celular , Desoxirribonucleasa I/metabolismo , Voluntarios Sanos , Humanos , Linfocitos/enzimología , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Adulto Joven
6.
Pharmaceutics ; 11(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835435

RESUMEN

Non-viral transfection vectors are commonly used for oligonucleotide (ON) delivery but face many challenges before reaching the desired compartments inside cells. With the support of additional compounds, it might be more feasible for a vector to endure the barriers and achieve efficient delivery. In this report, we screened 18 different excipients and evaluated their effect on the performance of peptide dendrimer/lipid vector to deliver single-stranded, splice-switching ONs under serum conditions. Transfection efficiency was monitored in four different reporter cell lines by measuring splice-switching activity on RNA and protein levels. All reporter cell lines used had a mutated human ß-globin intron 2 sequence interrupting the luciferase gene, which led to an aberrant splicing of luciferase pre-mRNA and subsidence of luciferase protein translation. In the HeLa Luc/705 reporter cell line (a cervical cancer cell line), the lead excipients (Polyvinyl derivatives) potentiated the splice-switching activity up to 95-fold, compared to untreated cells with no detected cytotoxicity. Physical characterization revealed that lead excipients decreased the particle size and the zeta potential of the formulations. In vivo biodistribution studies emphasized the influence of formulations as well as the type of excipients on biodistribution profiles of the ON. Subsequently, we suggest that the highlighted impact of tested excipients would potentially assist in formulation development to deliver ON therapeutics in pre-clinical and clinical settings.

7.
Bioorg Med Chem Lett ; 29(2): 160-163, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30551900

RESUMEN

The effect of 2'-O-(N-methylcarbamoyl)ethyl (MCE) modification on splice-switching oligonucleotides (SSO) was systematically evaluated. The incorporation of five MCE nucleotides at the 5'-termini of SSOs effectively improved the splice switching effect. In addition, the incorporation of 2'-O-(N-methylcarbamoylethyl)-5-methyl-2-thiouridine (s2TMCE), a duplex-stabilizing nucleotide with an MCE modification, into SSOs further improved splice switching. These SSOs may be useful for the treatment of genetic diseases associated with splicing errors.


Asunto(s)
Oligonucleótidos/química , Tiouridina/química , Estructura Molecular , Tiouridina/agonistas , Tiouridina/síntesis química
8.
Cancers (Basel) ; 10(11)2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463359

RESUMEN

More than 95% of the 20,000 to 25,000 transcribed human genes undergo alternative RNA splicing, which increases the diversity of the proteome. Isoforms derived from the same gene can have distinct and, in some cases, opposing functions. Accumulating evidence suggests that aberrant RNA splicing is a common and driving event in cancer development and progression. Moreover, aberrant splicing events conferring drug/therapy resistance in cancer is far more common than previously envisioned. In this review, aberrant splicing events in cancer-associated genes, namely BCL2L1, FAS, HRAS, CD44, Cyclin D1, CASP2, TMPRSS2-ERG, FGFR2, VEGF, AR and KLF6, will be discussed. Also highlighted are the functional consequences of aberrant splice variants (BCR-Abl35INS, BIM-γ, IK6, p61 BRAF V600E, CD19-∆2, AR-V7 and PIK3CD-S) in promoting resistance to cancer targeted therapy or immunotherapy. To overcome drug resistance, we discuss opportunities for developing novel strategies to specifically target the aberrant splice variants or splicing machinery that generates the splice variants. Therapeutic approaches include the development of splice variant-specific siRNAs, splice switching antisense oligonucleotides, and small molecule inhibitors targeting splicing factors, splicing factor kinases or the aberrant oncogenic protein isoforms.

9.
Methods Mol Biol ; 1828: 395-411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30171556

RESUMEN

Antisense oligonucleotide-mediated splicing modulation is an attractive strategy for treating genetic disorders. In 2016, two splice-switching oligonucleotides (SSOs) were approved by the FDA. To date, various types of novel artificial nucleic acids have been developed, and their potential for splicing modulations has been demonstrated. To apply these novel chemistries to SSOs, it is necessary to determine the appropriate design for each artificial nucleic acid such as the length of the SSO and number of modifications. In this protocol, we focus on SSOs modified with 2'-O,4'-methylene-bridged nucleic acid (2',4'-BNA)/locked nucleic acid (LNA), which is an artificial nucleic acid that shows extremely high binding affinity to target RNA strands. We describe our typical protocol for the optimization of 2',4'-BNA-based SSOs.


Asunto(s)
Regulación de la Expresión Génica , Oligonucleótidos/genética , Empalme del ARN , Línea Celular , Exones , Expresión Génica , Marcación de Gen , Oligonucleótidos/administración & dosificación , Oligonucleótidos/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
10.
Nucleic Acid Ther ; 27(3): 130-143, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28118087

RESUMEN

Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood-brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141-150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases.


Asunto(s)
Apolipoproteínas E/farmacocinética , Morfolinos/farmacología , Morfolinos/farmacocinética , Atrofia Muscular Espinal/tratamiento farmacológico , Péptidos/farmacocinética , Animales , Animales Recién Nacidos , Apolipoproteínas E/síntesis química , Apolipoproteínas E/química , Biomarcadores/sangre , Barrera Hematoencefálica/química , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Exones , Fibroblastos/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Riñón/química , Ratones , Morfolinos/química , Morfolinos/uso terapéutico , Nanoconjugados/análisis , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Péptidos/síntesis química , Péptidos/química , Fenotipo , Músculo Cuádriceps/química , Proteína 2 para la Supervivencia de la Neurona Motora/efectos de los fármacos
11.
RNA Biol ; 14(5): 651-668, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27415589

RESUMEN

mRNA is an attractive drug target for therapeutic interventions. In this review we highlight the current state, clinical trials, and developments in antisense therapy, including the classical approaches like RNaseH-dependent oligomers, splice-switching oligomers, aptamers, and therapeutic RNA interference. Furthermore, we provide an overview on emerging concepts for using RNA in therapeutic settings including protein replacement by in-vitro-transcribed mRNAs, mRNA as vaccines and anti-allergic drugs. Finally, we give a brief outlook on early-stage RNA repair approaches that apply endogenous or engineered proteins in combination with short RNAs or chemically stabilized oligomers for the re-programming of point mutations, RNA modifications, and frame shift mutations directly on the endogenous mRNA.


Asunto(s)
Enfermedades Genéticas Congénitas/terapia , Estabilidad del ARN , ARN sin Sentido/uso terapéutico , Tratamiento con ARN de Interferencia , Ribonucleasa H/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Ensayos Clínicos como Asunto , Descubrimiento de Drogas , Humanos , Oligonucleótidos Antisentido/uso terapéutico , Edición de ARN , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Mol Genet Metab ; 119(3): 258-269, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27595546

RESUMEN

Fabry disease is an X-linked recessive inborn disorder of the glycosphingolipid metabolism, caused by total or partial deficiency of the lysosomal α-galactosidase A enzyme due to mutations in the GLA gene. The prevalent c.639+919 G>A mutation in GLA leads to pathogenic insertion of a 57bp pseudoexon sequence from intron 4, which is responsible for the cardiac variant phenotype. In this study we investigate the splicing regulatory mechanism leading to GLA pseudoexon activation. Splicing analysis of GLA minigenes revealed that pseudoexon activation is influenced by cell-type. We demonstrate that the wild-type sequence harbors an hnRNP A1 and hnRNP A2/B1-binding exonic splicing silencer (ESS) overlapping the 5'splice site (5'ss) that prevents pseudoexon inclusion. The c.639+919 G>A mutation disrupts this ESS allowing U1 snRNP recognition of the 5'ss. We show that the wild-type GLA 5'ss motif with the ESS is also able to inhibit inclusion of an unrelated pseudoexon in the FGB gene, and that also in the FGB context inactivation of the ESS by the c.639+919 G>A mutation causes pseudoexon activation, underscoring the universal nature of the ESS. Finally, we demonstrate that splice switching oligonucleotide (SSO) mediated blocking of the pseudoexon 3'ss and 5'ss effectively restores normal GLA splicing. This indicates that SSO based splicing correction may be a therapeutic alternative in the treatment of Fabry disease.


Asunto(s)
Enfermedad de Fabry/genética , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , alfa-Galactosidasa/genética , Exones/genética , Enfermedad de Fabry/patología , Células HeLa , Humanos , Intrones , Mutación , Sitios de Empalme de ARN , Empalme del ARN/genética , ARN Mensajero/genética , Elementos Silenciadores Transcripcionales/genética
13.
Proc Natl Acad Sci U S A ; 113(39): 10962-7, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621445

RESUMEN

The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos/uso terapéutico , Péptidos/química , Envejecimiento , Alelos , Secuencia de Aminoácidos , Biomarcadores/sangre , Línea Celular , Humanos , Movimiento , Atrofia Muscular Espinal/sangre , Atrofia Muscular Espinal/patología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacología , Fenotipo , Empalme del ARN/genética , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA