Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 707
Filtrar
1.
J Environ Sci (China) ; 147: 268-281, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003046

RESUMEN

The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (∼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Hidrocarburos , Rhodococcus , Rhodococcus/metabolismo , Reactores Biológicos/microbiología , Hidrocarburos/metabolismo , Carbono/metabolismo , Contaminantes Atmosféricos/metabolismo , Contaminantes Atmosféricos/análisis , Espectrometría de Masas , Tolueno/metabolismo , Xilenos/metabolismo , Butanos/metabolismo , Derivados del Benceno , Pentanos
2.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003065

RESUMEN

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Asunto(s)
Antibacterianos , Ganado , Estiércol , Microbiología del Suelo , Animales , Suelo/química , Secuestro de Carbono , Carbono/metabolismo , Fósforo , Reciclaje , Contaminantes del Suelo/metabolismo , Bovinos , Porcinos , Nitrógeno/análisis , Oxitetraciclina
3.
J Environ Sci (China) ; 148: 321-335, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095168

RESUMEN

Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Proyectos Piloto , Reactores Biológicos/microbiología , Metano/metabolismo , Metano/análisis , Carbono/metabolismo , Carbono/análisis , China , Biocombustibles
4.
Sci Rep ; 14(1): 19365, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169106

RESUMEN

Leaves experience near-constant light fluctuations daily. Past studies have identified many limiting factors of slow photosynthetic induction when leaves transition from low light to high light. However, the contribution of photorespiration in influencing photosynthesis during transient light conditions is largely unknown. This study employs dynamic measurements of gas exchange and metabolic responses to examine the contribution of photorespiration in constraining net rates of carbon assimilation during light induction. This work indicates that photorespiratory glycine accumulation during the early light induction contributes 5-7% to the additional carbon fixed relative to the low light conditions. Mutants with large glycine pools under photorespiratory conditions (5-formyl THF cycloligase and hydroxypyruvate reductase 1) showed a transient spike in net CO2 assimilation during light induction, with glycine buildup accounting for 22-36% of the extra carbon assimilated. Interestingly, levels of many C3 cycle intermediates remained relatively constant in both mutants and wild-type throughout the light induction period where glycine accumulated, indicating that recycling of carbon into the C3 cycle via photorespiration is not needed to maintain C3 cycle activity under transient conditions. Furthermore, our data show that oxygen transient experiments can be used as a proxy to identify the photorespiratory component of light-induced photosynthetic changes.


Asunto(s)
Glicina , Luz , Fotosíntesis , Hojas de la Planta , Glicina/metabolismo , Hojas de la Planta/metabolismo , Dióxido de Carbono/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/genética , Carbono/metabolismo , Oxígeno/metabolismo , Mutación
5.
Proc Natl Acad Sci U S A ; 121(35): e2401916121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172788

RESUMEN

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.


Asunto(s)
Carbono , Microbiología del Suelo , Suelo , Carbono/metabolismo , Carbono/análisis , Suelo/química , Incertidumbre , Cambio Climático , Ecosistema , Bacterias/metabolismo , Secuestro de Carbono , Aprendizaje Automático , Ciclo del Carbono
6.
Nat Commun ; 15(1): 6943, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138161

RESUMEN

Heterotrophic Bacteria and Archaea (prokaryotes) are a major component of marine food webs and global biogeochemical cycles. Yet, there is limited understanding about how prokaryotes vary across global environmental gradients, and how their global abundance and metabolic activity (production and respiration) may be affected by climate change. Using global datasets of prokaryotic abundance, cell carbon and metabolic activity we reveal that mean prokaryotic biomass varies by just under 3-fold across the global surface ocean, while total prokaryotic metabolic activity increases by more than one order of magnitude from polar to tropical coastal and upwelling regions. Under climate change, global prokaryotic biomass in surface waters is projected to decline ~1.5% per °C of warming, while prokaryotic respiration will increase ~3.5% ( ~ 0.85 Pg C yr-1). The rate of prokaryotic biomass decline is one-third that of zooplankton and fish, while the rate of increase in prokaryotic respiration is double. This suggests that future, warmer oceans could be increasingly dominated by prokaryotes, diverting a growing proportion of primary production into microbial food webs and away from higher trophic levels as well as reducing the capacity of the deep ocean to sequester carbon, all else being equal.


Asunto(s)
Archaea , Bacterias , Biomasa , Cambio Climático , Procesos Heterotróficos , Océanos y Mares , Archaea/metabolismo , Bacterias/metabolismo , Agua de Mar/microbiología , Cadena Alimentaria , Animales , Zooplancton/metabolismo , Carbono/metabolismo , Peces , Células Procariotas/metabolismo
7.
Sci Rep ; 14(1): 18781, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138326

RESUMEN

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight in rice. Polyhydroxyalkanoates (PHAs) consitute a diverse group of biopolyesters synthesized by bacteria under nutrient-limited conditions. The phaC gene is important for PHA polymerization. We investigated the effects of phaC gene mutagensis in Xoo strain PXO99A. The phaC gene knock-out mutant exhibited reduced swarming ability relative to that of the wild-type. Under conditions where glucose was the sole sugar source, extracellular polysaccharide (EPS) production by ΔphaC declined by 44.8%. ΔphaC showed weak hypersensitive response (HR) induction in the leaves of non-host Nicotiana tabacum, concomitant with downregulation of hpa1 gene expression. When inoculated in rice leaves by the leaf-clipping method, ΔphaC displayed reduced virulence in terms of lesion length compared with the wild-type strain. The complemented strain showed no significant difference from the wild-type strain, suggesting that the deletion of phaC in Xoo induces significant alterations in various physiological and biological processes. These include bacterial swarming ability, EPS production, transcription of hrp genes, and glucose metabolism. These changes are intricately linked to the energy utilization and virulence of Xoo during plant infection. These findings revealed involvement of phaC in Xoo is in the maintaining carbon metabolism by functioning in the PHA metabolic pathway.


Asunto(s)
Proteínas Bacterianas , Carbono , Oryza , Enfermedades de las Plantas , Polisacáridos Bacterianos , Xanthomonas , Xanthomonas/patogenicidad , Xanthomonas/genética , Xanthomonas/metabolismo , Oryza/microbiología , Carbono/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia/genética , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Regulación Bacteriana de la Expresión Génica , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Nicotiana/microbiología , Hojas de la Planta/microbiología
8.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39152088

RESUMEN

AIMS: Carbon source is a necessary nutrient for bacterial strain growth. In industrial production, the cost of using different carbon sources varies greatly. Moreover, the complex environment in space may cause metabolic a series of changes in the strain, and this method has been successfully applied in some basic research. To date, space mutagenesis is still limited number of studies, particularly in carbon metabolism of probiotics. METHODS AND RESULTS: HG-R7970-41 was isolated from bacterium suspension (Probio-M9) after space flight, which can produce capsular polysaccharide after space mutagenesis. Phenotype Microarray (PM) was used to evaluated the metabolism of HG-R7970-41 in 190 single carbon sources. RNA sequencing and total protein identification of two strains revealed their different carbon metabolism mechanisms. PM results demonstrated the metabolism of 10 carbon sources were different between Probio-M9 and HG-R7970-41. Transcriptomic and proteomic analyses revealed that this change in carbon metabolism of HG-R7970-41 mainly related to changes in phosphorylation and the glycolysis pathway. Based on the metabolic mechanism of different carbon sources and related gene cluster analysis, we found that the final metabolic activities of HG-R7970-41 and Probio-M9 were mainly regulated by PTS-specific membrane embedded permease, carbohydrate kinase and two rate-limiting enzymes (phosphofructokinase and pyruvate kinase) in the glycolysis pathway. The expanded culture test also confirmed that HG-R7970-41 had different metabolic characteristics from original strain. CONCLUSIONS: These results suggested that space environment could change carbon metabolism of Probio-M9. The new isolate (HG-R7970-41) showed a different carbon metabolism pattern from the original strain mainly by the regulation of two rate-limiting enzymes.


Asunto(s)
Carbono , Lacticaseibacillus rhamnosus , Carbono/metabolismo , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Lacticaseibacillus rhamnosus/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Mutagénesis , Proteómica , Probióticos/metabolismo , Transcriptoma
9.
Nat Commun ; 15(1): 7084, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154003

RESUMEN

Tropical forests account for over 50% of the global terrestrial carbon sink, but climate change threatens to alter the carbon balance of these ecosystems. We show that warming and drying of tropical forest soils may increase soil carbon vulnerability, by increasing degradation of older carbon. In situ whole-profile heating by 4 °C and 50% throughfall exclusion each increased the average radiocarbon age of soil CO2 efflux by ~2-3 years, but the mechanisms underlying this shift differed. Warming accelerated decomposition of older carbon as increased CO2 emissions depleted newer carbon. Drying suppressed decomposition of newer carbon inputs and decreased soil CO2 emissions, thereby increasing contributions of older carbon to CO2 efflux. These findings imply that both warming and drying, by accelerating the loss of older soil carbon or reducing the incorporation of fresh carbon inputs, will exacerbate soil carbon losses and negatively impact carbon storage in tropical forests under climate change.


Asunto(s)
Dióxido de Carbono , Carbono , Cambio Climático , Bosques , Suelo , Clima Tropical , Suelo/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Carbono/metabolismo , Ciclo del Carbono , Secuestro de Carbono , Ecosistema
10.
Plant Cell Rep ; 43(9): 219, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155298

RESUMEN

KEY MESSAGE: Exogenous application of 24-epibrassinolide can alleviate oxidative damage, improve photosynthetic capacity, and regulate carbon and nitrogen assimilation, thus improving the tolerance of grapevine (Vitis vinifera L.) to drought stress. Brassinosteroids (BRs) are a group of plant steroid hormones in plants and are involved in regulating plant tolerance to drought stress. This study aimed to investigate the regulation effects of BRs on the carbon and nitrogen metabolism in grapevine under drought stress. The results indicated that drought stress led to the accumulation of superoxide radicals and hydrogen peroxide and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the improved antioxidant concentration. Moreover, exogenous EBR improved the photosynthetic capacity and sucrose phosphate synthase activity, and decreased the sucrose synthase, acid invertase, and neutral invertase, resulting in improved sucrose (190%) and starch (17%) concentrations. Furthermore, EBR pretreatment strengthened nitrate reduction and ammonium assimilation. A 57% increase in nitrate reductase activity and a 13% increase in glutamine synthetase activity were observed in EBR pretreated grapevines. Meanwhile, EBR pretreated plants accumulated a greater amount of proline, which contributed to osmotic adjustment and ROS scavenging. In summary, exogenous EBR enhanced drought tolerance in grapevines by alleviating oxidative damage and regulating carbon and nitrogen metabolism.


Asunto(s)
Brasinoesteroides , Resistencia a la Sequía , Fotosíntesis , Esteroides Heterocíclicos , Vitis , Antioxidantes/metabolismo , Antioxidantes/farmacología , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Carbono/metabolismo , Glucosiltransferasas/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Nitrato-Reductasa/metabolismo , Nitrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacología , Estrés Fisiológico/efectos de los fármacos , Vitis/efectos de los fármacos , Vitis/metabolismo , Vitis/fisiología
11.
Sci Rep ; 14(1): 18989, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39160252

RESUMEN

There is growing interest in intercropping as a practice to increase productivity per unit area and ecosystem functioning in agricultural systems. Relay intercropping with soy and winter wheat may benefit soil health due to increased diversity and longer undisturbed soil cover, yet this remains largely unstudied. Using a field experiment in Eastern Germany, we studied the temporal dynamics of chemical, biological, and physical indicators of soil health in the topsoil over a year of cultivation to detect early effects of soy-wheat relay intercropping compared to sole cropping. Indicators included microbial abundance, permanganate-oxidizable carbon, carbon fractions, pH, and water infiltration. Relay intercropping showed no unique soil health benefits compared to sole cropping, likely affected by drought that stressed intercropped soy. Relay intercropping did, however, maintain several properties of both sole crops including an increased MAOM C:N ratio and higher soil water infiltration. The MAOM C:N ratio increased by 4.2 and 6.2% in intercropping and sole soy and decreased by 5% in sole wheat. Average near-saturated soil water infiltration rates were 12.6, 14.9, and 6.0 cm hr-1 for intercropping, sole wheat, and sole soy, respectively. Cropping system did not consistently affect other indicators but we found temporal patterns of these indicators, showing their sensitivity to external changes.


Asunto(s)
Agricultura , Productos Agrícolas , Glycine max , Estaciones del Año , Suelo , Triticum , Triticum/crecimiento & desarrollo , Suelo/química , Glycine max/crecimiento & desarrollo , Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Microbiología del Suelo , Alemania , Carbono/análisis , Carbono/metabolismo , Ecosistema , Producción de Cultivos/métodos , Agua
12.
Microbiome ; 12(1): 154, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160636

RESUMEN

BACKGROUND: Carbon monoxide (CO), hypothetically linked to prebiotic biosynthesis and possibly the origin of the life, emerges as a substantive growth substrate for numerous microorganisms. In anoxic environments, the coupling of CO oxidation with hydrogen (H2) production is an essential source of electrons, which can subsequently be utilized by hydrogenotrophic bacteria (e.g., organohalide-respring bacteria). While Dehalococcoides strains assume pivotal roles in the natural turnover of halogenated organics and the bioremediation of chlorinated ethenes, relying on external H2 as their electron donor and acetate as their carbon source, the synergistic dynamics within the anaerobic microbiome have received comparatively less scrutiny. This study delves into the intriguing prospect of CO serving as both the exclusive carbon source and electron donor, thereby supporting the reductive dechlorination of trichloroethene (TCE). RESULTS: The metabolic pathway involved anaerobic CO oxidation, specifically the Wood-Ljungdahl pathway, which produced H2 and acetate as primary metabolic products. In an intricate microbial interplay, these H2 and acetate were subsequently utilized by Dehalococcoides, facilitating the dechlorination of TCE. Notably, Acetobacterium emerged as one of the pivotal collaborators for Dehalococcoides, furnishing not only a crucial carbon source essential for its growth and proliferation but also providing a defense against CO inhibition. CONCLUSIONS: This research expands our understanding of CO's versatility as a microbial energy and carbon source and unveils the intricate syntrophic dynamics underlying reductive dechlorination.


Asunto(s)
Acetatos , Biodegradación Ambiental , Monóxido de Carbono , Carbono , Chloroflexi , Electrones , Halogenación , Hidrógeno , Oxidación-Reducción , Tricloroetileno , Tricloroetileno/metabolismo , Chloroflexi/metabolismo , Hidrógeno/metabolismo , Monóxido de Carbono/metabolismo , Acetatos/metabolismo , Carbono/metabolismo , Microbiota , Redes y Vías Metabólicas , Anaerobiosis , Bacterias/metabolismo , Bacterias/clasificación
13.
Glob Chang Biol ; 30(8): e17463, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39120552

RESUMEN

To bridge the knowledge gap between (a) our (instantaneous-to-seasonal-scale) process understanding of plants and water and (b) our projections of long-term coupled feedbacks between the terrestrial water and carbon cycles, we must uncover what the dominant dynamics are linking fluxes of water and carbon. This study uses the simplest empirical dynamical systems models-two-dimensional linear models-and observation-based data from satellites, eddy covariance towers, weather stations, and machine-learning-derived products to determine the dominant sub-annual timescales coupling carbon uptake and (normalized) evaporation fluxes. We find two dominant modes across the Contiguous United States: (1) a negative correlation timescale on the order of a few days during which landscapes dry after precipitation and plants increase their carbon uptake through photosynthetic upregulation. (2) A slow, seasonal-scale positive covariation through which landscape drying leads to decreased growth and carbon uptake. The slow (positively correlated) process dominates the joint distribution of local water and carbon variables, leading to similar behaviors across space, biomes, and climate regions. We propose that vegetation cover/leaf area variables link this behavior across space, leading to strong emergent spatial patterns of water/carbon coupling in the mean. The spatial pattern of local temporal dynamics-positively sloped tangent lines to a convex long-term mean-state curve-is surprisingly strong, and can serve as a benchmark for coupled Earth System Models. We show that many such models do not represent this emergent mean-state pattern, and hypothesize that this may be due to lack of water-carbon feedbacks at daily scales.


Asunto(s)
Ciclo del Carbono , Estaciones del Año , Estados Unidos , Agua/metabolismo , Modelos Teóricos , Ecosistema , Fotosíntesis , Ciclo Hidrológico , Plantas/metabolismo , Carbono/análisis , Carbono/metabolismo
14.
J Environ Manage ; 367: 122011, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094415

RESUMEN

Photosynthetic carbon sequestration and microbial carbon metabolism are major processes of algae-bacteria interactions, affecting pollutant degradation as well as fundamental biogeochemical cycles in aquatic systems. Human-induced land-use changes greatly alter the molecular composition and input of terrestrial dissolved organic matter (DOM) in inland lakes. However, how the origin of DOM leads to varying effects on phycosphere microbial communities or molecular composition of DOM, e.g., via carbon metabolism, has been little studied in freshwater. Here, we incubated the cyanobacterium Microcystis aeruginosa and a bacterial community from natural lakes to establish an alga-bacteria model system. This allowed us to investigate how DOM from different sources affects phycosphere microbial diversity and DOM diversification. We showed that Suwannee River fulvic acid (SRFA), Suwannee River natural organic matter (SRNOM) and cropland lake DOM promote algal growth, whereas DOM from an urban lake inhibits algal growth. Algal metabolites and DOM together shaped the chemotaxis response of phycosphere communities. High-resolution mass spectrometry analysis demonstrated that DOM chemo-diversity tended to become uniform after interactions of diverse DOM sources with the algae-bacteria symbiosis system. Molecular thermodynamic analysis of DOM based on a substrate-explicit model further verified that microbial interactions render DOM less bioavailable and thus increase recalcitrant DOM formation. Metabolome analysis uncovered that DOM addition intensifies metabolic pathways related to labile and recalcitrant DOM utilization (mainly lignin/carboxyl-rich alicyclic molecule (CRAM)-like DOM, unsaturated hydrocarbon), whereby cofactor and vitamin metabolism represented an extremely strong activity in all metabolic pathways. Our results highlight covariation and interactions of DOM with microbial metabolism at the molecular level and expands our understanding of microbially mediated DOM shaping aquatic carbon cycling.


Asunto(s)
Carbono , Lagos , Lagos/microbiología , Carbono/metabolismo , Humanos , Benzopiranos , Bacterias/metabolismo
15.
Environ Microbiol Rep ; 16(4): e13323, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39128846

RESUMEN

Cyanobacteria have many biotechnological applications. Increasing their cultivation pH can assist in capturing carbon dioxide and avoiding invasion by other organisms. However, alkaline media may have adverse effects on cyanobacteria, such as reducing the Carbon-Concentrating Mechanism's efficiency. Here, we cultivated two halo-alkaliphilic cyanobacteria consortia in chemostats at pH 10.2-11.4. One consortium was dominated by Ca. Sodalinema alkaliphilum, the other by a species of Nodosilinea. These two cyanobacteria dominate natural communities in Canadian and Asian alkaline soda lakes. We show that increasing the pH decreased biomass yield. This decrease was caused, in part, by a dramatic increase in carbon transfer to heterotrophs. At pH 11.4, cyanobacterial growth became limited by bicarbonate uptake, which was mainly ATP dependent. In parallel, the higher the pH, the more sensitive cyanobacteria became to light, resulting in photoinhibition and upregulation of DNA repair systems.


Asunto(s)
Cianobacterias , Lagos , Concentración de Iones de Hidrógeno , Cianobacterias/metabolismo , Cianobacterias/crecimiento & desarrollo , Cianobacterias/genética , Lagos/microbiología , Lagos/química , Biomasa , Carbono/metabolismo , Canadá , Dióxido de Carbono/metabolismo , Bicarbonatos/metabolismo , Luz
16.
Sci Rep ; 14(1): 18255, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107357

RESUMEN

Polyhydroxyalkanoates (PHAs) could be used to make sustainable, biodegradable plastics. However, the precise and accurate mechanistic modeling of PHA biosynthesis, especially medium-chain-length PHA (mcl-PHA), for yield improvement remains a challenge to biology. PHA biosynthesis is typically triggered by nitrogen limitation and tends to peak at an optimal carbon-to-nitrogen (C/N) ratio. Specifically, simulation of the underlying dynamic regulation mechanisms for PHA bioprocess is a bottleneck owing to surfeit model complexity and current modeling philosophies for uncertainty. To address this issue, we proposed a quantum-like decision-making model to encode gene expression and regulation events as hidden layers by the general transformation of a density matrix, which uses the interference of probability amplitudes to provide an empirical-level description for PHA biosynthesis. We implemented our framework modeling the biosynthesis of mcl-PHA in Pseudomonas putida with respect to external C/N ratios, showing its optimization production at maximum PHA production of 13.81% cell dry mass (CDM) at the C/N ratio of 40:1. The results also suggest the degree of P. putida's preference in channeling carbon towards PHA production as part of the bacterium's adaptative behavior to nutrient stress using quantum formalism. Generic parameters (kD, kN and theta θ) obtained based on such quantum formulation, representing P. putida's PHA biosynthesis with respect to external C/N ratios, was discussed. This work offers a new perspective on the use of quantum theory for PHA production, demonstrating its application potential for other bioprocesses.


Asunto(s)
Nitrógeno , Polihidroxialcanoatos , Pseudomonas putida , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Teoría Cuántica , Nutrientes/metabolismo , Modelos Biológicos
17.
Sci Rep ; 14(1): 18247, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107374

RESUMEN

In the search for the origin of Amyotrophic Lateral Sclerosis disease (ALS), we hypothesized earlier (Monselise, 2019) that D-amino acids produced by stressed microbiome may serve as inducers of the disease development. Many examples of D-amino acid accumulation under various stress conditions were demonstrated in prokaryotic and eukaryotic cells. In this work, wild-type Escherichia coli, members of the digestive system, were subjected to carbon and nitrogen starvation stress. Using NMR and LC-MS techniques, we found for the first time that D-glutamate accumulated in the stressed bacteria but not in control cells. These results together with the existing knowledge, allow us to suggest a new insight into the pathway of ALS development: D-glutamate, produced by the stressed microbiome, induces neurobiochemical miscommunication setting on C1q of the complement system. Proving this insight may have great importance in preventive medicine of such MND modern-age diseases as ALS, Alzheimer, and Parkinson.


Asunto(s)
Esclerosis Amiotrófica Lateral , Escherichia coli , Ácido Glutámico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/microbiología , Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Humanos , Estrés Fisiológico , Complemento C1q/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo
18.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39105276

RESUMEN

Soils provide essential ecosystem services and represent the most diverse habitat on Earth. It has been suggested that the presence of various physico-chemically heterogeneous microhabitats supports the enormous diversity of microbial communities in soil. However, little is known about the relationship between microbial communities and their immediate environment at the micro- to millimetre scale. In this study, we examined whether bacteria, archaea, and fungi organize into distinct communities in individual 2-mm-sized soil aggregates and compared them to communities of homogenized bulk soil samples. Furthermore, we investigated their relationship to their local environment by concomitantly determining microbial community structure and physico-chemical properties from the same individual aggregates. Aggregate communities displayed exceptionally high beta-diversity, with 3-4 aggregates collectively capturing more diversity than their homogenized parent soil core. Up to 20%-30% of ASVs (particularly rare ones) were unique to individual aggregates selected within a few centimetres. Aggregates and bulk soil samples showed partly different dominant phyla, indicating that taxa that are potentially driving biogeochemical processes at the small scale may not be recognized when analysing larger soil volumes. Microbial community composition and richness of individual aggregates were closely related to aggregate-specific carbon and nitrogen content, carbon stable-isotope composition, and soil moisture, indicating that aggregates provide a stable environment for sufficient time to allow co-development of communities and their environment. We conclude that the soil microbiome is a metacommunity of variable subcommunities. Our study highlights the necessity to study small, spatially coherent soil samples to better understand controls of community structure and community-mediated processes in soils.


Asunto(s)
Archaea , Bacterias , Hongos , Microbiota , Microbiología del Suelo , Suelo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Suelo/química , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/genética , Archaea/clasificación , Archaea/aislamiento & purificación , Biodiversidad , Carbono/análisis , Carbono/metabolismo , Nitrógeno/análisis
19.
J Hazard Mater ; 477: 135293, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094307

RESUMEN

Perchlorate (ClO4-) mainly exists in the form of ammonium perchlorate in industrial production. However, the degradation mechanisms of different concentrations of ammonium nitrogen (NH4+-N) and ClO4- mixed pollutants in the environment are not well understood. This study aims to explore the potential of different types of carbon sources for ClO4- and NH4+-N biodegradation. Experimental results showed that the concentration and type of carbon sources are decisive to simultaneous removal of NH4+-N and ClO4-. Under condition of C(COD)/C(ClO4-) ratio of 21.15 ± 4.40, the simultaneously removal efficiency of ClO4- and NH4+-N in acetate (Ace) was relatively higher than that in methanol (Met). C(NH4+-N)/C(ClO4-) ratio of 9.66 ± 0.51 and C(COD)/C(ClO4-) ratio of 2.51 ± 0.87 promoted ClO4- reduction in glucose-C (Glu-C). However, high concentration of Glu could cause pH decrease (from 7.57 to 4.59), thereby inhibiting ClO4- reduction. High-throughput sequencing results indicated that Proteobacteria and Bacteroidetes have made a major contribution to the simultaneous removal of NH4+-N and ClO4-. They are two representative bacterial phyla for participating in both ClO4- reduction and denitrification. Notably, the abundance of main ClO4- degrading bacteria (such as Proteobacteria, Chloroflexi, and Firmicutes) significantly increased by 528.57 % in Glu-C. It can be inferred that the concentration of carbon source and NH4+-N were the most important factors determining the removal efficiency of ClO4- by influencing changes in the core microbial community. This study will provide new techniques and mechanistic insights for the simultaneous removal of mixed ClO4- and nitrogen pollutants, which can also provide theoretical support for innovation in future biological treatment processes.


Asunto(s)
Biodegradación Ambiental , Carbono , Percloratos , Contaminantes Químicos del Agua , Percloratos/metabolismo , Carbono/química , Carbono/metabolismo , Contaminantes Químicos del Agua/metabolismo , Procesos Heterotróficos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Nitrógeno/metabolismo , Compuestos de Amonio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Glucosa/metabolismo
20.
Glob Chang Biol ; 30(8): e17466, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39152655

RESUMEN

Global patterns in soil microbiomes are driven by non-linear environmental thresholds. Fertilization is known to shape the soil microbiome of terrestrial ecosystems worldwide. Yet, whether fertilization influences global thresholds in soil microbiomes remains virtually unknown. Here, utilizing optimized machine learning models with Shapley additive explanations on a dataset of 10,907 soil samples from 24 countries, we discovered that the microbial community response to fertilization is highly dependent on environmental contexts. Furthermore, the interactions among nitrogen (N) addition, pH, and mean annual temperature contribute to non-linear patterns in soil bacterial diversity. Specifically, we observed positive responses within a soil pH range of 5.2-6.6, with the influence of higher temperature (>15°C) on bacterial diversity being positive within this pH range but reversed in more acidic or alkaline soils. Additionally, we revealed the threshold effect of soil organic carbon and total nitrogen, demonstrating how temperature and N addition amount interacted with microbial communities within specific edaphic concentration ranges. Our findings underscore how complex environmental interactions control soil bacterial diversity under fertilization.


Asunto(s)
Bacterias , Fertilizantes , Microbiota , Nitrógeno , Microbiología del Suelo , Suelo , Temperatura , Nitrógeno/análisis , Nitrógeno/metabolismo , Fertilizantes/análisis , Concentración de Iones de Hidrógeno , Suelo/química , Carbono/análisis , Carbono/metabolismo , Aprendizaje Automático , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA