Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
ACS Appl Bio Mater ; 7(5): 3061-3085, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38581388

RESUMEN

Carvedilol (CVD), an adrenoreceptor blocker, is a hydrophobic Biopharmaceutics Classification System class II drug with poor oral bioavailability due to which frequent dosing is essential to attain pharmacological effects. Quercetin (QC), a polyphenolic compound, is a potent natural antioxidant, but its oral dosing is restricted due to poor aqueous solubility and low oral bioavailability. To overcome the common limitations of both drugs and to attain synergistic cardioprotective effects, we formulated CVD- and QC-encapsulated cationic nanoliposomes (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. We designed CVD- and QC-loaded cationic nanoliposomal (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. In vitro drug release studies of CVD/QC-L.O.F. (16.25%) exhibited 18.78 ± 0.57% of QC release and 91.38 ± 0.93% of CVD release for 120 h. Ex vivo nasal permeation studies of CVD/QC-L.O.F. demonstrated better permeation of QC (within 96 h), i.e., 75.09% compared to in vitro drug release, whereas CVD permeates within 48 h, indicating the better interaction between cationic NLPs and the negatively charged biological membrane. The developed nasal gel showed a sufficient mucoadhesive property, good spreadability, higher firmness, consistency, and cohesiveness, indicating suitability for membrane application and intranasal administration. CVD-NLPs, QC-NLPs, and CVD/QC-NLPs were evaluated for in vitro cytotoxicity, in vitro ROS-induced cell viability assessment, and a cellular uptake study using H9c2 rat cardiomyocytes. The highest in vitro cellular uptake of CVD/QC-cationic NLPs by H9c2 cells implies the benefit of QC loading within the CVD nanoliposomal carrier system and gives evidence for better interaction of NLPs carrying positive charges with the negatively charged biological cells. The in vitro H2O2-induced oxidative stress cell viability assessment of H9c2 cells established the intracellular antioxidant activity and cardioprotective effect of CVD/QC-cationic NLPs with low cytotoxicity. These findings suggest the potential of cationic NLPs as a suitable drug delivery carrier for CVD and QC combination for the intranasal route in the treatment of various cardiovascular diseases like hypertension, angina pectoris, etc. and for treating neurodegenerative disorders.


Asunto(s)
Administración Intranasal , Carvedilol , Liposomas , Nanopartículas , Tamaño de la Partícula , Quercetina , Carvedilol/química , Carvedilol/farmacología , Carvedilol/administración & dosificación , Quercetina/química , Quercetina/administración & dosificación , Quercetina/farmacología , Liposomas/química , Animales , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Ratas , Cationes/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Supervivencia Celular/efectos de los fármacos
2.
Int J Pharm ; 657: 124175, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38685442

RESUMEN

Molecular interactions are crucial to stabilize amorphous drugs in amorphous solid dispersions (ASDs). Most polymers, however, have only a limited ability to form strong molecular interactions with drugs. Polymers tailored to fit the physicochemical properties of the drug molecule to be incorporated, for instance by allowing the incorporation of specific functional groups, would be highly sought-for in this regard. For this purpose, the novel allyl-terminated polymer methoxy(polyethylene glycol)-block-poly(jasmine lactone) (mPEG-b-PJL) has been synthesized and functionalized to potentially enhance specific drug-polymer interactions. This study investigated the use of mPEG-b-PJL in ASDs, using carvedilol (CAR), a weakly basic model drug. The findings revealed that the acidic functionalized form of the polymer (mPEG-b-PJL-COOH) indeed established stronger molecular interactions with CAR compared to its non-functionalized counterpart mPEG-b-PJL. Evaluations on polymer effectiveness in forming ASDs demonstrated that mPEG-b-PJL-COOH outperformed its non-functionalized counterpart in miscibility, drug loading ability, and stability, inferred from reduced molecular mobility. However, dissolution tests indicated that ASDs with mPEG-b-PJL-COOH did not significantly improve the dissolution behaviour compared to amorphous CAR alone, despite potential solubility enhancement through micelle formation. Overall, this study confirms the potential of functionalized polymers in ASD formulations, while the challenge of improving dissolution performance in these ASDs remains an area of further development.


Asunto(s)
Polietilenglicoles , Polietilenglicoles/química , Solubilidad , Carvedilol/química , Estabilidad de Medicamentos , Polímeros/química , Lactonas/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos
3.
Chirality ; 35(10): 779-792, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37221930

RESUMEN

Carvedilol, a highly protein-bound beta-blocker, is used in therapy as a racemic mixture of its two enantiomers that exhibit different pharmacological activity. The aim of this study was to evaluate the stereoselective nature of its binding to the two major plasma proteins: albumin and alpha-1-acid glycoprotein. The determination of the plasma protein-binding degree for carvedilol and its enantiomers was achieved using ultrafiltration for the separation of the free fraction, followed by LC-MS/MS quantification, using two different developed and validated methods in terms of stationary phase: achiral C18 type and chiral ovomucoid type. Furthermore, molecular docking methods were applied in order to investigate and to better understand the mechanism of protein-binding for S-(-)- and R-(+)-carvedilol. A difference in the binding behavior of the two enantiomers to the plasma proteins was observed when taken individually, with R-(+)-carvedilol having a higher affinity for albumin and S-(-)-carvedilol for alpha-1-acid glycoprotein. However, in the case of the racemic mixture, the binding of the S enantiomer to alpha-1-acid glycoprotein seemed to be influenced by the presence of its antipode, although no such influence was observed in the case of albumin. The results raise the question of a binding competition between the two enantiomers for alpha-1-acid glycoprotein.


Asunto(s)
Antagonistas Adrenérgicos beta , Carvedilol , Orosomucoide , Albúmina Sérica Humana , Humanos , Albúminas , Carbazoles/química , Carvedilol/química , Cromatografía Liquida/métodos , Simulación del Acoplamiento Molecular , Orosomucoide/química , Albúmina Sérica Humana/química , Estereoisomerismo , Espectrometría de Masas en Tándem/métodos , Unión Proteica , Unión Competitiva , Antagonistas Adrenérgicos beta/química
4.
Molecules ; 28(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110635

RESUMEN

Carvedilol is a poorly water-soluble drug employed to treat chronic heart failure. In this study, we synthesize new carvedilol-etched halloysite nanotubes (HNTs) composites to enhance solubility and dissolution rate. The simple and feasible impregnation method is used for carvedilol loading (30-37% weight). Both the etched HNTs (acidic HCl and H2SO4 and alkaline NaOH treatments) and the carvedilol-loaded samples are characterized by various techniques (XRPD, FT-IR, solid-state NMR, SEM, TEM, DSC, and specific surface area). The etching and loading processes do not induce structural changes. The drug and carrier particles are in intimate contact and their morphology is preserved, as demonstrated by TEM images. The 27Al and 13C solid-state NMR and FT-IR findings show that carvedilol interactions involve the external siloxane surface, especially the aliphatic carbons, the functional groups, and, by inductive effect, the adjacent aromatic carbons. All the carvedilol-halloysite composites display enhanced dissolution rate, wettability, and solubility, as compared to carvedilol. The best performances are obtained for the carvedilol-halloysite system based on HNTs etched with HCl 8M, which exhibits the highest value of specific surface area (91 m2 g-1). The composites make the drug dissolution independent of the environmental conditions of the gastrointestinal tract and its absorption less variable, more predictable, and independent from the pH of the medium.


Asunto(s)
Nanotubos , Carvedilol/química , Solubilidad , Arcilla , Espectroscopía Infrarroja por Transformada de Fourier , Nanotubos/química
5.
F1000Res ; 12: 1438, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38778814

RESUMEN

Background: In the current work, co-rotating twin-screw processor (TSP) was utilized to formulate solid crystal suspension (SCS) of carvedilol (CAR) for enhancing its solubility, dissolution rate, permeation and bioavailability using mannitol as a hydrophilic carrier. Methods: In-silico molecular dynamics (MD) studies were done to simulate the interaction of CAR with mannitol at different kneading zone temperatures (KZT). Based on these studies, the optimal CAR: mannitol ratios and the kneading zone temperatures for CAR solubility enhancement were assessed. The CAR-SCS was optimized utilizing Design-of-Experiments (DoE) methodology using the Box-Behnken design. Saturation solubility studies and in vitro dissolution studies were performed for all the formulations. Physicochemical characterization was performed using differential scanning calorimetry , Fourier transform infrared spectroscopy, X-ray diffraction studies, and Raman spectroscopy analysis. Ex vivo permeation studies and in vivo pharmacokinetic studies for the CAR-SCS were performed. Stability studies were performed for the DoE-optimized CAR-SCS at accelerated stability conditions at 40 ºC/ 75% RH for three months. Results: Experimentally, the formulation with CAR: mannitol ratio of 20:80, prepared using a KZT of 120 ºC at 100 rpm screw speed showed the highest solubility enhancement accounting for 50-fold compared to the plain CAR. Physicochemical characterization confirmed the crystalline state of DoE-optimized CAR-SCS. In-vitro dissolution studies indicated a 6.03-fold and 3.40-fold enhancement in the dissolution rate of optimized CAR-SCS in pH 1.2 HCl solution and phosphate buffer pH 6.8, respectively, as compared to the pure CAR. The enhanced efficacy of the optimized CAR-SCS was indicated in the ex vivo and in vivo pharmacokinetic studies wherein the apparent permeability was enhanced 1.84-fold and bioavailability enhanced 1.50-folds compared to the plain CAR. The stability studies showed good stability concerning the drug content. Conclusions: TSP technology could be utilized to enhance the solubility, bioavailability and permeation of poor soluble CAR by preparing the SCS.


Asunto(s)
Disponibilidad Biológica , Carvedilol , Solubilidad , Carvedilol/farmacocinética , Carvedilol/química , Carvedilol/administración & dosificación , Animales , Administración Oral , Carbazoles/farmacocinética , Carbazoles/química , Carbazoles/administración & dosificación , Propanolaminas/farmacocinética , Propanolaminas/química , Propanolaminas/administración & dosificación , Permeabilidad , Masculino , Manitol/química , Manitol/farmacocinética , Suspensiones , Simulación de Dinámica Molecular , Ratas
6.
Int J Pharm ; 625: 122127, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35995319

RESUMEN

The work describes a novel, small-molecule phytochemicals as nanomaterials based pro-micelles (pro-phytomicelles) drug delivery system, for oral delivery of carvedilol (CAR). This novel nanoformulation of CAR, named CAR pro-phytomicelles, was prepared with rebaudioside A (RA) and dipotassium glycyrrhizinate (DG) as mixed nanomaterials. The formulation was optimized, leading to a 502-fold increase in solubility of CAR in water as a result of encapsulation within mixed phytomicelles based on DG and RA. CAR pro-phytomicelles samples could be instantly dissolved into aqueous media to formulate clear phytomicelle solutions with CAR encapsulation efficiency of 99.67 ± 0.02 %, and small micelle size of 15.62 ± 0.27 nm. CAR pro-phytomicelles exhibited good storage stability, rapid in vitro release in simulated intestinal fluid, and improved in vitro antioxidant activity. CAR pro-phytomicelles had good biocompatibility. Protective efficacy evaluation revealed that acetaminophen overdose could induce high mortality and severe liver injury in mice, while CAR pro-phytomicelle treatment exhibited significant protective effect against acetaminophen overdose. This protective efficacy was due to a mechanism that involved the regulation of high-mobility group box 1 and its signaling-related proinflammatory cytokines. These results show that pro-phytomicelles could provide a new concept and promising therapeutics as nanomedicines for improving the activities of CAR against acetaminophen-induced liver injury.


Asunto(s)
Acetaminofén , Nanopartículas , Administración Oral , Animales , Disponibilidad Biológica , Carvedilol/química , Portadores de Fármacos/química , Ratones , Micelas , Nanopartículas/química , Solubilidad , Agua/química
7.
Mol Pharmacol ; 100(5): 513-525, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34580163

RESUMEN

Among ß-blockers that are clinically prescribed for heart failure, carvedilol is a first-choice agent with unique pharmacological properties. Carvedilol is distinct from other ß-blockers in its ability to elicit ß-arrestin-biased agonism, which has been suggested to underlie its cardioprotective effects. Augmenting the pharmacologic properties of carvedilol thus holds the promise of developing more efficacious and/or biased ß-blockers. We recently identified compound-6 (cmpd-6), the first small molecule positive allosteric modulator of the ß2-adrenergic receptor (ß2AR). Cmpd-6 is positively cooperative with orthosteric agonists at the ß2AR and enhances agonist-mediated transducer (G-protein and ß-arrestin) signaling in an unbiased manner. Here, we report that cmpd-6, quite unexpectedly, displays strong positive cooperativity only with carvedilol among a panel of structurally diverse ß-blockers. Cmpd-6 enhances the binding affinity of carvedilol for the ß2AR and augments its ability to competitively antagonize agonist-induced cAMP generation. Cmpd-6 potentiates ß-arrestin1- but not Gs-protein-mediated high-affinity binding of carvedilol at the ß2AR and ß-arrestin-mediated cellular functions in response to carvedilol including extracellular signal-regulated kinase phosphorylation, receptor endocytosis, and trafficking into lysosomes. Importantly, an analog of cmpd-6 that selectively retains positive cooperativity with carvedilol acts as a negative modulator of agonist-stimulated ß2AR signaling. These unprecedented cooperative properties of carvedilol and cmpd-6 have implications for fundamental understanding of G-protein-coupled receptor (GPCR) allosteric modulation, as well as for the development of more effective biased beta blockers and other GPCR therapeutics. SIGNIFICANCE STATEMENT: This study reports on the small molecule-mediated allosteric modulation of the ß-arrestin-biased ß-blocker, carvedilol. The small molecule, compound-6 (cmpd-6), displays an exclusive positive cooperativity with carvedilol among other ß-blockers and enhances the binding affinity of carvedilol for the ß2-adrenergic receptor. Cooperative effects of cmpd-6 augment the ß-blockade property of carvedilol while potentiating its ß-arrestin-mediated signaling functions. These findings have potential implications in advancing G-protein-coupled receptor allostery, developing biased therapeutics and remedying cardiovascular ailments.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Carvedilol/farmacología , Receptores Adrenérgicos beta 2 , beta-Arrestinas/farmacología , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Carvedilol/química , Carvedilol/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Receptores Adrenérgicos beta 2/metabolismo , Células Sf9 , beta-Arrestinas/química , beta-Arrestinas/metabolismo
8.
Eur J Pharm Biopharm ; 168: 139-151, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34481906

RESUMEN

Carvedilol (CAR) is a strategic beta-blocker agent which its application has been limited by its very low water solubility. The present study describes a soluble form of drug based on nano-cocrystal (NCC) anti-solvent precipitation technique. The COSMOquick software was employed to select the optimum coformer (tartaric acid, TA) and organic solvent (acetone) relying on the enthalpy changes of cocrystallization and solubilization. Central Composite Design (CCD) considering the impact of CAR, TA, poloxamer 188 (stabilizer) concentrations, and anti-solvent/solvent ratio on CAR NCCs particle size (PS) could produce ultra-fine NCCs (about 1 nm). The lyophilization of NCCs investigating slow/fast freezing rates, various types and concentrations of cryprotectants and lyoprotectants indicated that PEG and trehalose (5 % w/vconcentration) under slow freezing rate could re-produce the initial PSs successfully. CAR NCCs indicated about 2000 fold increase in solubility compared with pure CAR. DSC and PXRD experiments proved that the formulations containing trehalose led to more crystalline and the ones comprising PEG led to more amorphous structures. Interestingly, the slow freezed PEG protected NCCs were physically stable for at least 18 months. In conclusion, the NCC technology could produce the first safe soluble form of CAR for treating hypertension urgencies easy for industrial scale-up.


Asunto(s)
Antagonistas Adrenérgicos beta/administración & dosificación , Carvedilol/administración & dosificación , Excipientes/química , Nanopartículas , Antagonistas Adrenérgicos beta/química , Carvedilol/química , Química Farmacéutica/métodos , Cristalización , Diseño de Fármacos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Liofilización , Tamaño de la Partícula , Solubilidad , Solventes/química , Factores de Tiempo , Trehalosa/química
9.
Int J Biol Macromol ; 188: 263-271, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34371042

RESUMEN

Self-assembly of disordered amyloid-beta (Aß) peptides results in highly ordered amyloid fibrils. The structural information of the early-stage events and also in the presence of inhibitors is of great significance. It is challenging to acquire due to the nature of the amyloids and experimental constraints. Here, we demonstrate the cascade of aggregation (early to late) of the Aß25-35 peptide in the absence and presence of carvedilol, a nonselective ß-adrenergic receptor blocker. The aggregation process of Aß25-35 peptide is monitored using Thioflavin T (ThT) fluorescence, dynamic light scattering (DLS), circular dichroism (CD), Raman spectroscopic techniques, and imaging experiments. We find that the Aß25-35 peptide undergoes an early-stage (3-6 h) helical intermediate formation across the fibrillation pathway using CD and Raman measurements. Carvedilol obstructs the helical intermediate formation of Aß25-35 peptide resulting in inhibition. CD spectra and deconvolution of the Raman bands suggest the ß-sheet formation (24-100 h) in the absence of carvedilol. Spectroscopic results indicate a disordered structure for the peptide in the presence of carvedilol (24-100 h). Electron microscopy (EM) shows the formation of polymorphic fibrils for the peptide alone and non-amyloidal aggregates in the presence of carvedilol. Molecular docking study suggests that the plausible mode of interaction with carvedilol involves the C-terminal residues of the peptide.


Asunto(s)
Péptidos beta-Amiloides/química , Amiloide/química , Carvedilol/química , Fragmentos de Péptidos/química , Amiloide/antagonistas & inhibidores , Amiloide/ultraestructura , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/ultraestructura , Carvedilol/farmacología , Dicroismo Circular , Fluorescencia , Humanos , Microscopía Electrónica , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/ultraestructura
10.
Mol Pharm ; 18(6): 2298-2310, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34032449

RESUMEN

(S)-carvedilol (S-CAR) is the dominant pharmacodynamic conformation of carvedilol, but its further development for extended-release formulation is restricted by its poor solubility. This study aimed to prepare and screen S-CAR salts that could be used to improve solubility and allow extended release. Five salts of S-CAR with well-known acid counterions (i.e., phosphate, hydrochloride, sulfate, fumarate, and tartrate) were produced using similar processes. However, these salts were obtained with water contents of 1.60-12.28%, and their physicochemical properties differed. The melting points of phosphate, hydrochloride, and tartrate were 1.1-1.5 times higher than that of the free base. The solubility of S-CAR salts was promoted to approximately 3-32 times higher than that of the free base at pH 5.0-8.0. Typical pH-dependent solubilities were evidently observed in S-CAR salts, but considerable differences in solubility properties among these salts were observed. S-CAR phosphate and hydrochloride possessed high melting points, considerable solubility, and excellent chemical and crystallographic stabilities. Accordingly, S-CAR phosphate and hydrochloride were chosen for further pharmacokinetic experiments and pharmaceutical study. S-CAR phosphate and hydrochloride extended-release capsules were prepared using HPMC K15 as the matrix and presented extended release in in vitro and in vivo evaluations. Results implied that water molecules in the hydrated salt were a potential threat to the achievement of crystal stability and thermostability. S-CAR phosphate and hydrochloride are suitable for further development of the extended-release formulation.


Asunto(s)
Carvedilol/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Carvedilol/administración & dosificación , Carvedilol/química , Química Farmacéutica , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Desarrollo de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Masculino , Nanopartículas , Ratas , Solubilidad , Estereoisomerismo
11.
J Nanobiotechnology ; 19(1): 100, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836744

RESUMEN

BACKGROUND: Carvedilol, the anti-hypertensive drug, has poor bioavailability when administered orally. Ethosomes-mediated transdermal delivery is considered a potential route of administration to increase the bioavailability of carvedilol. The central composite design could be used as a tool to optimize ethosomal formulation. Thus, this study aims to optimize carvedilol-loaded ethosomes using central composite design, followed by incorporation of synthesized ethosomes into hydrogels for transdermal delivery of carvedilol. RESULTS: The optimized carvedilol-loaded ethosomes were spherical in shape. The optimized ethosomes had mean particle size of 130 ± 1.72 nm, entrapment efficiency of 99.12 ± 2.96%, cumulative drug release of 97.89 ± 3.7%, zeta potential of - 31 ± 1.8 mV, and polydispersity index of 0.230 ± 0.03. The in-vitro drug release showed sustained release of carvedilol from ethosomes and ethosomal hydrogel. Compared to free carvedilol-loaded hydrogel, the ethosomal gel showed increased penetration of carvedilol through the skin. Moreover, ethosomal hydrogels showed a gradual reduction in blood pressure for 24 h in rats. CONCLUSIONS: Taken together, central composite design can be used for successful optimization of carvedilol-loaded ethosomes formulation, which can serve as the promising transdermal delivery system for carvedilol. Moreover the carvedilol-loaded ethosomal gel can extend the anti-hypertensive effect of carvedilol for a longer time, as compared to free carvedilol, suggesting its therapeutic potential in future clinics.


Asunto(s)
Antihipertensivos/química , Antihipertensivos/farmacología , Carvedilol/química , Carvedilol/farmacología , Hidrogeles/química , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Tamaño de la Partícula , Ratas , Piel/efectos de los fármacos , Absorción Cutánea
12.
Cancer Prev Res (Phila) ; 14(5): 527-540, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33648941

RESUMEN

Skin cancer is the most common malignancy worldwide and is rapidly rising in incidence, representing a significant public health challenge. The ß-blocker, carvedilol, has shown promising effects in preventing skin cancer. However, as a potent ß-blocker, repurposing carvedilol to an anticancer agent is limited by cardiovascular effects. Carvedilol is a racemic mixture consisting of equimolar S- and R-carvedilol, whereas the R-carvedilol enantiomer does not possess ß-blocking activity. Because previous studies suggest that carvedilol's cancer preventive activity is independent of ß-blockade, we examined the skin cancer preventive activity of R-carvedilol compared with S-carvedilol and the racemic carvedilol. R- and S-carvedilol were equally effective in preventing EGF-induced neoplastic transformation of the mouse epidermal JB6 Cl 41-5a (JB6 P+) cells and displayed similar attenuation of EGF-induced ELK-1 activity. R-carvedilol appeared slightly better than S-carvedilol against UV-induced intracellular oxidative stress and release of prostaglandin E2 from the JB6 P+ cells. In an acute UV-induced skin damage and inflammation mouse model using a single irradiation of 300 mJ/cm2 UV, topical treatment with R-carvedilol dose dependently attenuated skin edema and reduced epidermal thickening, Ki-67 staining, COX-2 protein, and IL6 and IL1ß mRNA levels similar to carvedilol. In a chronic UV (50-150 mJ/cm2) induced skin carcinogenesis model in mice with pretreatment of test agents, topical treatment with R-carvedilol, but not racemic carvedilol, significantly delayed and reduced skin squamous cell carcinoma development. Therefore, as an enantiomer present in an FDA-approved agent, R-carvedilol may be a better option for developing a safer and more effective preventive agent for skin carcinogenesis. PREVENTION RELEVANCE: In this study, we demonstrated the skin cancer preventive activity of R-carvedilol, the non-ß-blocking enantiomer present in the racemic ß-blocker, carvedilol. As R-carvedilol does not have ß-blocking activity, such a preventive treatment would not lead to common cardiovascular side effects of ß-blockers.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carvedilol/administración & dosificación , Epidermis/efectos de los fármacos , Neoplasias Experimentales/prevención & control , Neoplasias Cutáneas/prevención & control , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/patología , Carcinogénesis/efectos de la radiación , Carvedilol/química , Células Epidérmicas , Factor de Crecimiento Epidérmico/toxicidad , Epidermis/patología , Epidermis/efectos de la radiación , Femenino , Células HEK293 , Humanos , Ratones , Neoplasias Experimentales/etiología , Neoplasias Experimentales/patología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología , Estereoisomerismo , Rayos Ultravioleta/efectos adversos
13.
Molecules ; 26(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557164

RESUMEN

Converting crystalline compounds into co-amorphous systems is an effective way to improve the solubility of poorly water-soluble drugs. It is, however, of critical importance for the physical stability of co-amorphous systems to find the optimal mixing ratio of the drug with the co-former. In this study, a novel approach for this challenge is presented, exemplified with the co-amorphous system carvedilol-tryptophan (CAR-TRP). Following X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) of the ball-milled samples to confirm their amorphous form, Fourier-transform infrared spectroscopy (FTIR) and principal component analysis (PCA) were applied to investigate intermolecular interactions. A clear deviation from a purely additive spectrum of CAR and TRP was visualized in the PCA score plot, with a maximum at around 30% drug (mol/mol). This deviation was attributed to hydrogen bonds of CAR with TRP ether groups. The sample containing 30% drug (mol/mol) was also the most stable sample during a stability test. Using the combination of FTIR with PCA is an effective approach to investigate the optimal mixing ratio of non-strong interacting co-amorphous systems.


Asunto(s)
Carvedilol/química , Triptófano/química , Composición de Medicamentos , Estabilidad de Medicamentos , Análisis Multivariante , Solubilidad , Agua/química
14.
AAPS PharmSciTech ; 22(1): 43, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33426619

RESUMEN

Carvedilol is administered as a racemic mixture for the therapy of hypertension and heart failure. S-enantiomer is the dominant conformation of pharmacodynamics, but its further development was obstructed by its poor bioavailability. In this study, carvedilol and its enantiomers were compared in terms of solubility, permeability, and biliary excretion, and reasons for the poor bioavailability were discussed. Equilibrium solubility and log P were measured by a shake flask method at a wide pH range (1.2-8.0), and intestinal absorption and biliary excretion were evaluated using a single-pass rat intestinal perfusion model. According to BCS guidance, carvedilol and its R/S enantiomers are considered highly soluble at pH value less than 5.0 and low soluble at neutral or weak alkaline conditions. RS-carvedilol showed significantly lower solubilities at pH 1.2-5.0 and higher solubilities at pH 6.0-8.0 than its enantiomers. In addition, carvedilol and its enantiomers possessed similar log P values at pH 1.2-8.0. High intestinal permeabilities of carvedilol and its enantiomers were observed, and S-carvedilol showed higher absorption than R-carvedilol and RS-carvedilol. The biliary excretion about two major metabolites, 1-hydroxycarvedilol O-glucuronide and 8-hydroxycarvedilol O-glucuronide, of RS-carvedilol, S-carvedilol, and R-carvedilol were 66.4%, 73.5%, and 54.3%, respectively. In conclusion, there are significant differences amongst carvedilol and its R/S enantiomers in terms of solubility, intestine absorption, and biliary excretion abilities. The first pass effect is the primary reasons for the low bioavailability of S-carvedilol. Therefore, pharmaceutical strategies or parenteral routes should be considered to avoid the first pass metabolism.


Asunto(s)
Bilis/metabolismo , Carvedilol/química , Absorción Intestinal , Animales , Carvedilol/farmacocinética , Masculino , Ratas , Ratas Sprague-Dawley , Solubilidad , Estereoisomerismo
15.
Drug Dev Ind Pharm ; 46(9): 1507-1516, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32806972

RESUMEN

OBJECTIVES: The blocking effect of S-carvedilol (S-CAR) on the beta-adrenoceptor is about 100 times stronger than that of the right-handed conformation. However, further development is restricted because of its poor bioavailability caused by its low solubility and high first-pass effect. In the study, S-CAR self-microemulsifying drug-delivery systems (SMEDDSs) were established, and the effects of different lipid materials on the absorption and metabolism of S-CAR were investigated. METHODS: Six kinds of lipid materials with different chemical structures including oleic acid, glycerol monooleate, glycerol trioleate, oleoyl macrogol-6 glycerides, soybean lecithin, and α-tocopherol were selected to be the oil phase. The S-CAR SMEDDSs were prepared by the same ratio. In vitro characteristics, in vitro release, in situ intestine absorption, and bile excretion, as well as the in vivo characteristic of relative bioavailability, were determined. KEY FINDINGS: The lipid structure significantly affected physical characteristics, the absorption and excretion rates of S-CAR SMEDDSs. The findings of rat-intestine perfusion experiments showed that the S-CAR SMEDDSs decreased the bile-excretion rate of S-CAR. Compared with the S-CAR group, the oleic acid and soybean lecithin groups decreased the bile excretion to 32% and 45%, respectively. Pharmacokinetic studies showed that the AUCs of these two groups were about 1.9 and 1.7 times more than that of the S-CAR group, and the mean retention time was extended. CONCLUSION: The SMEDDS using ionic lipids (oleic acid or soybean lecithin) as oil phase can increase the oral bioavailability of S-CAR by increasing the solubility and reducing the first-pass effect.


Asunto(s)
Carvedilol/química , Sistemas de Liberación de Medicamentos , Lípidos , Administración Oral , Animales , Disponibilidad Biológica , Ratas , Solubilidad
16.
Pharm Dev Technol ; 25(9): 1053-1062, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32558594

RESUMEN

The aim of this study was to propose the use of spray-dried mucoadhesive carvedilol-loaded nanocapsules in the formulation of sublingual tablets. There is no previous report describing the preparation of tablets containing spray-dried nanocapsules or tablets containing nanocapsules, neither prepared by direct compression nor for sublingual administration. Tablets of 6 mm of diameter and 2.7 ± 0.2 mm of height were obtained with a mean weight of 44 ± 4 mg, carvedilol content of 0.164 ± 0.017 mg, and a disintegration time less than 25 min. They were produced using a force of 4.7 ± 1.6 kgf. The release profile of carvedilol from the tablets was evaluated using the dialysis bag method. In parallel, the release of nanocapsules from the tablet structure into the release medium was evaluated using dynamic light scattering. Nanocapsules that were released from the tablets into the release medium exhibited similar particle size distributions after recovery as in their original liquid suspension, without losing their original ability to control drug release. Therefore, sublingual tablets may be produced from spray-dried drug-loaded nanocapsules using a direct compression technique, providing a useful pharmaceutical approach for drugs that undergo first pass metabolism, such as carvedilol.


Asunto(s)
Carvedilol/química , Nanocápsulas/química , Comprimidos/química , Administración Sublingual , Química Farmacéutica/métodos , Liberación de Fármacos/efectos de los fármacos , Nanomedicina/métodos , Tamaño de la Partícula , Polímeros/química , Suspensiones/química
17.
Int J Pharm ; 586: 119510, 2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32531449

RESUMEN

This study aimed to investigate whether hot-melt extrusion (HME) processing can modify the interactions between drugs, cyclodextrins and polymers, and in turn alter the microstructure and properties of supramolecular gels. Mixtures composed of amphiphilic polymer (Soluplus), cyclodextrin (HPßCD or αCD), plasticizer (PEG400 or PEG6000) and colloidal silicon dioxide were processed by HME. Carvedilol (CAR) was added to the formulation aiming its transdermal delivery. Extrudates were characterized by HPLC, XRPD, FTIR, DSC, and solid-state NMR. Gels prepared from extrudates (HME gels) or the corresponding physical mixtures (PM gels) in PBS were analyzed regarding components ordering (NMR, SEM), rheology, and CAR diffusion rate. HME led to the loss of the crystalline lattice of CAR and αCD, without causing any drug degradation. Solid NMR indicated that HME promoted the interaction of α-CD and HPßCD with the other components. HME gels had no coarsely disperse particles in their structure and behaved as weak gels (G' ~ G″). In contrast, PM gels contained drug crystals and showed elastic behavior (G' > G″). In general, HME gels were less viscous than PM ones and led to higher drug flux, especially those prepared using HPßCD. Moreover, the association of HPßCD and PEG6000 provided faster drug flux from supramolecular gels regardless the higher gel viscosity. The results evidenced that HME processing can decisively modify the arrangement of the components in the supramolecuar gels and, consequently, their properties, notably increasing drug release rate.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Carvedilol/administración & dosificación , Excipientes/química , Rotaxanos/química , Administración Cutánea , Antagonistas Adrenérgicos beta/administración & dosificación , Antagonistas Adrenérgicos beta/química , Carvedilol/química , Química Farmacéutica , Liberación de Fármacos , Geles , Plastificantes/química , Polietilenglicoles/química , Polímeros/química , Reología , Viscosidad , alfa-Ciclodextrinas/química
18.
AAPS PharmSciTech ; 21(5): 146, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32435989

RESUMEN

The objective of this work was to study the effect of the physiologically relevant enzymes pepsin, pancreatin, and the synthetic surfactant sodium lauryl sulfate (SLS) on the surface tension of the dissolution media and the solubility and dissolution of the weakly basic drug carvedilol. Compendial dissolution media and buffer solutions that simulate the gastrointestinal fluid, prepared with and without the addition of SLS, were used in this study. The surface tension of the dissolution media; critical micelle concentration (CMC) of SLS in buffer solutions; and size, polydispersity index, and zeta potential of SLS micelles loading carvedilol were determined. The solubility and dissolution of carvedilol were investigated and compared with those of the corresponding media prepared without the addition of pepsin, pancreatin, and SLS. Results showed that the addition of pepsin, pancreatin, and SLS lowered the surface tension of the dissolution media to 54.8, 55.7, and ~ 30 mN/m, respectively. The solubility of carvedilol was significantly enhanced with pepsin and SLS; however, no significant difference was found with pancreatin. The dissolution rate of carvedilol was fast in simulated gastric fluid with and without pepsin. The dissolution was further enhanced in media with pancreatin and SLS. The dissolution data were corroborated with the molar micellar solubilization (X) of SLS, ranging between 0.02 and 3.09. Understanding the effect of pepsin, pancreatin, and SLS on the surface tension of the dissolution media and the solubility and dissolution of poorly soluble drugs can improve our knowledge of the performance of these drugs in vivo.


Asunto(s)
Carvedilol/química , Dodecil Sulfato de Sodio/farmacología , Tensoactivos/farmacología , Micelas , Pancreatina/química , Pepsina A/química , Solubilidad , Tensión Superficial
19.
Eur J Pharm Sci ; 150: 105343, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32376386

RESUMEN

Binary polymeric amorphous carvedilol solid dispersions were prepared using solvent method by varying solvent type, polymer type and carvedilol to polymer ratio in order to assess the influence of these factors and maximize carvedilol dissolution rate. Low and high molecular weight polyvinylpyrrolidone, polyvinylpyrrolidone-vinyl acetate copolymer and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer were used as polymeric carriers in carvedilol to polymer ratios 1:1, 1:2 or 1:4, while absolute ethanol or acetone were used as solvents. Hard gelatin capsules were prepared with carvedilol solid dispersion and lactose monohydrate, mannitol or microcrystalline cellulose. FTIR and PXRD were used to detect carvedilol crystallinity and identify carvedilol-polymer interactions and carvedilol polymorphs. These techniques confirmed carvedilol transition to amorphous state and suggested that hydrogen bonds were formed between carvedilol and polymer molecules. Carvedilol dissolution rate was significantly higher from solid dispersions with higher carvedilol to polymer ratio and solid dispersions prepared using the solvent in which the polymer was more soluble. Solid dispersion with polyvinylpyrrolidone-vinyl acetate copolymer in 1:4 ratio in absolute ethanol displayed the highest carvedilol dissolution rate with 91.78% carvedilol dissolved in the first 30 min. Capsules prepared with the selected solid dispersion and microcrystalline cellulose as diluent displayed the highest carvedilol dissolution rate, with 93.43% carvedilol dissolved within the first 30 min. Carvedilol bioavailability was significantly increased by formulating solid dispersions, while the analysis of serum biochemical parameters excluded damage on liver and kidney function and the lipid profile of animals exposed to investigated drug delivery system.


Asunto(s)
Antihipertensivos , Carvedilol , Portadores de Fármacos , Excipientes , Polímeros , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/sangre , Antihipertensivos/química , Antihipertensivos/farmacocinética , Disponibilidad Biológica , Carvedilol/administración & dosificación , Carvedilol/sangre , Carvedilol/química , Carvedilol/farmacocinética , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Excipientes/administración & dosificación , Excipientes/química , Excipientes/farmacocinética , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Polímeros/administración & dosificación , Polímeros/química , Polímeros/farmacocinética , Ratas Wistar
20.
Int J Pharm ; 584: 119410, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32445909

RESUMEN

The thermal behavior of carvedilol and loratadine was studied by differential scanning calorimetry (DSC). The glass-forming ability, as well as the the tendency for crystallization from the glass (glass stability) and from the metastable and equilibrium melt were also investigated by DSC. In addition this technique was also used to characterize the glass transition of carvedilol and loratadine by determining the activation energy of the structural relaxation, the dynamic fragility, and the heat capacity jump associated with the glass transformation. Different aspects of the molecular mobility in carvedilol and loratadine were analyzed by Thermally Stimulated Depolarization Currents (TSDC), while in carvedilol the Dielectric Relaxation Spectroscopy (DRS) technique was also used. Carvedilol stands out for its high values of specific heat jump and dynamic fragility, which has been attributed to the particular mobility of this glass-former in the glass transformation region, a consequence of specific characteristics of its molecular structure. These molecular features are also at the origin of a relaxation above Tg that has been detected and characterized by TSDC; the DRS investigation allowed to better understand the molecular dynamics in carvedilol in the amorphous solid, in the metastable liquid state and in the glass transformation region. Finally, the secondary relaxations in loratadine were studied by TSDC, while those in carvedilol were studied by the two dielectric techniques and the results were compared and discussed.


Asunto(s)
Carvedilol/química , Química Farmacéutica/métodos , Loratadina/química , Simulación de Dinámica Molecular , Rastreo Diferencial de Calorimetría , Cristalización , Espectroscopía Dieléctrica , Temperatura de Transición , Vitrificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...