Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.330
Filtrar
1.
Sci Rep ; 14(1): 19350, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169111

RESUMEN

Royal Jelly (RJ) is a natural substance produced by honeybees, serving not only as nutrition for bee brood and queens but also as a functional food due to its health-promoting properties. Despite its well-known broad-spectrum antibacterial activity, the precise molecular mechanism underlying its antibacterial action has remained elusive. In this study, we investigated the impact of RJ on the bacteria model MG1655 at its half-maximal inhibitory concentration, employing LC-MS/MS to analyze proteomic changes. The differentially expressed proteins were found to primarily contribute to the suppression of gene expression processes, specifically transcription and translation, disrupting nutrition and energy metabolism, and inducing oxidative stress. Notably, RJ treatment led to a marked inhibition of superoxide dismutase and catalase activities, resulting in heightened oxidative damage and lipid peroxidation. Furthermore, through a protein-protein interaction network analysis using the STRING database, we identified CRP and IHF as crucial host regulators responsive to RJ. These regulators were found to play a pivotal role in suppressing essential hub genes associated with energy production and antioxidant capabilities. Our findings significantly contribute to the understanding of RJ's antibacterial mechanism, highlighting its potential as a natural alternative to conventional antibiotics. The identification of CRP and IHF as central players highlights the intricate regulatory networks involved in RJ's action, offering new targets for developing innovative antimicrobial strategies.


Asunto(s)
Antibacterianos , Ácidos Grasos , Ácidos Grasos/metabolismo , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Abejas , Animales , Proteómica/métodos , Espectrometría de Masas en Tándem , Mapas de Interacción de Proteínas/efectos de los fármacos
2.
PLoS Pathog ; 20(8): e1012435, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39172749

RESUMEN

Entamoeba histolytica is a protozoan parasite belonging to the phylum Amoebozoa that causes amebiasis, a global public health problem. E. histolytica alternates its form between a proliferative trophozoite and a dormant cyst. Trophozoite proliferation is closely associated with amebiasis symptoms and pathogenesis whereas cysts transmit the disease. Drugs are available for clinical use; however, they have issues of adverse effects and dual targeting of disease symptoms and transmission remains to be improved. Development of new drugs is therefore urgently needed. An untargeted lipidomics analysis recently revealed structural uniqueness of the Entamoeba lipidome at different stages of the parasite's life cycle involving very long (26-30 carbons) and/or medium (8-12 carbons) acyl chains linked to glycerophospholipids and sphingolipids. Here, we investigated the physiology of this unique acyl chain diversity in Entamoeba, a non-photosynthetic protist. We characterized E. histolytica fatty acid elongases (EhFAEs), which are typically components of the fatty acid elongation cycle of photosynthetic protists and plants. An approach combining genetics and lipidomics revealed that EhFAEs are involved in the production of medium and very long acyl chains in E. histolytica. This approach also showed that the K3 group herbicides, flufenacet, cafenstrole, and fenoxasulfone, inhibited the production of very long acyl chains, thereby impairing Entamoeba trophozoite proliferation and cyst formation. Importantly, none of these three compounds showed toxicity to a human cell line; therefore, EhFAEs are reasonable targets for developing new anti-amebiasis drugs and these compounds are promising leads for such drugs. Interestingly, in the Amoebazoan lineage, gain and loss of the genes encoding two different types of fatty acid elongase have occurred during evolution, which may be relevant to parasite adaptation. Acyl chain diversity in lipids is therefore a unique and indispensable feature for parasitic adaptation of Entamoeba.


Asunto(s)
Entamoeba histolytica , Elongasas de Ácidos Grasos , Elongasas de Ácidos Grasos/metabolismo , Elongasas de Ácidos Grasos/genética , Humanos , Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Entamoeba/efectos de los fármacos , Entamoeba/metabolismo , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología , Entamebiasis/parasitología , Entamebiasis/tratamiento farmacológico , Entamebiasis/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/metabolismo , Antiprotozoarios/farmacología , Ácidos Grasos/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-39140846

RESUMEN

Two Gram-negative, obligately aerobic, rod-shaped bacteria, strains G1-22T and G1-23T, were isolated from the phycosphere of a marine brown alga. Both strains exhibited catalase- and oxidase-positive activities. Strain G1-22T displayed optimal growth at 25 °C, pH 8.0, and 2.0-3.0% (w/v) NaCl, while strain G1-23T exhibited optimal growth at 25 °C, pH 8.0, and 4.0% NaCl. Ubiquinone-8 was identified as the sole isoprenoid quinone in both strains. As major fatty acids (> 5%), strain G1-22T contained C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C12 : 1 3-OH, and C10 : 0 3-OH, while strain G1-23T contained C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), and C14 : 0. Phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol were major polar lipids in both strains. Strains G1-22T and G1-23T had DNA G+C contents of 40.2 and 38.9 mol%, respectively. Phylogenetic analyses based on 16S rRNA and genome sequences revealed that strains G1-22T and G1-23T formed distinct phylogenetic lineages within the genera Psychrosphaera and Paraglaciecola, respectively. Strain G1-22T showed closest relatedness to Psychrosphaera ytuae MTZ26T with 97.8% 16S rRNA gene sequence similarity, 70.2% average nucleotide identity (ANI), and a 21.5% digital DNA-DNA hybridization (dDDH) value, while strain G1-23T was most closely related to Paraglaciecola aquimarina KCTC 32108T with 95.6% 16S rRNA gene sequence similarity, 74.6% ANI, and a 20.1% dDDH value. Based on phenotypic and molecular characteristics, strains G1-22T and G1-23T are proposed to represent two novel species, namely Psychrosphaera algicola sp. nov. (type strain G1-22T=KACC 22486T=JCM 34971T) and Paraglaciecola algarum sp. nov. (type strain G1-23T=KACC 22490T=JCM 34972T), respectively. Additionally, based on the comparison of whole genome sequences, it is proposed that Pseudoalteromonas elyakovii, Pseudoalteromonas flavipulchra, and Pseudoalteromonas profundi are reclassified as later heterotypic synonyms of Pseudoalteromonas distincta, Pseudoalteromonas maricaloris, and Pseudoalteromonas gelatinilytica, respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Filogenia , Pseudoalteromonas , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Ubiquinona , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Pseudoalteromonas/genética , Pseudoalteromonas/clasificación , Pseudoalteromonas/aislamiento & purificación , Phaeophyceae/microbiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-39141420

RESUMEN

In Florida, angular leaf spot, caused by Xanthomonas fragariae, was the only known bacterial disease in strawberry, which is sporadic and affects the foliage and calyx. However, from the 2019-2020 to 2023-2024 Florida strawberry seasons, unusual bacterial-like symptoms were observed in commercial farms, with reports of up to 30 % disease incidence. Typical lesions were water-soaked and angular in early stages that later became necrotic with a circular-ellipsoidal purple halo, and consistently yielded colonies resembling Pseudomonas on culture media. Strains were pathogenic on strawberry, fluorescent, oxidase- and arginine-dihydrolase-negative, elicited a hypersensitive reaction on tobacco, and lacked pectolytic activity. Although phenotypic assays, such as fatty acid methyl profiles and Biolog protocols, placed the strains into the Pseudomonas group, there was a low similarity at the species level. Further analysis using 16S rRNA genes, housekeeping genes, and whole genome sequencing showed that the strains cluster into the Pseudomonas group but do not share more than 95 % average nucleotide identity compared to representative members. Therefore, the genomic and phenotypic analysis confirm that the strains causing bacterial spot in strawberry represent a new plant pathogenic bacterial species for which we propose the name Pseudomonas fragariae sp. nov. with 20-417T (17T=LMG 32456T=DSM 113340 T) as the type strain, in relation to Fragaria×ananassa, the plant species from which the pathogen was first isolated. Future work is needed to assess the epidemiology, cultivar susceptibility, chemical sensitivity, and disease management of this possible new emerging strawberry pathogen.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Fragaria , Filogenia , Enfermedades de las Plantas , Hojas de la Planta , Pseudomonas , ARN Ribosómico 16S , Fragaria/microbiología , ARN Ribosómico 16S/genética , Enfermedades de las Plantas/microbiología , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Pseudomonas/clasificación , ADN Bacteriano/genética , Hojas de la Planta/microbiología , Florida , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma , Ácidos Grasos , Genes Esenciales/genética
5.
Food Res Int ; 192: 114680, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147535

RESUMEN

Driven by the acknowledged health and functional properties of milk fat globules (MFGs), there is a growing interest to develop gentle methodologies for separation of fat from milk. In this study, separation of fat from raw milk and fractionation in streams containing MFGs of different size was achieved using a series of two silicon carbide ceramic membranes. A first step consisting of a 1.4 µm membrane aimed to concentrate the bulk of the fat, i.e. the larger MFGs (D[4,3] âˆ¼ 4 µm) followed by a 0.5 µm fractionation aimed to concentrate the residual milk fat in the permeate, i.e. fraction with the smaller MFGs (D[4,3] âˆ¼ 1.8-2.4 µm. The fat separation performance showed a yield of 92 % for the 1.4 µm membrane and 97 % for the 0.5 µm membrane. Both fat enriched retentates showed, by the confocal laser scanning microscopy, intact MFGs with limited damage in the MFG membrane. The fatty acid profile analysis and SAXS showed minor differences in fat acid composition and the crystallization behavior was related to differences in the fat content. The 0.5 µm permeate containing the smallest MFGs however showed larger aggregates and a trinomial particle size distribution, due to probably pore pressure induced coalescences. The series of silicon carbide membranes showed potential to concentrate some of MFGM proteins such as Periodic Schiff base 3/4 and cluster of differentiation 36 especially in the 0.5 µm retentates. A shift in casein to whey protein ratio from 80:20 (milk) to 50:50 was obtained in the final 0.5 µm permeate, which opens new opportunities for product development.


Asunto(s)
Compuestos Inorgánicos de Carbono , Glucolípidos , Glicoproteínas , Gotas Lipídicas , Leche , Compuestos de Silicona , Gotas Lipídicas/química , Compuestos de Silicona/química , Glucolípidos/química , Compuestos Inorgánicos de Carbono/química , Glicoproteínas/química , Glicoproteínas/análisis , Animales , Leche/química , Membranas Artificiales , Tamaño de la Partícula , Ácidos Grasos/análisis , Ácidos Grasos/química , Difracción de Rayos X , Sialoglicoproteínas , Dispersión del Ángulo Pequeño , Fraccionamiento Químico/métodos
6.
Food Res Int ; 192: 114683, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147537

RESUMEN

This work evaluated structured lipids (SLs) through chemical and enzymatic interesterification (CSLs and ESLs). Blends of soybean oil and peanut oil 1:1 wt% were used, with gradual addition of fully hydrogenated crambe to obtain a final behenic acid concentration of 6, 12, 18, and 24 %. Chemical catalysis used sodium methoxide (0.4 wt%) at 100 °C for 30 min, while enzymatic catalysis used Lipozyme TL IM (5 wt%) at 60 °C for 6 h. Major fatty acids identified were C16:0, C18:0, and C22:0. It was observed that with gradual increase of hard fat, the CSLs showed high concentrations of reaction intermediates, indicating further a steric hindrance, unlike ESLs. Increased hard fat also altered crystallization profile and triacylglycerols composition and ESLs showed lower solid fat, unlike CSLs. Both methods effectively produced SLs as an alternative to trans and palm fats, view to potential future applications in food products.


Asunto(s)
Aceite de Palma , Aceite de Soja , Aceite de Palma/química , Aceite de Soja/química , Esterificación , Aceite de Cacahuete/química , Ácidos Grasos trans/química , Ácidos Grasos trans/análisis , Ácidos Grasos/química , Lípidos/química , Triglicéridos/química , Manipulación de Alimentos/métodos , Lipasa/química , Lipasa/metabolismo , Hidrogenación
7.
Nat Commun ; 15(1): 7241, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174557

RESUMEN

Type 2 alveolar epithelial (AT2) cells of the lung are fundamental in regulating alveolar inflammation in response to injury. Impaired mitochondrial long-chain fatty acid ß-oxidation (mtLCFAO) in AT2 cells is assumed to aggravate alveolar inflammation in acute lung injury (ALI), yet the importance of mtLCFAO to AT2 cell function needs to be defined. Here we show that expression of carnitine palmitoyltransferase 1a (CPT1a), a mtLCFAO rate limiting enzyme, in AT2 cells is significantly decreased in acute respiratory distress syndrome (ARDS). In mice, Cpt1a deletion in AT2 cells impairs mtLCFAO without reducing ATP production and alters surfactant phospholipid abundance in the alveoli. Impairing mtLCFAO in AT2 cells via deleting either Cpt1a or Acadl (acyl-CoA dehydrogenase long chain) restricts alveolar inflammation in ALI by hindering the production of the neutrophilic chemokine CXCL2 from AT2 cells. This study thus highlights mtLCFAO as immunometabolism to injury in AT2 cells and suggests impaired mtLCFAO in AT2 cells as an anti-inflammatory response in ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Células Epiteliales Alveolares , Carnitina O-Palmitoiltransferasa , Ácidos Grasos , Mitocondrias , Oxidación-Reducción , Síndrome de Dificultad Respiratoria , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Mitocondrias/metabolismo , Células Epiteliales Alveolares/metabolismo , Ácidos Grasos/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/genética , Ratones , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/genética , Masculino , Humanos , Quimiocina CXCL2/metabolismo , Quimiocina CXCL2/genética , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Ratones Noqueados , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Inflamación/metabolismo , Inflamación/patología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Alveolos Pulmonares/inmunología , Adenosina Trifosfato/metabolismo , Neumonía/metabolismo , Neumonía/inmunología , Neumonía/patología , Neumonía/genética
8.
Cell Mol Life Sci ; 81(1): 367, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174697

