Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.273
Filtrar
1.
Nutrients ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732529

RESUMEN

The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.


Asunto(s)
Inhibidores de la Angiogénesis , Aceite de Oliva , Fenoles , Alcohol Feniletílico , Aceite de Oliva/química , Humanos , Fenoles/farmacología , Inhibidores de la Angiogénesis/farmacología , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Dieta Mediterránea , Aterosclerosis/prevención & control , Aterosclerosis/tratamiento farmacológico , Monoterpenos Ciclopentánicos , Neoplasias/prevención & control , Neoplasias/tratamiento farmacológico , Catecoles/farmacología , Aldehídos/farmacología , Animales , Antineoplásicos/farmacología , Antiinflamatorios/farmacología
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732018

RESUMEN

Hydroxytyrosol (HT) is a bioactive olive oil phenol with beneficial effects in a number of pathological situations. We have previously demonstrated that an HT-enriched diet could serve as a beneficial therapeutic approach to attenuate ischemic-stroke-associated damage in mice. Our exploratory pilot study examined this effect in humans. Particularly, a nutritional supplement containing 15 mg of HT/day was administered to patients 24 h after the onset of stroke, for 45 days. Biochemical and oxidative-stress-related parameters, blood pressure levels, serum proteome, and neurological and functional outcomes were evaluated at 45 and 90 days and compared to a control group. The main findings were that the daily administration of HT after stroke could: (i) favor the decrease in the percentage of glycated hemoglobin and diastolic blood pressure, (ii) control the increase in nitric oxide and exert a plausible protective effect in oxidative stress, (iii) modulate the evolution of the serum proteome and, particularly, the expression of apolipoproteins, and (iv) be beneficial for certain neurological and functional outcomes. Although a larger trial is necessary, this study suggests that HT could be a beneficial nutritional complement in the management of human stroke.


Asunto(s)
Suplementos Dietéticos , Estrés Oxidativo , Alcohol Feniletílico , Accidente Cerebrovascular , Humanos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Masculino , Accidente Cerebrovascular/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Femenino , Anciano , Proyectos Piloto , Persona de Mediana Edad , Presión Sanguínea/efectos de los fármacos , Óxido Nítrico/metabolismo
3.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38721924

RESUMEN

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Cafeicos , Diálisis Peritoneal , Fibrosis Peritoneal , Alcohol Feniletílico , Ratas Sprague-Dawley , Sirtuina 1 , Animales , Fibrosis Peritoneal/etiología , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/prevención & control , Sirtuina 1/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Ratas , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Diálisis Peritoneal/efectos adversos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Peritoneo/patología , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Homeostasis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Soluciones para Diálisis
4.
Int J Food Microbiol ; 417: 110692, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38640817

RESUMEN

Previous investigations proved the potential of Saccharomyces cerevisiae MBELGA62 and Pichia kudriavzevii MBELGA61 as suitable biocontrolling agents against Aspergillus sp. through the production of soluble and volatile bioactive antifungal compounds. The present study delves into those finding by means of the identification of the volatile compounds produced by brewer's strains that demonstrated fungistatic and fungicidal effects against Aspergillus flavus and A. parasiticus when cultured in brewer's wort agar plates. Traditional brewer's yeasts such as S. cerevisiae MBELGA62 and Saccharomyces pastorianus SAFS235 synthetize volatiles that fully inhibited mycelial development for up to 9 days at 30 °C. The non-conventional brewer's strains P. kudriavzevii MBELGA61 and Meyerozyma guilliermondii MUS122 increased the lag phase by >100% and significantly reduced the fungal growth rate by 27.5-43.0% and 15.4-31.4%, respectively. In this context, 2-phenylethanol, 2-phenylethyl acetate and benzyl alcohol were identified as the main antifungal agents involved in Aspergillus sp.'s inhibition.


Asunto(s)
Antifúngicos , Aspergillus , Fermentación , Saccharomyces cerevisiae , Compuestos Orgánicos Volátiles , Aspergillus/efectos de los fármacos , Aspergillus/metabolismo , Aspergillus/crecimiento & desarrollo , Antifúngicos/farmacología , Compuestos Orgánicos Volátiles/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Pichia/metabolismo , Pichia/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/metabolismo
5.
Nutrients ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674835

RESUMEN

Inflammatory bowel disease (IBD) has attracted much attention worldwide due to its prevalence. In this study, the effect of a solid-in-oil-in-water (S/O/W) emulsion with Caffeic acid phenethyl ester (CAPE, a polyphenolic active ingredient in propolis) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice was evaluated. The results showed that CAPE-emulsion could significantly alleviate DSS-induced colitis through its effects on colon length, reduction in the disease activity index (DAI), and colon histopathology. The results of ELISA and Western blot analysis showed that CAPE-emulsion can down-regulate the excessive inflammatory cytokines in colon tissue and inhibit the expression of p65 in the NF-κB pathway. Furthermore, CAPE-emulsion promoted short-chain fatty acids production in DSS-induced colitis mice. High-throughput sequencing results revealed that CAPE-emulsion regulates the imbalance of gut microbiota by enhancing diversity, restoring the abundance of beneficial bacteria (such as Odoribacter), and suppressing the abundance of harmful bacteria (such as Afipia, Sphingomonas). The results of fecal metabolome showed that CAPE-emulsion restored the DSS-induced metabolic disorder by affecting metabolic pathways related to inflammation and cholesterol metabolism. These research results provide a scientific basis for the use of CPAE-emulsions for the development of functional foods for treating IBD.


Asunto(s)
Ácidos Cafeicos , Colitis , Emulsiones , Animales , Masculino , Ratones , Ácidos Cafeicos/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Colon/microbiología , Citocinas/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Emulsiones/química , Emulsiones/farmacología , Heces/microbiología , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Metaboloma/efectos de los fármacos , Ratones Endogámicos C57BL , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Transducción de Señal/efectos de los fármacos
6.
Food Funct ; 15(9): 5103-5117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38680105

RESUMEN

Hydroxytyrosol (HT), a phenolic extra-virgin olive oil compound used as a food supplement, has been recognized to protect liver function and alleviate stress-induced depressive-like behaviors. However, its protective effects against stress-induced liver injury (SLI) remain unknown. Here, the anti-SLI effect of HT was evaluated in mice with chronic unpredictable mild stress-induced SLI. Network pharmacology combined with molecular docking was used to clarify the underlying mechanism of action of HT against SLI, followed by experimental verification. The results showed that accompanying with the alleviation of HT on stress-induced depressive-like behaviors, HT was confirmed to exert the protective effects against SLI, as represented by reduced serum corticosterone (CORT), aspartate aminotransferase and alanine aminotransferase activities, as well as repair of liver structure, inhibition of oxidative homeostasis collapse, and inflammation reaction in the liver. Furthermore, core genes including histone deacetylase 1 and 2 (HDAC1/2), were identified as potential targets of HT in SLI based on bioinformatic screening and simulation. Consistently, HT significantly inhibited HDAC1/2 expression to maintain mitochondrial dysfunction in an autophagy-dependent manner, which was confirmed in a CORT-induced AML-12 cell injury and SLI mice models combined with small molecule inhibitors. We provide the first evidence that HT inhibits HDAC1/2 to induce autophagy in hepatocytes for maintaining mitochondrial dysfunction, thus preventing inflammation and oxidative stress for exerting an anti-SLI effect. This constitutes a novel therapeutic modality to synchronously prevent stress-induced depression-like behaviors and liver injury, supporting the advantaged therapeutic potential of HT.


Asunto(s)
Autofagia , Histona Desacetilasa 2 , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Animales , Ratones , Alcohol Feniletílico/farmacología , Autofagia/efectos de los fármacos , Masculino , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Ratones Endogámicos C57BL , Histona Desacetilasa 1/metabolismo , Simulación del Acoplamiento Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones
7.
Nutrients ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474755

RESUMEN

The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.


Asunto(s)
Enfermedades Cardiovasculares , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Própolis , Humanos , Lipopolisacáridos/farmacología , Interleucina-10 , Interferón-alfa , Própolis/farmacología , Cardiotónicos , Interleucina-6 , Alcohol Feniletílico/farmacología , Etanol , Ácidos Cafeicos/farmacología , Citocinas/metabolismo , Antiinflamatorios/farmacología
8.
Nutrients ; 16(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542729

RESUMEN

In this review, we explored the therapeutic potential of oleuropein (OLE) and hydroxytyrosol (HT) in the treatment of neuroblastoma (NB). NB is an extracranial tumour that predominantly affects children aged between 17 and 18 months. Recurrence and drug resistance have emerged as the biggest challenges when treating NB, leading to a crucial need for new therapeutic approaches. Food of the Mediterranean Diet (MD) presents several health benefits, including that of cancer treatment. In this review, we emphasised olive oil since it is one of the main liquid ingredients of the MD. OLE is the principal phenolic compound that constitutes olive oil and is hydrolysed to produce HT. Considering that tumour cells produce increased amounts of reactive oxygen species, this review highlights the antioxidant properties of OLE and HT and how they could result in increased cellular antioxidant defences and reduced oxidative damage in NB cells. Moreover, we highlight that these phenolic compounds lead to apoptosis and cell cycle arrest, reduce the side effects caused by conventional treatments, and activate tumours that become dormant as a resistance mechanism. Future research should explore the effects of these compounds and other antioxidants on the treatment of NB in vivo.


Asunto(s)
Glucósidos Iridoides , Neuroblastoma , Olea , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Niño , Humanos , Lactante , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Aceite de Oliva , Fenoles/farmacología , Alcohol Feniletílico/farmacología , Neuroblastoma/tratamiento farmacológico
9.
Biomed Pharmacother ; 174: 116439, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518601

RESUMEN

Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, ß-lapachone (ß-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of ß-LP (0.5 or 1.5 µM) and HT (50 and 100 µM) on five TNBC cell lines. We demonstrated that the combination of ß-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the ß-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of ß-LP and HT could offer an affordable, safe, and effective approach against TNBC.


Asunto(s)
Apoptosis , Proliferación Celular , NAD(P)H Deshidrogenasa (Quinona) , Naftoquinonas , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Naftoquinonas/farmacología , Línea Celular Tumoral , Alcohol Feniletílico/farmacología , Apoptosis/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Proliferación Celular/efectos de los fármacos , Femenino , Sinergismo Farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos
10.
Cell Biochem Funct ; 42(2): e3942, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379263

RESUMEN

Colorectal cancer (CRC) is among the most prevalent gastrointestinal cancers of epithelial origin worldwide, with over 2 million cases detected every year. Emerging evidence suggests a significant increase in the levels of inflammatory and stress-related markers in patients with CRC, indicating that oxidative stress and lipid peroxidation may influence signalling cascades involved in the progression of the disease. However, the precise molecular and cellular basis underlying CRC and their modulations during bioactive compound exposure have not yet been deciphered. This study examines the effect of caffeic acid phenethyl ester (CAPE), a natural bioactive compound, in HT29 CRC cells grown under serum-supplemented and serum-deprived conditions. We found that CAPE inhibited cell cycle progression in the G2/M phase and induced apoptosis. Migration assay confirmed that CAPE repressed cancer invasiveness. Protein localisation by immunofluorescence microscopy and protein expression by western blot analysis reveal increased expressions of key inflammatory signalling mediators such as p38α, Jun N-terminal kinase and extracellular signal-regulated kinase (ERK) proteins. Molecular docking data demonstrates that CAPE shows a higher docking score of -5.35 versus -4.59 to known p38 inhibitor SB203580 as well as a docking score of -4.17 versus -3.86 to known ERK1/2 inhibitor AZD0364. Co-immunoprecipitation data reveals that CAPE treatment effectively downregulates heat shock protein (HSP) expression in both sera-supplemented and limited conditions through its interaction with mitogen-activated protein kinase 14 (MAPK14). These results suggest that stress induction via serum starvation in HT29 CRC cells leads to the induction of apoptosis and co-ordinated activation of MAPK-HSP pathways. Molecular docking studies support that CAPE could serve as an effective inhibitor to target p38 and MAPK compared to their currently known inhibitors.


Asunto(s)
Neoplasias del Colon , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Humanos , Línea Celular Tumoral , Proteínas de Choque Térmico , Simulación del Acoplamiento Molecular , Apoptosis , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/metabolismo , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/metabolismo , Neoplasias del Colon/tratamiento farmacológico
11.
J Dent ; 143: 104867, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286192

RESUMEN

OBJECTIVES: This study aimed to evaluate silver nanoparticles (AgNPs) obtained by a 'green' route associated or not to tyrosol (TYR) against Streptococcus mutans and Candida albicans in planktonic and biofilms states. METHODS: AgNPs were obtained by a 'green' route using pomegranate extract. The minimum inhibitory concentration (MIC) against S. mutans and C. albicans was determined for AgNPs and TYR combined and alone, and fractional inhibitory concentration index (FICI) was calculated. Single biofilms of C. albicans and S. mutans were cultivated for 24 h and then treated with drugs alone or in combination for 24 h. RESULTS: AgNPs and TYR were effective against C. albicans and S. mutans considering planktonic cells alone and combined. The MIC values obtained for C. albicans was 312.5 µg/mL (AgNPs) and 50 mM (TYR) and for S. mutans was 78.1 µg/mL (AgNPs) and 90 mM (TYR). The combination of these antimicrobial agents was also effective against both microorganisms: 2.44 µg/mL/0.08 mM (AgNPs/TYR) for C. albicans and 39.05 µg/mL /1.25 mM (AgNPs/TYR) for S. mutans. However, synergism was observed only for C. albicans (FICI 0.008). When biofilm was evaluated, a reduction of 4.62 log10 was observed for S. mutans biofilm cells treated with AgNPs (p < 0.05, Tukey test). However, the addition of TYR to AgNPs did not improve their action against biofilm cells (p > 0.05). AgNPs combined with TYR demonstrated a synergistic effect against C. albicans biofilms. CONCLUSIONS: These findings suggest the potential use of AgNPs with or without TYR against C. albicans and S. mutans, important oral pathogens. CLINICAL SIGNIFICANCE: AgNPs obtained by a 'green' route combined or not with TYR can be an alternative to develop several types of oral antimicrobial therapies and biomaterials.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Plata/farmacología , Antiinfecciosos/farmacología , Alcohol Feniletílico/farmacología , Candida albicans , Biopelículas , Streptococcus mutans
12.
Biol Pharm Bull ; 47(1): 303-310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38281774

RESUMEN

Methotrexate (MTX) is an indispensable drug used for the treatment of many autoimmune and cancerous diseases. However, its clinical use is associated with serious side effects, such as lung fibrosis. The main objective of this study is to test the hypothesis that hydroxytyrosol (HT) can mitigate MTX-induced lung fibrosis in rats while synergizing MTX anticancer effects. Pulmonary fibrosis was induced in the rats using MTX (14 mg/kg/week, per os (p.o.)). The rats were treated with or without HT (10, 20, and 40 mg/kg/d p.o.) or dexamethasone (DEX; 0.5 mg/kg/d, intraperitoneally (i.p.)) for two weeks concomitantly with MTX. Transforming growth factor beta 1 (TGF-ß1), interleukin-4 (IL-4), thromboxane A2 (TXA2), vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxy-guanosine (8-OHdG), tissue factor (TF) and fibrin were assessed using enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and RT-PCR. Pulmonary fibrosis was manifested by an excessive extracellular matrix (ECM) deposition and a marked increase in TGF-ß1 and IL-4 in lung tissues. Furthermore, cotreatment with HT or dexamethasone (DEX) significantly attenuated MTX-induced ECM deposition, TGF-ß1, and IL-4 expression. Similarly, HT or DEX notably reduced hydroxyproline contents, TXA2, fibrin, and TF expression in lung tissues. Moreover, using HT or DEX downregulated the gene expression of TF. A significant decrease in lung contents of VEGF, IL-8, and 8-OHdG was also observed in HT + MTX- or DEX + MTX -treated animals in a dose-dependent manner. Collectively, the results of our study suggest that HT might represent a potential protective agent against MTX-induced pulmonary fibrosis.


Asunto(s)
Metotrexato , Alcohol Feniletílico , Fibrosis Pulmonar , Animales , Ratas , Dexametasona/farmacología , Fibrina/metabolismo , Interleucina-4/metabolismo , Pulmón/patología , Metotrexato/efectos adversos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/prevención & control , Tromboplastina/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Mol Nutr Food Res ; 68(1): e2300508, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933702

RESUMEN

SCOPE: Extra virgin olive oil has numerous cardiopreventive effects, largely due to its high content of (poly)phenols such as hydroxytyrosol (HT). However, some animal studies suggest that its excessive consumption may alter systemic lipoprotein metabolism. Because human lipoprotein metabolism differs from that of rodents, this study examines the effects of HT in a humanized mouse model that approximates human lipoprotein metabolism. METHODS AND RESULTS: Mice are treated as follows: control diet or diet enriched with HT. Serum lipids and lipoproteins are determined after 4 and 8 weeks. We also analyzed the regulation of various genes and miRNA by HT, using microarrays and bioinformatic analysis. An increase in body weight is found after supplementation with HT, although food intake was similar in both groups. In addition, HT induced the accumulation of triacylglycerols but not cholesterol in different tissues. Systemic dyslipidemia after HT supplementation and impaired glucose metabolism are observed. Finally, HT modulates the expression of genes related to lipid metabolism, such as Pltp or Lpl. CONCLUSION: HT supplementation induces systemic dyslipidemia and impaired glucose metabolism in humanized mice. Although the numerous health-promoting effects of HT far outweigh these potential adverse effects, further carefully conducted studies are needed.


Asunto(s)
Dislipidemias , Alcohol Feniletílico , Humanos , Ratones , Animales , Aceite de Oliva/farmacología , Dislipidemias/etiología , Alcohol Feniletílico/farmacología , Lipoproteínas , Modelos Animales de Enfermedad , Glucosa
14.
Cell Biochem Funct ; 42(1): e3900, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111127

RESUMEN

The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 µg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 µg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 µg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.


Asunto(s)
Melanoma , Alcohol Feniletílico , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/patología , Línea Celular Tumoral , Liposomas , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Neoplasias Cutáneas/patología , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapéutico , Apoptosis , Fosfatidilinositol 3-Quinasas/metabolismo
15.
Oncol Rep ; 51(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38099422

RESUMEN

Hypopharyngeal squamous cell carcinoma (HSCC) is a relatively rare form of head and neck cancer that is notorious for its poor prognosis and low overall survival rate. This highlights the need for new therapeutic options for this malignancy. The objective of the present study was to examine the ability of caffeic acid phenethyl ester (CAPE), which is an active compound found in propolis, to combat HSCC tumor growth. CAPE exerted its tumor­suppressive activity in HSCC cell lines through the induction of apoptosis. Mechanistically, the CAPE­mediated apoptotic process was attributed to the perturbation of the mitochondrial membrane potential and the activation of caspase­9. CAPE also modulated survivin and X­linked inhibitor of apoptosis, which are potent members of the inhibitors of apoptosis protein family, either through transcriptional or post­translational regulation, leading to HSCC cell line death. Therefore, the findings of the present study suggested that CAPE is an effective treatment alternative for HSCC via the stimulation of mitochondria­dependent apoptosis.


Asunto(s)
Neoplasias de Cabeza y Cuello , Alcohol Feniletílico , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Apoptosis , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
16.
Fungal Biol ; 127(10-11): 1384-1388, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37993249

RESUMEN

The filamentous fungus Cunninghamella echinulata is a model of mammalian xenobiotic metabolism. Under certain conditions it grows as a biofilm, which is a natural form of immobilisation and enables the fungus to catalyse repeated biotransformations. Putative signalling molecules produced by other Cunninghamella spp., such as 3-hydroxytyrosol and tyrosol, do not affect the biofilm growth of C. echinulata, suggesting that it employs a different molecule to regulate biofilm growth. In this paper we report that 2-phenylethanol is produced in higher concentrations in planktonic cultures of C. echinulata than when the fungus is grown as a biofilm. We demonstrate that exogenously added 2-phenylethanol inhibits biofilm growth of C. echinulata but has no effect on planktonic growth. Furthermore, we show that addition of 2-phenylethanol to established C. echinulata biofilm causes detachment. Therefore, we conclude that this molecule is produced by the fungus to regulate biofilm growth.


Asunto(s)
Cunninghamella , Alcohol Feniletílico , Animales , Cunninghamella/metabolismo , Alcohol Feniletílico/farmacología , Biotransformación , Biopelículas , Mamíferos
17.
Biotechnol Lett ; 45(11-12): 1541-1554, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831285

RESUMEN

OBJECTIVES: The applicability of a simple and high-throughput method for quantitative characterization of biofilm formation by Candida boidinii was tested in order to evaluate the effects of exogenous tyrosol on yeast growth and biofilm formation capacity. RESULTS: Significant concentration-, temperature and time-dependent effect of tyrosol (2-(4-hydroxyphenyl)ethanol) was demonstrated, but it differentially affected the growth and biofilm formation (characterized by crystal violet staining and XTT-reduction assay) of Candida boidinii. Testing biofilm based on metabolic activity displayed sensitively the differences in the intensity of biofilm in terms of temperature, tyrosol concentration, and exposure time. At 22 °C after 24 h none of the tyrosol concentrations had significant effect, while at 30 °C tyrosol-mediated inhibition was observed at 50 mM and 100 mM concentration. After 48 h and 72 h at 22 °C, biofilm formation was stimulated at 6.25-25 mM concentrations, meanwhile at 30 °C tyrosol decreased the biofilm metabolic activity proportionally with the concentration. CONCLUSIONS: The research concludes that exogenous tyrosol exerts unusual effects on Candida boidinii growth and biofilm formation ability and predicts its potential application as a regulating factor of various fermentations by Candida boidinii.


Asunto(s)
Alcohol Feniletílico , Saccharomycetales , Biopelículas , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/metabolismo , Saccharomycetales/metabolismo , Candida albicans
18.
J Neurosci ; 43(47): 7958-7966, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37813571

RESUMEN

In the mammalian nose, two chemosensory systems, the trigeminal and the olfactory mediate the detection of volatile chemicals. Most odorants are able to activate the trigeminal system, and vice versa, most trigeminal agonists activate the olfactory system as well. Although these two systems constitute two separate sensory modalities, trigeminal activation modulates the neural representation of an odor. The mechanisms behind the modulation of olfactory response by trigeminal activation are still poorly understood. We addressed this question by looking at the olfactory epithelium (OE), where olfactory sensory neurons (OSNs) and trigeminal sensory fibers co-localize and where the olfactory signal is generated. Our study was conducted in a mouse model. Both sexes, males and females, were included. We characterize the trigeminal activation in response to five different odorants by measuring intracellular Ca2+ changes from primary cultures of trigeminal neurons (TGNs). We also measured responses from mice lacking TRPA1 and TRPV1 channels known to mediate some trigeminal responses. Next, we tested how trigeminal activation affects the olfactory response in the olfactory epithelium using electro-olfactogram (EOG) recordings from wild-type (WT) and TRPA1/V1-knock out (KO) mice. The trigeminal modulation of the olfactory response was determined by measuring responses to the odorant, 2-phenylethanol (PEA), an odorant with little trigeminal potency after stimulation with a trigeminal agonist. Trigeminal agonists induced a decrease in the EOG response to PEA, which depended on the level of TRPA1 and TRPV1 activation induced by the trigeminal agonist. This suggests that trigeminal activation can alter odorant responses even at the earliest stage of the olfactory sensory transduction.SIGNIFICANCE STATEMENT Most odorants reaching the olfactory epithelium (OE) can simultaneously activate olfactory and trigeminal systems. Although these two systems constitute two separate sensory modalities, trigeminal activation can alter odor perception. Here, we analyzed the trigeminal activity induced by different odorants proposing an objective quantification of their trigeminal potency independent from human perception. We show that trigeminal activation by odorants reduces the olfactory response in the olfactory epithelium and that such modulation correlates with the trigeminal potency of the trigeminal agonist. These results show that the trigeminal system impacts the olfactory response from its earliest stage.


Asunto(s)
Neuronas Receptoras Olfatorias , Alcohol Feniletílico , Masculino , Humanos , Femenino , Ratones , Animales , Olfato/fisiología , Neuronas Receptoras Olfatorias/fisiología , Mucosa Olfatoria , Odorantes , Ratones Noqueados , Alcohol Feniletílico/farmacología , Mamíferos
19.
J Food Sci ; 88(10): 4059-4067, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37589305

RESUMEN

The objective of this study is to assess the inhibitory effects of an aqueous extract from olive oil mill waste (alperujo) on the growth of a lactic acid bacteria (LAB) cocktail consisting of various strains of Lactiplantibacillus pentosus and Lactiplantibacillus plantarum species. For this purpose, response surface methodology was employed using two independent variables (pH levels 3.5-5.55; hydroxytyrosol concentration ranging from 0.93-2990 ppm). The response variable was the average inhibition per treatment on the LAB cocktail (expressed as a percentage). The developed model identified significant terms, including the linear effect of hydroxytyrosol and pH, their interaction, and the quadratic effect of pH. Maximum inhibition of the LAB cocktail was observed at progressively higher concentrations of hydroxytyrosol and lower pH values. Therefore, complete inhibition of LAB in the synthetic culture medium could only be achieved for concentrations of 2984 ppm hydroxytyrosol at a pH of 3.95. These findings suggest that extracts derived from "alperujo" could be utilized as a natural preservative in acidified foods with a bitter flavor and antioxidant requirements.


Asunto(s)
Antiinfecciosos , Lactobacillales , Olea , Alcohol Feniletílico , Antioxidantes/farmacología , Aceite de Oliva/farmacología , Alcohol Feniletílico/farmacología
20.
Molecules ; 28(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570782

RESUMEN

Caffeic acid phenethyl ester (CAPE) belongs to the phenols found in propolis. It has already shown strong antiproliferative, cytotoxic and pro-apoptotic activities against head and neck cancers and against breast, colorectal, lung and leukemia cancer cells. Ovarian cancer is one of the most dangerous gynecological cancers. Its treatment involves intensive chemotherapy with platinum salts and paclitaxel (PTX). The purpose of this study was to evaluate whether the combined use of CAPE and paclitaxel increases the effectiveness of chemotherapeutic agents. The experiment was performed on three ovarian cancer lines: OV7, HTB78, and CRL1572. The effect of the tested compounds was assessed using H-E staining, a wound-healing test, MTT and the cell death detection ELISAPLUS test. The experiment proved that very low doses of PTX (10 nM) showed a cytotoxic effect against all the cell lines tested. Also, the selected doses of CAPE had a cytotoxic effect on the tested ovarian cancer cells. An increase in the cytotoxic effect was observed in the OV7 line after the simultaneous administration of 10 nM PTX and 100 µM CAPE. The increase in the cytotoxicity was dependent on the CAPE dosage (50 vs. 100 µM) and on the duration of the experiment. In the other cell lines tested, the cytotoxic effect of PTX did not increase after the CAPE administration. The administration of PTX together with CAPE increased the percentage of apoptotic cells in the tested ovarian cancer cell lines. Moreover, the simultaneous administration of PTX and CAPE enhanced the anti-migration activity of the chemotherapeutic used in this study.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Alcohol Feniletílico , Humanos , Femenino , Paclitaxel/farmacología , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología , Alcohol Feniletílico/farmacología , Ácidos Cafeicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...