Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34445283

RESUMEN

Botulinum neurotoxins (BoNTs) are the most poisonous substances in nature. Currently, the only therapy for botulism is antitoxin. This therapy suffers from several limitations and hence new therapeutic strategies are desired. One of the limitations in discovering BoNT inhibitors is the absence of an in vitro assay that correlates with toxin neutralization in vivo. In this work, a high-throughput screening assay for receptor-binding inhibitors against BoNT/A was developed. The assay is composed of two chimeric proteins: a receptor-simulating protein, consisting of the fourth luminal loop of synaptic vesicle protein 2C fused to glutathione-S-transferase, and a toxin-simulating protein, consisting of the receptor-binding domain of BoNT/A fused to beta-galactosidase. The assay was applied to screen the LOPAC1280 compound library. Seven selected compounds were evaluated in mice exposed to a lethal dose of BoNT/A. The compound aurintricarboxylic acid (ATA) conferred 92% protection, whereas significant delayed time to death (p < 0.005) was observed for three additional compounds. Remarkably, ATA was also fully protective in mice challenged with a lethal dose of BoNT/E, which also uses the SV2 receptor. This study demonstrates that receptor-binding inhibitors have the potential to serve as next generation therapeutics for botulism, and therefore the assay developed may facilitate discovery of new anti-BoNT countermeasures.


Asunto(s)
Ácido Aurintricarboxílico/farmacología , Toxinas Botulínicas Tipo A/toxicidad , Toxinas Botulínicas/toxicidad , Botulismo/tratamiento farmacológico , Botulismo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Botulismo/genética , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
2.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218099

RESUMEN

Botulinum neurotoxins (BoNTs) are highly potent, neuroparalytic protein toxins that block the release of acetylcholine from motor neurons and autonomic synapses. The unparalleled toxicity of BoNTs results from the highly specific and localized cleavage of presynaptic proteins required for nerve transmission. Currently, the only pharmacotherapy for botulism is prophylaxis with antitoxin, which becomes progressively less effective as symptoms develop. Treatment for symptomatic botulism is limited to supportive care and artificial ventilation until respiratory function spontaneously recovers, which can take weeks or longer. Mechanistic insights into intracellular toxin behavior have progressed significantly since it was shown that toxins exploit synaptic endocytosis for entry into the nerve terminal, but fundamental questions about host-toxin interactions remain unanswered. Chief among these are mechanisms by which BoNT is internalized into neurons and trafficked to sites of molecular toxicity. Elucidating how receptor-bound toxin is internalized and conditions under which the toxin light chain engages with target SNARE proteins is critical for understanding the dynamics of intoxication and identifying novel therapeutics. Here, we discuss the implications of newly discovered modes of synaptic vesicle recycling on BoNT uptake and intraneuronal trafficking.


Asunto(s)
Toxinas Botulínicas/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Neuronas Motoras/metabolismo , Terminales Presinápticos/metabolismo , Animales , Antitoxinas/farmacología , Botulismo/metabolismo , Botulismo/prevención & control , Humanos , Neuronas Motoras/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
3.
Sci Rep ; 10(1): 13932, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811892

RESUMEN

Botulinum neurotoxins (BoNTs) represent a family of bacterial toxins responsible for neuroparalytic disease 'botulism' in human and animals. Their potential use as biological weapon led to their classification in category 'A' biowarfare agent by Centers for Disease Control and Prevention (CDC), USA. In present study, gene encoding full length catalytic domain of BoNT/E-LC was cloned, expressed and protein was purified using Ni-NTA chromatography. Humoral immune response was confirmed by Ig isotyping and cell-mediated immunity by cytokine profiling and intracellular staining for enumeration of IFN-γ secreting CD4+ and CD8+ T cells. Increased antibody titer with the predominance of IgG subtype was observed. An interaction between antibodies produced against rBoNT/E-LC was established that showed the specificity against BoNT/E in SPR assay. Animal protection with rBoNT/E-LC was conferred through both humoral and cellular immune responses. These findings were supported by cytokine profiling and flow cytometric analysis. Splenocytes stimulated with rBoNT/E-LC showed a 3.27 and 2.8 times increase in the IFN-γ secreting CD4+ and CD8+ T cells, respectively; in immunized group (P < 0.05). Protection against BoNT/E challenge tended to relate with increase in the percentage of rBoNT/E-LC specific IL-2 in the splenocytes supernatant (P = 0.034) and with IFN-γ-producing CD4+ T cell responses (P = 0.045). We have immunologically evaluated catalytically active rBoNT/E-LC. Our results provide valuable investigational report for immunoprophylactic role of catalytic domain of BoNT/E.


Asunto(s)
Toxinas Botulínicas/genética , Botulismo/prevención & control , Animales , Anticuerpos Neutralizantes/inmunología , Toxinas Botulínicas/química , Toxinas Botulínicas/inmunología , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/inmunología , Botulismo/metabolismo , Linfocitos T CD8-positivos/inmunología , Dominio Catalítico/genética , Dominio Catalítico/inmunología , Clonación Molecular/métodos , Clostridium botulinum/genética , Humanos , Inmunización , Masculino , Ratones , Ratones Endogámicos BALB C
4.
PLoS One ; 14(9): e0222670, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31527885

RESUMEN

Botulism neurotoxins are highly toxic and are potential agents for bioterrorism. The development of effective therapy is essential to counter the possible use of these toxins in military and bioterrorism scenarios, and to provide treatment in cases of natural intoxication. Guinea pigs were intoxicated with a lethal dose of botulinum neurotoxin serotypes A, B, C, D, E, F or G, and at onset of the clinical disease intoxicated animals were treated with either BAT® [Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)-(Equine)] or placebo. BAT product treatment significantly (p<0.0001) enhanced survival compared to placebo for all botulinum neurotoxin serotypes and arrested or mitigated the progression of clinical signs of botulism intoxication. These results demonstrated the therapeutic efficacy of BAT product in guinea pigs and provided supporting evidence of effectiveness for licensure of BAT product under FDA 21 CFR Part 601 (Subpart H Animal Rule) as a therapeutic for botulism intoxication to serotypes A, B, C, D, E, F or G in adults and pediatric patients.


Asunto(s)
Antitoxinas/farmacología , Antitoxina Botulínica/farmacología , Toxinas Botulínicas/antagonistas & inhibidores , Botulismo/metabolismo , Neurotoxinas/antagonistas & inhibidores , Animales , Bioterrorismo/prevención & control , Progresión de la Enfermedad , Femenino , Cobayas , Caballos , Masculino , Ratones , Serogrupo
5.
Nat Commun ; 8(1): 1637, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29158482

RESUMEN

Botulinum neurotoxins (BoNTs), the most potent toxins known, are potential bioterrorism agents. It is well established that all seven serotypes of BoNTs (BoNT/A-G) require complex gangliosides as co-receptors. Here, we report that BoNT/DC, a presumed mosaic toxin between BoNT/D and BoNT/C1, binds and enters efficiently into neurons lacking complex gangliosides and shows no reduction in toxicity in mice deficient in complex gangliosides. The co-crystal structure of BoNT/DC with sialyl-Thomsen-Friedenreich antigen (Sialyl-T) suggests that BoNT/DC recognizes only the sialic acid, but not other moieties in gangliosides. Using liposome flotation assays, we demonstrate that an extended loop in BoNT/DC directly interacts with lipid membranes, and the co-occurring sialic acid binding and loop-membrane interactions mediate the recognition of gangliosides in membranes by BoNT/DC. These findings reveal a unique mechanism for cell membrane recognition and demonstrate that BoNT/DC can use a broad range of sialic acid-containing moieties as co-receptors.


Asunto(s)
Toxinas Botulínicas/química , Botulismo/metabolismo , Membrana Celular/química , Gangliósidos/química , Animales , Sitios de Unión , Toxinas Botulínicas/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Femenino , Gangliósidos/metabolismo , Humanos , Masculino , Ratones , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo
6.
Microbiol Immunol ; 61(11): 482-489, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28898517

RESUMEN

Clostridium botulinum produces the highly potent neurotoxin, botulinum neurotoxin (BoNT), which is classified into seven serotypes (A-G); the subtype classification is confirmed by the diversity of amino acid sequences among the serotypes. BoNT from the Osaka05 strain is associated with type B infant botulism and has been classified as BoNT/B subtype B6 (BoNT/B6) by phylogenetic analysis and the antigenicity of its C-terminal heavy chain (HC ) domain. However, the molecular bases for its properties, including its potency, are poorly understood. In this study, BoNT/B6 holotoxin was purified and the biological activity and receptor binding activity of BoNT/B6 compared with those of the previously-characterized BoNT/B1 and BoNT/B2 subtypes. The derivative BoNT/B6 was found to be already nicked and in an activated form, indicating that endogenous protease production may be higher in this strain than in the other two strains. BoNT/B1 exhibited the greatest lethal activity in mice, followed by BoNT/B6, which is consistent with the sensitivity of PC12 cells. No significant differences were seen in the enzymatic activities of the BoNT/Bs against their substrate. HC /B1 and HC /B6 exhibited similar binding affinities to synaptotagmin II (SytII), which is a specific protein receptor for BoNT/B. Binding to the SytII/ganglioside complex is functionally related to the toxic action; however, the receptor recognition sites are conserved. These results suggest that the distinct characteristics and differences in biological sensitivity of BoNT/B6 may be attributable to the function of its Hc .domain.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Botulismo/microbiología , Clostridium botulinum/enzimología , Neurotoxinas/metabolismo , Toxinas Botulínicas Tipo A/química , Botulismo/metabolismo , Clostridium botulinum/química , Clostridium botulinum/genética , Gangliósidos/metabolismo , Humanos , Cinética , Neurotoxinas/química , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
7.
Curr Top Microbiol Immunol ; 406: 39-78, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28879524

RESUMEN

Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.


Asunto(s)
Toxinas Botulínicas/metabolismo , Endocitosis , Neurotoxinas/metabolismo , Toxina Tetánica/metabolismo , Animales , Transporte Biológico , Botulismo/metabolismo , Humanos
8.
Nat Commun ; 8: 14130, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28770820

RESUMEN

Botulinum neurotoxins are known to have seven serotypes (BoNT/A-G). Here we report a new BoNT serotype, tentatively named BoNT/X, which has the lowest sequence identity with other BoNTs and is not recognized by antisera against known BoNTs. Similar to BoNT/B/D/F/G, BoNT/X cleaves vesicle-associated membrane proteins (VAMP) 1, 2 and 3, but at a novel site (Arg66-Ala67 in VAMP2). Remarkably, BoNT/X is the only toxin that also cleaves non-canonical substrates VAMP4, VAMP5 and Ykt6. To validate its activity, a small amount of full-length BoNT/X was assembled by linking two non-toxic fragments using a transpeptidase (sortase). Assembled BoNT/X cleaves VAMP2 and VAMP4 in cultured neurons and causes flaccid paralysis in mice. Thus, BoNT/X is a novel BoNT with a unique substrate profile. Its discovery posts a challenge to develop effective countermeasures, provides a novel tool for studying intracellular membrane trafficking, and presents a new potential therapeutic toxin for modulating secretions in cells.


Asunto(s)
Toxinas Botulínicas/metabolismo , Botulismo/microbiología , Clostridium botulinum/enzimología , Neurotoxinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Toxinas Botulínicas/toxicidad , Botulismo/genética , Botulismo/metabolismo , Clostridium botulinum/genética , Humanos , Ratones , Modelos Moleculares , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/toxicidad , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Alineación de Secuencia , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
9.
Methods Mol Biol ; 1600: 9-23, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28478553

RESUMEN

Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Botulismo/diagnóstico , Botulismo/metabolismo , Técnicas Electroquímicas/métodos , Ricina/análisis
10.
Infect Immun ; 85(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27795365

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans but also are common therapies for neurological diseases. BoNTs are dichain toxins, comprising an N-terminal catalytic domain (LC) disulfide bond linked to a C-terminal heavy chain (HC) which includes a translocation domain (HN) and a receptor binding domain (HC). Recently, the BoNT serotype A (BoNT/A) subtypes A1 and A2 were reported to possess similar potencies but different rates of cellular intoxication and pathology in a mouse model of botulism. The current study measured HCA1 and HCA2 entry into rat primary neurons and cultured Neuro2A cells. We found that there were two sequential steps during the association of BoNT/A with neurons. The initial step was ganglioside dependent, while the subsequent step involved association with synaptic vesicles. HCA1 and HCA2 entered the same population of synaptic vesicles and entered cells at similar rates. The primary difference was that HCA2 had a higher degree of receptor occupancy for cells and neurons than HcA1. Thus, HCA2 and HCA1 share receptors and entry pathway but differ in their affinity for receptor. The initial interaction of HCA1 and HCA2 with neurons may contribute to the unique pathologies of BoNT/A1 and BoNT/A2 in mouse models.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Botulismo/metabolismo , Botulismo/microbiología , Neuronas/metabolismo , Neuronas/microbiología , Animales , Células Cultivadas , Clostridium botulinum/patogenicidad , Gangliósidos/metabolismo , Ratones , Unión Proteica/fisiología , Ratas , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/microbiología
11.
Bioorg Med Chem ; 24(18): 3978-3985, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27353886

RESUMEN

Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. The structure-activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of them show low micromolar IC50 values.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Toxinas Botulínicas/antagonistas & inhibidores , Clostridium botulinum/efectos de los fármacos , Fluorenos/química , Fluorenos/farmacología , Toxinas Botulínicas/metabolismo , Botulismo/tratamiento farmacológico , Botulismo/metabolismo , Quelantes/química , Quelantes/farmacología , Clostridium botulinum/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Peptidomiméticos/química , Peptidomiméticos/farmacología , Relación Estructura-Actividad , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/farmacología
12.
Sci Rep ; 5: 16981, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26584873

RESUMEN

Potent inhibitors to reverse Botulinum neurotoxins (BoNTs) activity in neuronal cells are currently not available. A better understanding of the substrate recognition mechanism of BoNTs enabled us to design a novel class of peptide inhibitors which were derivatives of the BoNT/A substrate, SNAP25. Through a combination of in vitro, cellular based, and in vivo mouse assays, several potent inhibitors of approximately one nanomolar inhibitory strength both in vitro and in vivo have been identified. These compounds represent the first set of inhibitors that exhibited full protection against BoNT/A intoxication in mice model with undetectable toxicity. Our findings validated the hypothesis that a peptide inhibitor targeting the two BoNT structural regions which were responsible for substrate recognition and cleavage respectively could exhibit excellent inhibitory effect, thereby providing insight on future development of more potent inhibitors against BoNTs.


Asunto(s)
Antitoxina Botulínica/farmacología , Toxinas Botulínicas Tipo A/toxicidad , Botulismo/prevención & control , Péptidos/farmacología , Animales , Sitios de Unión , Unión Competitiva/efectos de los fármacos , Western Blotting , Antitoxina Botulínica/química , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/inducido químicamente , Botulismo/metabolismo , Línea Celular Tumoral , Ratones , Modelos Moleculares , Neurotoxinas/química , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Péptidos/química , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/metabolismo
13.
Toxicon ; 107(Pt A): 9-24, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26363288

RESUMEN

Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.


Asunto(s)
Toxinas Botulínicas/metabolismo , Sinapsis/metabolismo , Animales , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Botulismo/metabolismo , Clostridium botulinum/genética , Clostridium botulinum/metabolismo , Tracto Gastrointestinal/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Estructura Molecular , Familia de Multigenes/genética , Neuronas/metabolismo , Filogenia , Vesículas Sinápticas/metabolismo
14.
Toxicology ; 335: 79-84, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26169827

RESUMEN

Botulinum neurotoxin type A (BoNT/A), the most potent toxin known in nature which causes botulism, is a commonly used therapeutic protein. It prevents synaptic vesicle neuroexocytosis by proteolytic cleavage of synaptosomal-associated protein of 25 kDa (SNAP-25). It is widely believed that BoNT/A therapeutic or toxic actions are exclusively mediated by SNAP-25 cleavage. On the other hand, in vitro and in vivo findings suggest that several BoNT/A actions related to neuroexocytosis, cell cycle and apoptosis, neuritogenesis and gene expression are not necessarily mediated by this widely accepted mechanism of action. In present review we summarize the literature evidence which point to the existence of unknown BoNT/A molecular target(s) and modulation of unknown signaling pathways. The effects of BoNT/A apparently independent of SNAP-25 occur at similar doses/concentrations known to induce SNAP-25 cleavage and prevention of neurotransmitter release. Accordingly, these effects might be pharmacologically significant. Potentially the most interesting are observations of antimitotic and antitumor activity of BoNT/A. However, the exact mechanisms require further studies.


Asunto(s)
Toxinas Botulínicas Tipo A/toxicidad , Botulismo/etiología , Neuronas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Botulismo/genética , Botulismo/metabolismo , Botulismo/patología , Ciclo Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Exocitosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuritas/patología , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Procesamiento Proteico-Postraduccional
15.
Vet Microbiol ; 177(3-4): 398-402, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25882532

RESUMEN

Botulism caused by neurotoxins of Clostridium (C.) botulinum is a rare, but serious life-threatening disease in humans and animals. Botulism in livestock is usually caused by the oral uptake of C. botulinum neurotoxins (BoNT) via contaminated feed and is characterized by flaccid paralysis. In the recent past a new syndrome caused by BoNT in dairy cattle was postulated. It was supposed that C. botulinum is able to colonize the lower intestine and may subsequently produce neurotoxin. The continuous resorption of small amounts of these BoNT may then provoke the so called syndrome of "chronic" or "visceral" botulism involving unspecific clinical symptoms, reduced performance of dairy cows and massive animal losses in the affected herd. To test this hypothesis a case-control study was conducted involving 92 affected farms and 47 control farms located in Northern Germany. Fecal samples of 1388 animals were investigated for the presence of BoNT to verify the key requirement of the hypothesis of chronic botulism. BoNT was not detected in any of the fecal samples using the most sensitive standard method for BoNT detection, the mouse bioassay. Therefore, the existence of "chronic" or "visceral" botulism could not be proven.


Asunto(s)
Toxinas Botulínicas/metabolismo , Botulismo/veterinaria , Enfermedades de los Bovinos/metabolismo , Clostridium botulinum/metabolismo , Neurotoxinas/metabolismo , Animales , Bioensayo , Toxinas Botulínicas/aislamiento & purificación , Botulismo/etiología , Botulismo/metabolismo , Estudios de Casos y Controles , Bovinos , Enfermedades de los Bovinos/etiología , Enfermedad Crónica , Clostridium botulinum/patogenicidad , Heces/química , Femenino , Alemania , Humanos , Ratones , Neurotoxinas/aislamiento & purificación
16.
Biochim Biophys Acta ; 1852(4): 651-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25486268

RESUMEN

Disorders affecting the presynaptic, synaptic, and postsynaptic portions of the neuromuscular junction arise from various mechanisms in children and adults, including acquired autoimmune or toxic processes as well as genetic mutations. Disorders include autoimmune myasthenia gravis associated with acetylcholine receptor, muscle specific kinase or Lrp4 antibodies, Lambert-Eaton myasthenic syndrome, nerve terminal hyperexcitability syndromes, Guillain Barré syndrome, botulism, organophosphate poisoning and a number of congenital myasthenic syndromes. This review focuses on the various molecular and pathophysiological mechanisms of these disorders, characterization of which has been crucial to the development of treatment strategies specific for each pathogenic mechanism. In the future, further understanding of the underlying processes may lead to more effective and targeted therapies of these disorders. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.


Asunto(s)
Botulismo , Síndrome de Guillain-Barré , Síndrome Miasténico de Lambert-Eaton , Miastenia Gravis , Intoxicación por Organofosfatos , Adolescente , Adulto , Autoanticuerpos/inmunología , Autoanticuerpos/metabolismo , Botulismo/genética , Botulismo/inmunología , Botulismo/metabolismo , Botulismo/patología , Niño , Preescolar , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/inmunología , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/patología , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/inmunología , Proteínas Relacionadas con Receptor de LDL/metabolismo , Síndrome Miasténico de Lambert-Eaton/genética , Síndrome Miasténico de Lambert-Eaton/inmunología , Síndrome Miasténico de Lambert-Eaton/metabolismo , Síndrome Miasténico de Lambert-Eaton/patología , Miastenia Gravis/genética , Miastenia Gravis/inmunología , Miastenia Gravis/metabolismo , Miastenia Gravis/patología , Unión Neuromuscular/genética , Unión Neuromuscular/inmunología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Intoxicación por Organofosfatos/genética , Intoxicación por Organofosfatos/inmunología , Intoxicación por Organofosfatos/metabolismo , Intoxicación por Organofosfatos/patología , Receptores Colinérgicos/genética , Receptores Colinérgicos/inmunología , Receptores Colinérgicos/metabolismo
17.
Nat Rev Microbiol ; 12(8): 535-49, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24975322

RESUMEN

Botulinum neurotoxins (BoNTs) are produced by anaerobic bacteria of the genus Clostridium and cause a persistent paralysis of peripheral nerve terminals, which is known as botulism. Neurotoxigenic clostridia belong to six phylogenetically distinct groups and produce more than 40 different BoNT types, which inactivate neurotransmitter release owing to their metalloprotease activity. In this Review, we discuss recent studies that have improved our understanding of the genetics and structure of BoNT complexes. We also describe recent insights into the mechanisms of BoNT entry into the general circulation, neuronal binding, membrane translocation and neuroparalysis.


Asunto(s)
Botulismo/metabolismo , Botulismo/microbiología , Clostridium botulinum/genética , Neurotoxinas/genética , Animales , Botulismo/fisiopatología , Clostridium botulinum/patogenicidad , Humanos , Neurotoxinas/sangre , Neurotoxinas/química , Neurotoxinas/metabolismo , Parálisis/metabolismo , Parálisis/microbiología , Terminales Presinápticos/metabolismo , Unión Proteica , Transporte de Proteínas
18.
Biosens Bioelectron ; 57: 207-12, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24583693

RESUMEN

Botulinum neurotoxin A (BoNT/A) has intrinsic endoprotease activity specific for SNAP-25, a key protein for presynaptic neurotransmitter release. The inactivation of SNAP-25 by BoNT/A underlies botulism, a rare but potentially fatal disease. There is a crucial need for a rapid and sensitive in vitro serological test for BoNT/A to replace the current in vivo mouse bioassay. Cleavage of SNAP-25 by BoNT/A generates neo-epitopes which can be detected by binding of a monoclonal antibody (mAb10F12) and thus measured by surface plasmon resonance (SPR). We have explored two SPR assay formats, with either mAb10F12 or His6-SNAP-25 coupled to the biosensor chip. When BoNT/A was incubated with SNAP-25 in solution and the reaction products were captured on a mAb-coated chip, a sensitivity of 5 fM (0.1LD50/ml serum) was obtained. However, this configuration required prior immunoprecipitation of BoNT/A. A sensitivity of 0.5 fM in 10% serum (0.1 LD50/ml serum) was attained when SNAP-25 was coupled directly to the chip, followed by sequential injection of BoNT/A samples and mAb10F12 into the flow system to achieve on-chip cleavage and detection, respectively. This latter format detected BoNT/A endoprotease activity in 50-100 µl serum samples from all patients (11/11) with type A botulism within 5h. No false positives occurred in sera from healthy subjects or patients with other neurological diseases. The automated chip-based procedure has excellent specificity and sensitivity, with significant advantages over the mouse bioassay in terms of rapidity, required sample volume and animal ethics.


Asunto(s)
Técnicas Biosensibles/métodos , Toxinas Botulínicas Tipo A/sangre , Botulismo/sangre , Animales , Anticuerpos Inmovilizados/química , Anticuerpos Monoclonales/química , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/diagnóstico , Botulismo/metabolismo , Humanos , Límite de Detección , Ratones , Péptido Hidrolasas/sangre , Péptido Hidrolasas/metabolismo , Análisis por Matrices de Proteínas/métodos
19.
Anal Chem ; 85(11): 5569-76, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23656526

RESUMEN

Botulinum neurotoxins (BoNTs) are used in a wide variety of medical applications, but there is limited pharmacokinetic data on active BoNT. Monitoring BoNT activity in the circulation is challenging because BoNTs are highly toxic and are rapidly taken up by neurons and removed from the bloodstream. Previously we reported a sensitive BoNT "Assay with a Large Immunosorbent Surface Area" that uses conversion of fluorogenic peptide substrates to measure the intrinsic endopeptidase activity of bead-captured BoNT. However, in complex biological samples, protease contaminants can also cleave the substrates, reducing sensitivity and specificity of the assay. Here, we present a novel set of fluorogenic peptides that serve as BoNT-specific substrates and protease-sensitive controls. BoNT-cleavable substrates contain a C-terminal Nle, while BoNT-noncleavable controls contain its isomer ε-Ahx. The substrates are cleaved by BoNT subtypes A1-A3 and A5. Substrates and control peptides can be cleaved by non-BoNT proteases (e.g., trypsin, proteinase K, and thermolysin) while obeying Michaelis-Menten kinetics. Using this novel substrate/control set, we studied BoNT/A1 activity in two mouse models of botulism. We detected BoNT/A serum activities ranging from ~3600 to 10 amol/L in blood of mice that had been intravenously injected 1 h prior with BoNT/A1 complex (100 to 4 pg/mouse). We also detected the endopeptidase activity of orally administered BoNT/A1 complex (1 µg) in blood 5 h after administration; activity was greatest 7 h after administration. Redistribution and elevation rates for active toxin were measured and are comparable to those reported for inactive toxin.


Asunto(s)
Bioensayo , Toxinas Botulínicas/análisis , Botulismo/metabolismo , Endopeptidasas/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/metabolismo , Toxinas Botulínicas/inmunología , Toxinas Botulínicas/metabolismo , Cromatografía Liquida/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Cinética , Ratones , Proteínas Recombinantes/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo
20.
Curr Top Microbiol Immunol ; 364: 115-37, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23239351

RESUMEN

Clostridium botulinum neurotoxin (BoNT) is a multidomain protein in which the individual modules work in synchronized cooperative action in order to enter into neurons and inhibit synaptic transmission. The di-chain protein is made up of the ~50 kD light chain and the ~100 kD heavy chain. The HC can be further subdivided into the N-terminal translocation domain (H(N)) and the C-terminal Receptor Binding Domain (H(C)). BoNT entry into neurons requires the toxin to utilize the host cell's endocytosis pathway where it exploits the acidic environment of the endosome. Within the endosome the H(C) triggers the H(N) to change conformation from a soluble protein to a membrane inserted protein-conducting channel in precise timing with LC refolding. The LC must partially unfold to a translocation competent conformation in order to be translocated by the H(N) channel in an N to C terminal direction. Upon completion of translocation, the LC is released from the HC and allowed to interact with its substrate SNARE protein. This article discusses the individual functions of each module as well as the mechanisms by which each domain serves as a chaperone for the others, working in concert to achieve productive intoxication.


Asunto(s)
Toxinas Botulínicas/metabolismo , Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Neurotoxinas/metabolismo , Animales , Botulismo/metabolismo , Botulismo/microbiología , Membrana Celular/metabolismo , Clostridium botulinum/metabolismo , Clostridium botulinum/patogenicidad , Citosol/metabolismo , Fenómenos Electrofisiológicos , Endocitosis , Endosomas/metabolismo , Endosomas/fisiología , Activación Enzimática , Concentración de Iones de Hidrógeno , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Neuronas/fisiología , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Desplegamiento Proteico , Proteolisis , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/fisiología , Proteínas SNARE/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...