RESUMEN

Hydroxylated fatty acids are important intermediates in lipid metabolism and signaling. Surprisingly, the metabolism of 4-hydroxy fatty acids remains largely unexplored. We found that both ACAD10 and ACAD11 unite two enzymatic activities to introduce these metabolites into mitochondrial and peroxisomal ß-oxidation, respectively. First, they phosphorylate 4-hydroxyacyl-CoAs via a kinase domain, followed by an elimination of the phosphate to form enoyl-CoAs catalyzed by an acyl-CoA dehydrogenase (ACAD) domain. Studies in knockout cell lines revealed that ACAD10 preferentially metabolizes shorter chain 4-hydroxy fatty acids than ACAD11 (i.e. 6 carbons versus 10 carbons). Yet, recombinant proteins showed comparable activity on the corresponding 4-hydroxyacyl-CoAs. This suggests that the localization of ACAD10 and ACAD11 to mitochondria and peroxisomes, respectively, might influence their physiological substrate spectrum. Interestingly, we observed that ACAD10 is cleaved internally during its maturation generating a C-terminal part consisting of the ACAD domain, and an N-terminal part comprising the kinase domain and a haloacid dehalogenase (HAD) domain. HAD domains often exhibit phosphatase activity, but negligible activity was observed in the case of ACAD10. Yet, inactivation of a presumptive key residue in this domain significantly increased the kinase activity, suggesting that this domain might have acquired a regulatory function to prevent accumulation of the phospho-hydroxyacyl-CoA intermediate. Taken together, our work reveals that 4-hydroxy fatty acids enter mitochondrial and peroxisomal fatty acid ß-oxidation via two enzymes with an overlapping substrate repertoire.


Asunto(s)
Ácidos Grasos , Oxidación-Reducción , Peroxisomas , Ácidos Grasos/metabolismo , Humanos , Peroxisomas/metabolismo , Mitocondrias/metabolismo , Acil-CoA Deshidrogenasas/metabolismo , Acil-CoA Deshidrogenasas/genética , Animales , Células HEK293
9.
Sci Rep ; 14(1): 18724, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134597

RESUMEN

ATP6AP2 knockout in the renal nephron impairs receptor-mediated endocytosis, increasing urinary albumin and glucose excretion and impairing weight gain. Nonesterified fatty acids (NEFA) in urine are bound to albumin and reabsorbed in the proximal tubule through receptor-mediated endocytosis by the megalin-cubilin complex. We hypothesized that ATP6AP2 knockout increases urinary NEFA excretion through a reduction in megalin. Ten-week-old male C57BL/6 mice with nephron specific inducible ATP6AP2 knockout and noninduced controls were fed either normal diet (ND 12% fat) or high fat diet (HFD 45% fat) for 6 months. ATP6AP2 knockout significantly increased urine albumin:creatinine ratio in both ND and HFD fed mice while normalized urine NEFA concentration increased 489% and 259% in ND and HFD knockout mice compared to respective controls. Knockout decreased renal cortical megalin mRNA by 47% on ND and 49% on HFD while megalin protein expression decreased by 36% and 44% respectively. At the same time, markers of mTOR activity were increased while autophagy was impaired. Our results indicate that nephron specific ATP6AP2 knockout increases urinary NEFA excretion in the setting of impaired receptor-mediated endocytosis. Further investigation should determine whether ATP6AP2 contributes to obesity related ectopic lipid deposition in the proximal tubule.


Asunto(s)
Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Nefronas , Animales , Masculino , Ratones , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Corteza Renal/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nefronas/metabolismo , Receptor de Prorenina , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
10.
Sci Rep ; 14(1): 19163, 2024 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160246

RESUMEN

The effect of silver nanoparticles (Ag NPs) obtained in the presence of royal jelly (RJ) on the growth of yeast Candida guilliermondii NP-4, on the total and H+-ATPase activity, as well as lipid peroxidation process and antioxidant enzymes (superoxide dismutase (SOD), catalase) activity was studied. It has been shown that RJ-mediated Ag NPs have a fungicide and fungistatic effects at the concentrations of 5.4 µg mL-1 and 27 µg mL-1, respectively. Under the influence of RJ-mediated Ag NPs, a decrease in total and H+-ATPase activity in yeast homogenates by ~ 90% and ~ 80% was observed, respectively. In yeast mitochondria total and H+-ATPase activity depression was detected by ~ 80% and ~ 90%, respectively. The amount of malondialdehyde in the Ag NPs exposed yeast homogenate increased ~ 60%, the catalase activity increased ~ 70%, and the SOD activity-~ 30%. The obtained data indicate that the use of RJ-mediated Ag NPs have a diverse range of influence on yeast cells. This approach may be important in the field of biomedical research aimed at evaluating the development of oxidative stress in cells. It may also contribute to a more comprehensive understanding of antimicrobial properties of RJ-mediated Ag NPs and help control the proliferation of pathogenic fungi.


Asunto(s)
Candida , Ácidos Grasos , Nanopartículas del Metal , Plata , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Candida/efectos de los fármacos , Candida/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Antifúngicos/farmacología , Antifúngicos/química , Pruebas de Sensibilidad Microbiana , Superóxido Dismutasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Estrés Oxidativo/efectos de los fármacos , Catalasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos
11.
Curr Microbiol ; 81(10): 318, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164555

RESUMEN

Two endophytic bacterial strains, designated S1-1-2 T and S1-1-8, were isolated from the leaves of a mangrove plant, Avicennia marina. The isolates were Gram-stain-negative, motile, rod-shaped bacteria with lateral flagella. Growth occurred at 4-41 °C, pH 4.0-11.0, and 0.5-25.0% NaCl. The predominant fatty acids of the novel strains were C18:1 ω6c/ω7c, C19:0 cyclo ω8c, and C16:0. The predominant respiratory quinone was Q-9. The DNA G + C contents of strains S1-1-2 T and S1-1-8 analyzed by genome sequences were 63.8%. Phylogenetic analysis based on 16S rRNA gene sequences obtained using sanger sequencing and whole-genome phylogenetic analysis revealed an affiliation between the two strains and the genus Salinicola in the class Gammaproteobacteria. Detailed genotypic, chemotaxonomic, and phenotypic data support the conclusion that these two strains should be described as a novel species in the genus Salinicola. Here, Salinicola avicenniae sp. nov. (type strain S1-1-2 T = LMG 32655 T = MCCC 1A19027T) is proposed.


Asunto(s)
Avicennia , Composición de Base , ADN Bacteriano , Gammaproteobacteria , Filogenia , ARN Ribosómico 16S , Avicennia/microbiología , ARN Ribosómico 16S/genética , China , ADN Bacteriano/genética , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Ácidos Grasos/análisis , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Hojas de la Planta/microbiología , Endófitos/genética , Endófitos/clasificación , Endófitos/aislamiento & purificación
12.
Artículo en Inglés | MEDLINE | ID: mdl-39120518

RESUMEN

Four Gram-stain-positive and two Gram-stain-negative bacterial strains, designated as W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T, were isolated from soil samples collected from the Republic of Korea. The 16S rRNA gene sequence analysis showed that strains W4T and FW7T belonged to the genus Microbacterium, strains TW48T and UW52T were affiliated to the genus Paenibacillus, strain PT-3T was related to the genus Flavobacterium, and strain RJY3T was associated with the genus Aquabacterium. The closest phylogenetic taxa to W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T were Microbacterium bovistercoris NEAU-LLET (97.7 %), Microbacterium protaetiae DFW100M-13T (97.9 %), Paenibacillus auburnensis JJ-7T (99.6 %), Paenibacillus allorhizosphaerae JJ-447T (95.7 %), Flavobacterium buctense T7T (97.1 %), and Aquabacterium terrae S2T (99.5 %), respectively. Average nucleotide identity and digital DNA-DNA hybridization values between the novel strains and related reference type strains were <95.0 % and <70.0 %, respectively. The major cellular fatty acid in strains W4T, FW7T TW48T, and UW52T was antiso-C15 : 0. Similarly, strain PT-3T revealed iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, and iso-C15 : 0 3-OH as its principal fatty acids. On the other hand, RJY3T exhibited summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and C12 : 0 as its predominant fatty acids. Overall, the polyphasic taxonomic data indicated that strains W4T, FW7T, TW48T, UW52T, PT-3T, and RJY3T represent novel species within the genera Microbacterium, Paenibacillus, Flavobacterium, and Aquabacterium. Accordingly, we propose the names Microbacterium humicola sp. nov., with the type strain W4T (=KCTC 49888T=NBRC 116001T), Microbacterium terrisoli sp. nov., with the type strain FW7T (=KCTC 49859T=NBRC 116000T), Paenibacillus pedocola sp. nov., with the type strain TW48T (=KCTC 43470T=NBRC 116017T), Paenibacillus silviterrae sp. nov., with the type strain UW52T (=KCTC 43477T=NBRC 116018T), Flavobacterium terrisoli sp. nov., with the type strain PT-3T (=KCTC 92106T=NBRC 116012T), and Aquabacterium humicola sp. nov., with the type strain RJY3T (=KCTC 92105T=NBRC 115831T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Flavobacterium , Microbacterium , Hibridación de Ácido Nucleico , Paenibacillus , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Paenibacillus/clasificación , Paenibacillus/genética , Paenibacillus/aislamiento & purificación , República de Corea , Flavobacterium/genética , Flavobacterium/clasificación , Flavobacterium/aislamiento & purificación , Microbacterium/genética
13.
Curr Microbiol ; 81(9): 291, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088066

RESUMEN

A novel Gram-stain-positive, aerobic, catalase-positive, oxidase-negative, non-motile, and rod-shaped bacterium with ibuprofen-degrading capacity, designated DM4T, was isolated from the sewage of a wastewater treatment plant (WWTP) in Guangzhou city, China. Strain DM4T grew optimally at 0% (w/v) NaCl, pH 5.0-7.0, and 30 °C, forming white colonies on trypticase soy agar. C18:1ω9c, C18:2ω9.12c and C15:1ω10c were the predominant fatty acids. Results of 16S rRNA gene alignment and phylogenetic analysis indicated that strain DM4T belonged to the genus Patulibacter, was closely related to Patulibacter medicamentivorans DSM 25692T (98.5%) and P. brassicae KCTC 39817T (98.1%). Strain DM4T had a genome size of 5.33Mbp, and the DNA G + C content was 75.0%. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridisation (dDDH) values between strain DM4T and P. medicamentivorans were 85.2%, 83.9%, and 29.0% respectively, while those between strain DM4T and P. brassicae were 78.5%, 71.3%, and 22.2%, respectively. Strain DM4T could significantly degrade ibuprofen by almost 80% after 84 h of incubation, and the degradation kinetics was well fitted with the first-order kinetics. Evidence from phenotypic, phylogenetic and chemotaxonomic analyses support that strain DM4T (= GDMCC 1.4574T = KCTC 59145T) represents a new species of the genus Patulibacter, for which the name Patulibacter defluvii sp. nov. is proposed.


Asunto(s)
Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Aguas Residuales , China , Aguas Residuales/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Aguas del Alcantarillado/microbiología , Análisis de Secuencia de ADN , Ibuprofeno
14.
Curr Microbiol ; 81(9): 293, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090416

RESUMEN

Hot springs are inhabited by specific microbial communities which are reservoirs of novel taxa. In this work strain 4228-RoLT was isolated from the Solnechny hot spring, Uzon Caldera, Kamchatka. Cells of the strain 4228-RoLT were Gram-negative rods forming multicellular filaments. The strain grew optimally at 60 °C and pH 7.0 and fermented various organic compounds including polysaccharides (microcrystalline cellulose, xylan, chitin, starch, dextrin, dextran, beta-glucan, galactomannan, glucomannan, mannan). Major fatty acids were iso-C17:0, C16:0, C18:0, C20:0, iso-C19:0, anteiso-C17:0 and C22:0. Genome of the strain was of 3.25 Mbp with GC content of 54.2%. Based on the whole genome comparisons and phylogenomic analysis the new isolate was affiliated to a novel species of Thermanaerothrix genus within Anaerolineae class of phylum Chloroflexota, for which the name T. solaris sp. nov. was proposed with 4228-RoLT (= VKM B-3776 T = UQM 41594 T = BIM B-2058 T) as the type strain. 114 CAZymes including 43 glycoside hydrolases were found to be encoded in the genome of strain 4228-RoLT. Cell-bound and extracellular enzymes of strain 4228-RoLT were active against starch, dextran, mannan, xylan and various kinds of celluloses, with the highest activity against beta-glucan. Altogether, growth experiments, enzymatic activities determination and genomic analysis suggested that T. solaris strain 4228-RoLT could serve as a source of glycosidases suitable for plant biomass hydrolysis.


Asunto(s)
Composición de Base , Manantiales de Aguas Termales , Filogenia , Manantiales de Aguas Termales/microbiología , Hidrólisis , Genoma Bacteriano , Ácidos Grasos/metabolismo , ARN Ribosómico 16S/genética , Polisacáridos/metabolismo , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
15.
Curr Microbiol ; 81(9): 298, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107520

RESUMEN

Pigments and other secondary metabolites originating from marine microbes have been a promising natural colorants and drugs for multifaceted applications. However, marine actinobacteria producing such natural molecules are least investigated in terms of their taxonomy, chemical diversity and applications in biomedical, textile, and food industries. In this study, sioxanthin pigment-producing Gram-positive actinobacteria, Micromonospora sp. strain SH-82 was isolated from a marine sponge, Scopalina hapalia, and its whole genome was analyzed. Strain SH-82is a prolific producer of diverse chemical molecules as it produced more compounds on A1 medium with different culture conditions. The genome size of SH-82 is 6.24 Mb (6,246,890 bp) carrying 23 identified biosynthetic gene clusters. A total of 5415 CDS, 60 tRNA, 9 rRNA, and 1 tmRNA are identified from SH-82 genome. The GC content (%) of whole genome was 71.6%. Strain SH-82 harbors genes encoding type I, type II, and type III polyketide synthases. Based on the multi-locus sequence analysis and fatty acid methyl ester (FAME) composition, strain SH-82 is confirmed as a novel species. The genetic information of Micromonospora sp. SH-82 has been deposited to NCBI under the BioProject ID PRJNA1087320, with corresponding identifiers in the Sequence Read Archive (SRA) as SAMN40439676 and the Genome accession as CP148049.


