Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 890
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38956275

RESUMEN

BACKGROUND & OBJECTIVE: Disposable face masks are a primary protective measure against the adverse health effects of exposure to infectious and toxic aerosols such as airborne viruses and particulate air pollutants. While the fit of high efficiency respirators is regulated in occupational settings, relatively little is known about the fitted filtration efficiencies of ear loop style face masks worn by the public. METHODS: We measured the variation in fitted filtration efficiency (FFE) of four commonly worn disposable face masks, in a cohort of healthy adult participants (N = 100, 50% female, 50% male, average age = 32.3 ± 9.2 years, average BMI = 25.5 ± 3.4) using the U.S. Occupational Safety and Health Administration Quantitative Fit Test, for an N95 (respirator), KN95, surgical, and KF94 masks. The latter three ear loop style masks were additionally tested in a clip-modified condition, tightened using a plastic clip to centrally fasten loops in the back of the head. RESULTS: The findings show that sex is a major determinant of the FFE of KN95, surgical, and KF94 masks. On average, males had an 11% higher FFE relative to females, at baseline testing. We show that a simple modification using an ear loop clip, results in improvements in the average FFE for females but provides comparatively minor changes for males. On average, females had a 20% increased FFE when a clip was worn behind the head, relative to a 6% increase for males. IMPACT: The efficacy of a disposable face mask as protection against air contaminants depends on the efficiency of the mask materials and how well it fits the wearer. We report that the sex of the wearer is a major determinant of the baseline fitted filtration efficiency (FFE) of commonly available ear loop style face masks. In addition, we show that a simple fit modifier, an ear loop clip fastened behind the head, substantially improves baseline FFE for females but produces only minor changes for males. These findings have significant public health implications for the use of face masks as a protective intervention against inhalational exposure to airborne contaminants.

2.
New Phytol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982706

RESUMEN

Ecologists are being challenged to predict how ecosystems will respond to climate changes. According to the Multi-Colored World (MCW) hypothesis, climate impacts may not manifest because consumers such as fire and herbivory can override the influence of climate on ecosystem state. One MCW interpretation is that climate determinism fails because alternative ecosystem states (AES) are possible at some locations in climate space. We evaluated theoretical and empirical evidence for the proposition that forest and savanna are AES in Africa. We found that maps which infer where AES zones are located were contradictory. Moreover, data from longitudinal and experimental studies provide inconclusive evidence for AES. That is, although the forest-savanna AES proposition is theoretically sound, the existing evidence is not yet convincing. We conclude by making the case that the AES proposition has such fundamental consequences for designing management actions to mitigate and adapt to climate change in the savanna-forest domain that it needs a more robust evidence base before it is used to prescribe management actions.

3.
Glob Chang Biol ; 30(7): e17389, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984506

RESUMEN

Freshwater ecosystems host disproportionately high biodiversity and provide unique ecosystem services, yet they are being degraded at an alarming rate. Fires, which are becoming increasingly frequent and intense due to global change, can affect these ecosystems in many ways, but this relationship is not fully understood. We conducted a systematic review to characterize the literature on the effects of fires on stream ecosystems and found that (1) abiotic indicators were more commonly investigated than biotic ones, (2) most previous research was conducted in North America and in the temperate evergreen forest biome, (3) following a control-impact (CI) or before-after (BA) design, (4) predominantly assessing wildfires as opposed to prescribed fires, (5) in small headwater streams, and (6) with a focus on structural and not functional biological indicators. After quantitatively analyzing previous research, we detected great variability in responses, with increases, decreases, and no changes being reported for most indicators (e.g., macroinvertebrate richness, fish density, algal biomass, and leaf decomposition). We shed light on these seemingly contradicting results by showing that the presence of extreme hydrological post-fire events, the time lag between fire and sampling, and whether the riparian forest burned or not influenced the outcome of previous research. Results suggest that although wildfires and the following hydrological events can have dramatic impacts in the short term, most biological endpoints recover within 5-10 years, and that detrimental effects are minimal in the case of prescribed fires. We also detected that no effects were more often reported by BACI studies than by CI or BA studies, raising the question of whether this research field may be biased by the inherent limitations of CI and BA designs. Finally, we make recommendations to help advance this field of research and guide future integrated fire management that includes the protection of freshwater ecosystems.


Asunto(s)
Ecosistema , Incendios , Ríos , Biodiversidad , Incendios Forestales , Conservación de los Recursos Naturales , Animales
4.
Environ Res Commun ; 6(7): 075001, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38974835

RESUMEN

Background. Wildfire smoke events are increasing in frequency and intensity due to climate change. Children are especially vulnerable to health effects even at moderate smoke levels. However, it is unclear how parents respond to Air Quality Indices (AQIs) frequently used by agencies to communicate air pollution health risks. Methods. In an experiment (3 × 2 × 2 factorial design), 2,100 parents were randomly assigned to view one of twelve adapted AQI infographics that varied by visual (table, line, gauge), index type (AQI [0-500], AQHI [1-11+]), and risk level (moderate, high). Participants were told to imagine encountering the infographic in a short-term exposure scenario. They reported worry about wildfire smoke, intentions to take risk-mitigating actions (e.g., air purifier use), and support for various exposure reduction policies. Subsequently, participants were told to imagine encountering the same infographic daily during a school week in a long-term exposure scenario and again reported worry, action intentions, and policy support. Results. Parents' responses significantly differentiated between risk levels that both pose a threat to children's health; worry and action intentions were much higher in the high-risk group than the moderate-risk group in both short-exposure (F = 748.68 p<.001; F = 411.59, p<.001) and long-exposure scenarios (F = 470.51, p<.001; F = 212.01, p<.001). However, in the short-exposure scenario, when shown the AQHI [1-11+] with either the line or gauge visuals, parents' action intentions were more similar between moderate- and high-risk level groups (3-way interaction, F = 6.03, p = .002). Conclusions. These results suggest some index formats such as the AQHI-rather than the AQI-may better attune parents to moderate levels of wildfire smoke being dangerous to children's health. Our research offers insights for agencies and officials seeking to improve current public education efforts during wildfire smoke events and speaks to the critical need to educate parents and help them act short-term and long-term to protect children's health.

5.
Environ Sci Technol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984996

RESUMEN

The global increase in wildfires, primarily driven by climate change, significantly affects air quality and health. Wildfire-emitted particulate matter (WFPM) is linked to adverse health effects, yet the toxicological mechanisms are not fully understood given its physicochemical complexity and the lack of spatiotemporal exposure data. This study focuses on the physicochemical characterization of WFPM from a Canadian wildfire in June 2023, which affected over 100 million people in the US Northeast, particularly around New Jersey/New York. Aerosol systems were deployed to characterize WFPM during the 3 day event, revealing unprecedented mass concentrations mainly in the WFPM0.1 and WFPM0.1-2.5 size fractions. Peak WFPM2.5 concentrations reached 317 µg/m3, nearly 10 times the National Ambient Air Quality Standard (NAAQS) 24 h average limit. Chemical analysis showed a high organic-to-total carbon ratio (96%), consistent with brown carbon wildfires nanoparticles. Large concentrations of high-molecular-weight PAHs were found predominantly bound to WFPM0.1, with retene, a molecular marker of biomass burning and a known teratogen, being the most abundant (>70%). Computational modeling estimated a total lung deposition of 9.15 mg over 72 h, highlighting the health risks of WFPM, particularly due to its long-distance travel capability and impact on densely populated areas.

7.
CHEST Pulm ; 2(2)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38993972

RESUMEN

BACKGROUND: Short-term increases in air pollution are associated with poor asthma and COPD outcomes. Short-term elevations in fine particulate matter (PM2.5) due to wildfire smoke are becoming more common. RESEARCH QUESTION: Are short-term increases in PM2.5 and ozone in wildfire season and in winter inversion season associated with a composite of emergency or inpatient hospitalization for asthma and COPD? STUDY DESIGN AND METHODS: Case-crossover analyses evaluated 63,976 and 18,514 patients hospitalized for primary discharge diagnoses of asthma and COPD, respectively, between January 1999 and March 2022. Patients resided on Utah's Wasatch Front where PM2.5 and ozone were measured by Environmental Protection Agency-based monitors. ORs were calculated using Poisson regression adjusted for weather variables. RESULTS: Asthma risk increased on the same day that PM2.5 increased during wildfire season (OR, 1.057 per + 10 µg/m3; 95% CI, 1.019-1.097; P = .003) and winter inversions (OR, 1.023 per +10 µg/m3; 95% CI, 1.010-1.037; P = .0004). Risk decreased after 1 week, but during wildfire season risk rebounded at a 4-week lag (OR, 1.098 per +10 µg/m3; 95% CI, 1.033-1.167). Asthma risk for adults during wildfire season was highest in the first 3 days after PM2.5 increases, but for children, the highest risk was delayed by 3 to 4 weeks. PM2.5 exposure was weakly associated with COPD hospitalization. Ozone exposure was not associated with elevated risks. INTERPRETATION: In a large urban population, short-term increases in PM2.5 during wildfire season were associated with asthma hospitalization, and the effect sizes were greater than for PM2.5 during inversion season.

8.
BMC Public Health ; 24(1): 1915, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014350

RESUMEN

BACKGROUND: Exposure to climate change events like wildfires can lead to health and mental health problems. While conceptual frameworks have been hypothesized describing the potential relationship between disaster exposure and substance use, the association remains under-researched and unquantified. METHODS: We constructed a quantitative portrayal of one proposed conceptual framework that focuses on the intermediary role of anxiety. We used the Monte Carlo simulation to estimate the impact of wildfire exposure on opioid misuse outcomes through increased anxiety. We searched for and extracted prior empirical evidence on the associations between wildfire anxiety and anxiety-opioid misuse. Three scenarios were devised: in S1 the impact of wildfire on opioid misuse was limited to increasing anxiety incidence; in S2 we also considered the additive role of altered anxiety phenotype; and in S3 we further considered the role of increased opioid-related consequences of pre-existing anxiety due to wildfire exposure. RESULTS: Models show that the prevalence of opioid misuse post-wildfire may rise to 6.0%-7.2% from a baseline of 5.3%. In S1, the opioid misuse prevalence ratio was 1.12 (95% uncertainty interval [UI]: 1.00 - 1.27). The two exploratory scenarios, with less stringent assumptions, yielded prevalence ratios of 1.23 (95% UI: 1.00 - 1.51) and 1.34 (95% UI: 1.11 - 1.63). CONCLUSIONS: Our modeling study suggests that exposure to wildfires may elevate opioid misuse through increasing anxiety incidence and severity. This can lead to substantial health burdens, possibly beyond the duration of the wildfire event, which may offset recent gains in opioid misuse prevention.


Asunto(s)
Ansiedad , Trastornos Relacionados con Opioides , Incendios Forestales , Humanos , Estados Unidos/epidemiología , Ansiedad/epidemiología , Prevalencia , Adulto Joven , Trastornos Relacionados con Opioides/epidemiología , Trastornos Relacionados con Opioides/psicología , Método de Montecarlo , Masculino , Femenino , Adolescente , Adulto
9.
Ecol Econ ; 2242024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39005240

RESUMEN

A significant cost of wildfires is the exposure of local and regional populations to air pollution from smoke, which can travel hundreds of miles from the source fire and is associated with significant negative health consequences. Wildfires are increasing in frequency and intensity in the United States, driven by historic fire management approaches and global climate change. These influences will take many decades or longer to reverse, so the main opportunities for mitigating health effects involve minimizing human exposure through changes in behavior or infrastructure. One key recommendation for reducing pollution exposures during wildfire smoke events is to limit time and physical activity outdoors, but there is limited evidence on the extent to which people make this change. We estimate how use of parks and playgrounds changes with air quality during wildfire season in the northwest United States. We find small reductions in park and playground visits on moderately polluted days, and large reductions, to 50-60% of baseline visits, when pollution levels are high. Disaggregating results by neighborhood characteristics, we find a significantly greater behavioral response to moderate levels of air pollution in neighborhoods with higher socio-economic status, although responses to high levels of pollution are similar across neighborhood types.

10.
Sci Bull (Beijing) ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38910108

RESUMEN

Wildfires over permafrost put perennially frozen carbon at risk. However, wildfire emissions from biomass burning over the diverse range of permafrost regions and their share in global wildfire emissions have not been revealed. The results showed a dramatic increase in wildfire carbon emissions from permafrost regions over the period 1997-2021. The share of permafrost in global wildfire CO2 emissions increased from 2.42% in 1997 to 20.86% in 2021. Accelerating wildfire emissions from continuous permafrost region is the single largest contributor to increased emissions in northern permafrost regions. Fire-induced emissions from 2019 to 2021 alone accounted for approximately 40% of the 25-year total CO2 emissions from continuous permafrost regions. The rise in wildfire emissions from continuous permafrost regions is explained by desiccation within a 5-10 cm soil depth, where wildfires combust belowground fuel. These findings highlight the acceleration of fire-induced carbon emissions from continuous permafrost regions, which disturb the organic carbon stock and accelerate the positive feedback between permafrost degradation and climate warming, thus stimulating permafrost towards a climatic tipping point.

11.
Sci Total Environ ; 946: 174197, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914336

RESUMEN

The 2022 wildfires in New Mexico, United States, were unparalleled compared to past wildfires in the state in both their scale and intensity, resulting in poor air quality and a catastrophic loss of habitat and livelihood. Among all wildfires in New Mexico in 2022, six wildfires were selected for our study based on the size of the burn area and their proximity to populated areas. These fires accounted for approximately 90 % of the total burn area in New Mexico in 2022. We used a regional chemical transport model and data-fusion technique to quantify the contribution of these six wildfires (April 6 to August 22) on particulate matter (PM2.5: diameter ≤ 2.5 µm) and ozone (O3) concentrations, as well as the associated health impacts from short-term exposure. We estimated that these six wildfires emitted 152 thousand tons of PM2.5 and 287 thousand tons of volatile organic compounds to the atmosphere. We estimated that the average daily wildfire smoke PM2.5 across New Mexico was 0.3 µg/m3, though 1 h maximum exceeded 120 µg/m3 near Santa Fe. Average wildfire smoke maximum daily average 8-h O3 (MDA8-O3) contribution was 0.2 ppb during the study period over New Mexico. However, over the state 1 h maximum smoke O3 exceeded 60 ppb in some locations near Santa Fe. Estimated all-cause excess mortality attributable to short term exposure to wildfire PM2.5 and MDA8-O3 from these six wildfires were 18 (95 % Confidence Interval (CI), 15-21) and 4 (95 % CI: 3-6) deaths. Additionally, we estimate that wildfire PM2.5 was responsible for 171 (95 %: 124-217) excess cases of asthma emergency department visits. Our findings underscore the impact of wildfires on air quality and human health risks, which are anticipated to intensify with global warming, even as local anthropogenic emissions decline.

12.
Insects ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921135

RESUMEN

Fires can significantly impact forest ecosystems. However, studies on the effects of fires on insect communities in post-fire plots in natural forests are rare. This study presents an analysis of the Coleoptera fauna in the forests of the Mordovia State Nature Reserve (European Russia) in 2022 and 2023 after a fire. Insects were sampled from burned plots (9) in 2010 and 2021, as well as unburned (control) plots (2), and alpha diversity was compared. After processing the material, we examined a total of 12,218 Coleoptera specimens from 38 families and identified 194 species. The families Nitidulidae, Cerambycidae, Elateridae, and Scarabaeidae were the most abundant across all plots. Cerambycidae, Elateridae, Nitidulidae, Staphylinidae, Coccinellidae, and Scarabaeidae exhibited the greatest species diversity. In total, 17 species were found on all plots, including Cetonia aurata, Protaetia cuprea volhyniensis, Trogoderma glabrum, Carpophilus hemipterus, Epuraea biguttata, Glischrochilus grandis, Glischrochilus hortensis, Glischrochilus quadripunctatus, Soronia grisea, Pediacus depressus, Chrysanthia geniculata, Anastrangalia reyi, Leptura quadrifasciata, Leptura thoracica, Lepturalia nigripes, Rhagium mordax, and Anisandrus dispar. Only five species exhibited preferences for certain plots. Maximum abundance and species diversity were observed on unburned (control) plots. The plots where fires occurred in 2010 and 2021 had the lowest total abundance values for Coleoptera. These fires destroyed almost all potential sites for beetle settlement, feeding, breeding, and shelter. Traps recorded a higher abundance of Coleoptera in the first year after fires compared to the second year. The Coleoptera fauna showed the greatest similarity on the control plots.

13.
Glob Chang Biol ; 30(6): e17367, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840430

RESUMEN

Wildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under-recognized. We introduce the concept of the lake smoke-day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke-day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke-days a year, with 89.6% of lakes receiving over 30 lake smoke-days, and lakes in some regions experiencing up to 4 months of cumulative smoke-days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.


Asunto(s)
Ecosistema , Lagos , Humo , Incendios Forestales , Humo/análisis , América del Norte , Monitoreo del Ambiente
14.
Sci Rep ; 14(1): 12611, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824170

RESUMEN

Wildfires are uncontrolled fires fuelled by dry conditions, high winds, and flammable materials that profoundly impact vegetation, leading to significant consequences including noteworthy changes to ecosystems. In this study, we provide a novel methodology to understand and evaluate post-fire effects on vegetation. In regions affected by wildfires, earth-observation data from various satellite sources can be vital in monitoring vegetation and assessing its impact. These effects can be understood by detecting vegetation change over the years using a novel unsupervised method termed Deep Embedded Clustering (DEC), which enables us to classify regions based on whether there has been a change in vegetation after the fire. Our model achieves an impressive accuracy of 96.17%. Appropriate vegetation indices can be used to evaluate the evolution of vegetation patterns over the years; for this study, we utilized Enhanced Vegetation Index (EVI) based trend analysis showing the greening fraction, which ranges from 0.1 to 22.4 km2 while the browning fraction ranges from 0.1 to 18.1 km2 over the years. Vegetation recovery maps can be created to assess re-vegetation in regions affected by the fire, which is performed via a deep learning-based unsupervised method, Adaptive Generative Adversarial Neural Network Model (AdaptiGAN) on post-fire data collected from various regions affected by wildfire with a training error of 0.075 proving its capability. Based on the results obtained from the study, our approach tends to have notable merits when compared to pre-existing works.

15.
Glob Chang Biol ; 30(6): e17363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864471

RESUMEN

Recently burned boreal forests have lower aboveground fuel loads, generating a negative feedback to subsequent wildfires. Despite this feedback, short-interval reburns (≤20 years between fires) are possible under extreme weather conditions. Reburns have consequences for ecosystem recovery, leading to enduring vegetation change. In this study, we characterize the strength of the fire-fuel feedback in recently burned Canadian boreal forests and the weather conditions that overwhelm resistance to fire spread in recently burned areas. We used a dataset of daily fire spread for thousands of large boreal fires, interpolated from remotely sensed thermal anomalies to which we associated local weather from ERA5-Land for each day of a fire's duration. We classified days with >3 ha of fire growth as spread days and defined burned pixels overlapping a fire perimeter ≤20 years old as short-interval reburns. Results of a logistic regression showed that the odds of fire spread in recently burned areas were ~50% lower than in long-interval fires; however, all Canadian boreal ecozones experienced short-interval reburning (1981-2021), with over 100,000 ha reburning annually. As fire weather conditions intensify, the resistance to fire spread declines, allowing fire to spread in recently burned areas. The weather associated with short-interval fire spread days was more extreme than the conditions during long-interval spread, but overall differences were modest (e.g. relative humidity 2.6% lower). The frequency of fire weather conducive to short-interval fire spread has significantly increased in the western boreal forest due to climate warming and drying (1981-2021). Our results suggest an ongoing degradation of fire-fuel feedbacks, which is likely to continue with climatic warming and drying.


Asunto(s)
Bosques , Tiempo (Meteorología) , Incendios Forestales , Incendios Forestales/prevención & control , Incendios Forestales/estadística & datos numéricos , Cambio Climático , Calentamiento Global
16.
J Clin Med ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892945

RESUMEN

Background: Wildfires have become increasingly prevalent in various regions, resulting in substantial environmental and psychological consequences that have garnered increasing attention. Objective: This study aims to examine the prevalence of likely Generalized Anxiety Disorder (GAD) and explore the determinants of likely GAD during the wildfires in Alberta and Nova Scotia. Methods: Data were collected online through a cross-sectional survey from 14 May-23 June 2023. Alberta and Nova Scotia participants self-subscribed to the program by texting 'HopeAB' or 'HopeNS' to a short code, respectively. The GAD-7-validated tool was used to collect information on likely GAD. Results: This study included 298 respondents while one hundred and twelve respondents lived in a region of Alberta/Nova Scotia affected by the wildfires (37.7%). The prevalence of likely GAD among the respondents was 41.9%. Respondents who lived in a region of Alberta/Nova Scotia recently impacted by the wildfires were twice as likely to experience GAD symptoms (OR = 2.4; 95% C.I. 1.3-4.3). Conclusions: The study's identification of a statistically significant relationship between residing in a wildfire-impacted region and likely GAD shows the association between environmental and psychological well-being. However, the relatively small sample size and self-reported assessment of GAD symptoms may limit the generalizability of the findings. Further research involving a larger sample size delving into potential predictors could facilitate strategies for mitigating the mental health consequences of natural disasters.

17.
Sci Rep ; 14(1): 12995, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844478

RESUMEN

Woodsmoke (WS) exposure is associated with significant health-related sequelae. Different populations can potentially exhibit varying susceptibility, based on endocrine phenotypes, to WS and investigating neurological impacts following inhaled WS is a growing area of research. In this study, a whole-body inhalation chamber was used to expose both male and female C57BL/6 mice (n = 8 per group) to either control filtered air (FA) or acute WS (0.861 ± 0.210 mg/m3) for 4 h/d for 2 days. Neuroinflammatory and lipid-based biological markers were then assessed. In a second set of studies, female mice were divided into two groups: one group was ovariectomized (OVX) to simulate an ovarian hormone-deficient state (surgical menopause), and the other underwent Sham surgery as controls, to mechanistically assess the impact of ovarian hormone presence on neuroinflammation following FA and acute WS exposure to simulate an acute wildfire episode. There was a statistically significant impact of sex (P ≤ 0.05) and statistically significant interactions between sex and treatment in IL-1ß, CXCL-1, TGF-ß, and IL-6 brain relative gene expression. Hippocampal and cortex genes also exhibited significant changes in acute WS-exposed Sham and OVX mice, particularly in TGF-ß (hippocampus) and CCL-2 and CXCL-1 (cortex). Cortex GFAP optical density (OD) showed a notable elevation in male mice exposed to acute WS, compared to the control FA. Sham and OVX females demonstrated differential GFAP expression, depending on brain region. Overall, targeted lipidomics in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serum and brain lipids demonstrated more significant changes between control FA and acute WS exposure in female mice, compared to males. In summary, male and female mice show distinct neuroinflammatory markers in response to acute WS exposure. Furthermore, ovarian hormone deficiency may impact the neuroinflammatory response following an acute WS event.


Asunto(s)
Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Animales , Femenino , Masculino , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Factores Sexuales , Ovariectomía/efectos adversos , Encéfalo/metabolismo , Ovario/metabolismo
18.
Landsc Urban Plan ; 2472024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38828213

RESUMEN

As the number of highly destructive wildfires grows, it is increasingly important to understand the long-term changes that occur to fire-affected places. Integrating approaches from social and biophysical science, we document two forms of neighborhood change following the 2018 Camp Fire in the United States, examining the more than 17,000 residential structures within the burn footprint. We found that mobile or motor homes, lower-value residences, and absentee owner residences had a significantly higher probability of being destroyed, providing evidence that housing stock filtering facilitated socially stratified patterns of physical damage. While the relationship between building value and destruction probability could be explained by measures of building density and distance to nearby roads, building type remained an independent predictor of structure loss that we could not fully explain by adding environmental covariates to our models. Using a geospatial machine learning technique, we then identified buildings that had been reconstructed within the burn footprint 20 months after the fire. We found that reconstructed buildings were more likely to have been owner-occupied prior to the fire and had higher average pre-fire property value, suggesting an emerging pattern of cost-burden gentrification. Our findings illustrate the importance of examining the built environment as a driver of socially uneven disaster impacts. Wildfire mitigation strategies are needed for mobile and motor home residents, renters, low-income residents, and dense neighborhoods.

19.
Environ Sci Technol Lett ; 11(3): 201-207, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38828437

RESUMEN

Climate change has contributed to increased frequency and intensity of wildfire. Studying its acute effects is limited due to unpredictable nature of wildfire occurrence, which necessitates readily deployable techniques to collect biospecimens. To identify biomarkers of wildfire's acute effects, we conducted this exploratory study in eight healthy campers (four men and four women) who self-collected nasal fluid, urine, saliva, and skin wipes at different time points before, during, and after 4-hour exposure to wood smoke in a camping event. Concentrations of black carbon in the air and polycyclic aromatic hydrocarbons in participants' silicone wristbands were significantly elevated during the exposure session. Among 30 arachidonic acid metabolites measured, lipoxygenase metabolites were more abundant in nasal fluid and saliva, whereas cyclooxygenase and non-enzymatic metabolites were more abundant in urine. We observed drastic increases, at 8 hours following the exposure, in urinary levels of PGE2 (398%) and 15-keto-PGF2α (191%) (FDR<10%), with greater increases in men (FDR < 0.01%) than in women. No significant changes were observed for other metabolites in urine or the other biospecimens. Our results suggest urinary PGE2 and 15-keto-PGF2α as promising biomarkers reflecting pathophysiologic (likely sex-dependent) changes induced by short-term exposure to wildfire.

20.
Environ Sci Technol ; 58(24): 10611-10622, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38836563

RESUMEN

Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.


Asunto(s)
Bosques , Nitrógeno , Fósforo , Suelo , Suelo/química , Nitrificación , Taiga , China , Incendios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...