Asunto(s)
Composición de Base , Genoma Bacteriano , Micromonospora , Filogenia , Poríferos , Micromonospora/genética , Micromonospora/clasificación , Micromonospora/aislamiento & purificación , Micromonospora/metabolismo , Animales , Poríferos/microbiología , Familia de Multigenes , Xantófilas/metabolismo , Ácidos Grasos , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Tipificación de Secuencias Multilocus
16.
Vet Q ; 44(1): 1-8, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39118475

RESUMEN

Hemp (Cannabis sativa L.) is an annual plant belonging to the family of Cannabaceae with several varieties characterized by different fatty acid profile, content in flavonoids, polyphenols, and cannabinoid compounds. Hemp is mostly used in livestock nutrition as oil or as protein cake, but not as inflorescences. The aim of this study was to evaluate the effect of dietary hemp inflorescences on milk yield and composition in grazing dairy goats. Twenty Camosciata delle Alpi goats at their 3rd parity and with a mean body weight of 45.2 ± 2.0 kg, immediately after kidding, were equally allocated into two groups (G: Grazing and GH: grazing and hemp). For three months, all goats were fed on a permanent pasture and received 700/head/day of concentrate; diet of group GH was supplemented with 20 g/head/day of hemp inflorescences. Goats' body weight did not change during the trial. Individual milk yield was daily recorded and samples collected every 20 days for chemical composition and fatty acid profile analysis. No significant differences were found for milk yield and chemical composition. Caproic (C6:0) (1.80 vs. 1.74%; p < 0.01) and lauric acids (C12:0) were significantly higher in milk of group GH (4.83 vs. 4.32%; p < 0.01) as well as linoleic (C18:2) (2.04 vs. 1.93%; p < 0.05), adrenic acid (C22:4) (0.046 vs. 0.031%, p < 0.05), omega-6/omega-3 ratio (3.17 vs. 2.93, p < 0.05) and total conjugated linoleic acids (CLAs) (0.435 vs. 0.417%; p < 0.01). The results of this study suggest that the supplementation of grazing goats' diet with hemp inflorescences may enhance the milk nutritional characteristics by increasing its content of CLAs and other beneficial fatty acids.


Asunto(s)
Alimentación Animal , Cannabis , Dieta , Suplementos Dietéticos , Ácidos Grasos , Cabras , Lactancia , Leche , Animales , Cabras/fisiología , Cannabis/química , Leche/química , Femenino , Ácidos Grasos/análisis , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Lactancia/efectos de los fármacos , Dieta/veterinaria , Inflorescencia/química , Fenómenos Fisiológicos Nutricionales de los Animales
17.
Sci Rep ; 14(1): 18608, 2024 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127724

RESUMEN

This study spanned 6 years and 4 generations, involving the progressive crossbreeding of South African Kalahari Goat (SK) and Guizhou Black Goat (GB) over three generations, followed by cross fixation F3 with F1 in the fourth generation, accompanied by the use of molecular markers technology to select a high fertility population, resulting in the creation of a hybrid goat, BKF4 (11/16 SK lineage and 5/16 GB lineage). A comparative evaluation of the BKF4 hybrid breed and its parental breeds was conducted. Reproductive and production parameters of GB, SK, and BKF4 goat groups were monitored, including lambing rate (LR), survival rate (SR), daily weight gain at 3 months of age (DWG), and adult body weight (ABW) (n = 110, 106, 112 per group). In addition, dressing percentage (DP) (n = 12 per group) and analyses of amino acids (n = 8, 6, 10 per group) and fatty acids (n = 6 per group) were conducted to evaluate meat quality indicators. Results: (1) Reproductive and production performance: The index of LR reached 199%, significantly higher than GB and SK (p ≤ 0.001), with a SR of 95.0%, markedly higher than SK (p ≤ 0.001); DWG was 276.5 g, ABW reached 56.6 kg and with a dressing percentage (DP) of 54.5%, they are significantly surpassing GB (p ≤ 0.001). (2) Regarding meat quality: pH45-value and crude protein content (CP) increased, while intramuscular fat content increased compared to GB and ash content decreased. The amino acid composition was similar to GB, but the taste was more similar to SK. However, there were some negative impacts on fatty acid composition and functionality. (3) PCA analysis revealed that: BKF4 exhibited superior meat quality compared to GB and SK, influenced by two key factors contributing 83.49% and 16.51% to the explained variance, respectively. The key factors affecting meat quality include intramuscular fat (IMF), nutrient index (NI), PUFAs/MUFAs, n-6FAs, and drip loss (DL).


Asunto(s)
Cabras , Carne , Animales , Cabras/genética , Carne/análisis , Carne/normas , Masculino , Femenino , Hibridación Genética , Ácidos Grasos/metabolismo , Ácidos Grasos/análisis , Sudáfrica , Cruzamiento , Aminoácidos/análisis , Aminoácidos/metabolismo , Reproducción , Peso Corporal
18.
J Agric Food Chem ; 72(32): 18110-18120, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39093148

RESUMEN

Some consumers are replacing cow's milk with plant-based milk alternatives (PBMAs). The present study aimed to characterize the lipid profiles of cow's milk (n = 60) and PBMA types (soya, oat, rice, almond, coconut, and hazelnut; n = 10 per type). Significant differences were found in the fatty acid (FA) profiles of PBMAs and milk, particularly in FA diversity (15 FAs in PBMAs vs 54 FAs in milk) and the proportion of prime FA groups. The FA profile of coconut was dominated by saturated FAs (SFA), whereas monounsaturated FAs (MUFA) or polyunsaturated FAs (PUFA) were dominant in the remaining PBMA types. Cholesterol was not detected in any PBMA type. The FA profile of milk FAs was dominated by SFA; however, different individual SFA have varying health outcomes. Additionally, milk contains some FA groups with health-promoting properties, such as methyl-branched-chain FAs (BCFA) and conjugated linoleic acid (CLA), both of which are absent in PBMAs.


Asunto(s)
Ácidos Grasos , Sustitutos de la Leche , Leche , Animales , Leche/química , Bovinos , Ácidos Grasos/análisis , Ácidos Grasos/química , Sustitutos de la Leche/química , Avena/química , Corylus/química , Lípidos/análisis , Lípidos/química , Oryza/química , Cocos/química , Prunus dulcis/química , Glycine max/química , Femenino
19.
Curr Microbiol ; 81(10): 310, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152363

RESUMEN

A Gram-stain-negative, strictly aerobic, non-motile, rod-shaped, designated strain CAU 1642 T, was isolated from a Salicornia herbacea collected from a tidal flat in the Yellow Sea. Strain CAU 1642 T grew optimally at pH 8.0 and 30 °C. The highest 16S rRNA gene sequence similarity was 97.25%, with Pseudomarinomonas arenosa CAU 1598 T, and phylogenetic analysis indicated that strain CAU 1642 T belongs to the genus Pseudomarinomonas. The major cellular fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c and/or 10-methyl C16:0). Ubiquinone-8 was the major respiratory quinone. The draft genome of strain CAU 1642 T was 4.5 Mb, with 68.7 mol% of G + C content. The phylogenetic, phenotypic, and chemotaxonomic analysis data reveal strain CAU 1642 T to be of a novel genus in the family Lysobacteraceae, with the proposed name Pseudomarinomonas salicorniae sp. nov. with type strain CAU 1642 T (= KCTC 92084 T = MCCC 1K07085T).


Asunto(s)
Composición de Base , Chenopodiaceae , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Chenopodiaceae/microbiología , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Ácidos Grasos/química , ADN Bacteriano/genética , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Quinonas/análisis , Ubiquinona/química , Ubiquinona/análogos & derivados , Genoma Bacteriano
20.
Nat Commun ; 15(1): 6587, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097623

RESUMEN

Metabolic reprogramming, a hallmark of tumorigenesis, involves alterations in glucose and fatty acid metabolism. Here, we investigate the role of Carnitine palmitoyl transferase 1a (Cpt1a), a key enzyme in long-chain fatty acid (LCFA) oxidation, in ErbB2-driven breast cancers. In ErbB2+ breast cancer models, ablation of Cpt1a delays tumor onset, growth, and metastasis. However, Cpt1a-deficient cells exhibit increased glucose dependency that enables survival and eventual tumor progression. Consequently, these cells exhibit heightened oxidative stress and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Inhibiting Nrf2 or silencing its expression reduces proliferation and glucose consumption in Cpt1a-deficient cells. Combining the ketogenic diet, composed of LCFAs, or an anti-ErbB2 monoclonal antibody (mAb) with Cpt1a deficiency significantly perturbs tumor growth, enhances apoptosis, and reduces lung metastasis. Using an immunocompetent model, we show that Cpt1a inhibition promotes an antitumor immune microenvironment, thereby enhancing the efficacy of anti-ErbB2 mAbs. Our findings underscore the importance of targeting fatty acid oxidation alongside HER2-targeted therapies to combat resistance in HER2+ breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Carnitina O-Palmitoiltransferasa , Ácidos Grasos , Factor 2 Relacionado con NF-E2 , Oxidación-Reducción , Receptor ErbB-2 , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/antagonistas & inhibidores , Ácidos Grasos/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Microambiente Tumoral/efectos de los fármacos , Dieta Cetogénica , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glucosa/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA