Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.843
Filtrar
1.
Sci Rep ; 14(1): 10582, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719932

RESUMEN

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.


Asunto(s)
Neoplasias del Colon , Quinasas Ciclina-Dependientes , Fluorouracilo , Tromboplastina , Regulación hacia Arriba , Humanos , Tromboplastina/metabolismo , Tromboplastina/genética , Línea Celular Tumoral , Fluorouracilo/farmacología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Regulación hacia Arriba/efectos de los fármacos , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/farmacología , Bencimidazoles/farmacología , Compuestos de Piridinio/farmacología , Óxidos N-Cíclicos/farmacología , Indolizinas/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos
2.
Cell Death Dis ; 15(5): 345, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769311

RESUMEN

Treatment-naïve small cell lung cancer (SCLC) is typically susceptible to standard-of-care chemotherapy consisting of cisplatin and etoposide recently combined with PD-L1 inhibitors. Yet, in most cases, SCLC patients develop resistance to first-line therapy and alternative therapies are urgently required to overcome this resistance. In this study, we tested the efficacy of dinaciclib, an FDA-orphan drug and inhibitor of the cyclin-dependent kinase (CDK) 9, among other CDKs, in SCLC. Furthermore, we report on a newly developed, highly specific CDK9 inhibitor, VC-1, with tumour-killing activity in SCLC. CDK9 inhibition displayed high killing potential in a panel of mouse and human SCLC cell lines. Mechanistically, CDK9 inhibition led to a reduction in MCL-1 and cFLIP anti-apoptotic proteins and killed cells, almost exclusively, by intrinsic apoptosis. While CDK9 inhibition did not synergise with chemotherapy, it displayed high efficacy in chemotherapy-resistant cells. In vivo, CDK9 inhibition effectively reduced tumour growth and improved survival in both autochthonous and syngeneic SCLC models. Together, this study shows that CDK9 inhibition is a promising therapeutic agent against SCLC and could be applied to chemo-refractory or resistant SCLC.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Indolizinas , Neoplasias Pulmonares , Compuestos de Piridinio , Carcinoma Pulmonar de Células Pequeñas , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Ratones , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/uso terapéutico , Indolizinas/farmacología , Óxidos N-Cíclicos/farmacología , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Front Endocrinol (Lausanne) ; 15: 1282231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756999

RESUMEN

Introduction: Cigarettes containing nicotine (Nic) are a risk factor for the development of cardiovascular and metabolic diseases. We reported that Nic delivered via injections or e-cigarette vapor led to hepatic steatosis in mice fed with a high-fat diet. High-fructose corn syrup (HFCS) is the main sweetener in sugar-sweetened beverages (SSBs) in the US. Increased consumption of SSBs with HFCS is associated with increased risks of non-alcoholic fatty liver disease (NAFLD). Nicotinamide riboside (NR) increases mitochondrial nicotinamide adenine dinucleotide (NAD+) and protects mice against hepatic steatosis. This study evaluated if Nic plus Coca-Cola™ (Coke) with HFCS can cause hepatic steatosis and that can be protected by NR. Methods: C57BL/6J mice received twice daily intraperitoneal (IP) injections of Nic or saline and were given Coke (HFCS), or Coke with sugar, and NR supplementation for 10 weeks. Results: Our results show that Nic+Coke caused increased caloric intake and induced hepatic steatosis, and the addition of NR prevented these changes. Western blot analysis showed lipogenesis markers were activated (increased cleavage of the sterol regulatory element-binding protein 1 [SREBP1c] and reduction of phospho-Acetyl-CoA Carboxylase [p-ACC]) in the Nic+Coke compared to the Sal+Water group. The hepatic detrimental effects of Nic+Coke were mediated by decreased NAD+ signaling, increased oxidative stress, and mitochondrial damage. NR reduced oxidative stress and prevented mitochondrial damage by restoring protein levels of Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor coactivator 1-alpha (PGC1) signaling. Conclusion: We conclude that Nic+Coke has an additive effect on producing hepatic steatosis, and NR is protective. This study suggests concern for the development of NAFLD in subjects who consume nicotine and drink SSBs with HFCS.


Asunto(s)
Ratones Endogámicos C57BL , Niacinamida , Nicotina , Compuestos de Piridinio , Animales , Compuestos de Piridinio/farmacología , Ratones , Niacinamida/análogos & derivados , Niacinamida/farmacología , Masculino , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Hígado Graso/prevención & control , Hígado Graso/metabolismo , Hígado Graso/inducido químicamente , Jarabe de Maíz Alto en Fructosa/efectos adversos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Estrés Oxidativo/efectos de los fármacos
4.
Int Immunopharmacol ; 132: 112013, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583241

RESUMEN

BACKGROUND: Diabetes-related skin ulcers provide a substantial therapeutic issue, sometimes leading to amputation, needing immediate practical treatments for efficient wound care. While the exact mechanisms are unknown, pyroptosis and deregulation of the unfolded protein response (UPR) are known to exacerbate inflammation. Nicotinamide Riboside (NR) and Resveratrol (RV), which are known for their Nicotinamide adenine dinucleotide (NAD+) boosting and anti-inflammatory properties, are being studied as potential treatments. The purpose of this study was to shed light on the underlying molecular mechanisms and explore the medical application of NR and RV in diabetic wound healing. METHODS: 54 male Sprague-Dawley rats divided into control, diabetic (DM), Gel Base, DM-NR, DM-RV, and DM-NR + RV. Rats were orally administered 50 mg/kg/day of RV and 300 mg/kg/day of NR for 5 weeks. Following diabetes induction, their wounds were topically treated with 5 % NR and RV gel for 15 days. The wound closure rate, body weight, and serum lipid profiles were examined. Gene expression study evaluated UPR and pyroptosis-related genes (BIP, PERK, ATF6, IRE1α, sXBP1, CHOP, NLRP3, caspase-1, NFκB, and IL1-ß) in wound tissues, alongside histological assessment of cellular changes. RESULTS: NR and RV treatments greatly enhanced wound healing. Molecular investigation demonstrated UPR and pyroptosis marker modifications, suggesting UPR balance and anti-inflammatory effects. Histological investigation demonstrated decreased inflammation and increased re-epithelialization. The combination of NR and RV therapy had better results than either treatment alone. CONCLUSION: This study shows that NR and RV have therapeutic promise in treating diabetic wounds by addressing UPR dysregulation, and pyroptosis. The combination therapy is a viable strategy to improving the healing process, providing a multimodal intervention for diabetic skin ulcers. These findings pave the way for additional investigation and possible therapeutic applications, giving hope for better outcomes in diabetic wound care.


Asunto(s)
Diabetes Mellitus Experimental , Niacinamida , Niacinamida/análogos & derivados , Compuestos de Piridinio , Piroptosis , Ratas Sprague-Dawley , Resveratrol , Respuesta de Proteína Desplegada , Cicatrización de Heridas , Animales , Masculino , Piroptosis/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Niacinamida/uso terapéutico , Niacinamida/farmacología , Compuestos de Piridinio/uso terapéutico , Compuestos de Piridinio/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Ratas , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología
5.
Photodermatol Photoimmunol Photomed ; 40(3): e12961, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676310

RESUMEN

BACKGROUND: Environmental ultraviolet radiation has deleterious effects on humans, including sunburn and immune perturbations. These immune changes are involved in skin carcinogenesis. OBJECTIVES: To determine whether nicotinamide riboside and/or pterostilbene administered systemically inhibits inflammatory and immune effects of exposure to mid-range ultraviolet radiation. METHODS: To examine UVB radiation-induced inflammatory effects, mice were fed standard chow/water, 0.04% pterostilbene in chow and 0.2% nicotinamide riboside in drinking water, diet with nicotinamide riboside alone, or diet with pterostilbene alone. After 4 weeks, mice were exposed to UVB radiation (3500 J/m2), and 24-/48-h ear swelling was assessed. We also asked if each agent or the combination inhibits UVB radiation suppression of contact hypersensitivity in two models. Mice were fed standard diet/water or chow containing 0.08% pterostilbene, water with 0.4% nicotinamide riboside, or both for 4 weeks. Low-dose: Half the mice in each group were exposed on the depilated dorsum to UVB radiation (1700 J/m2) daily for 4 days, whereas half were mock-irradiated. Mice were immunized on the exposed dorsum to dinitrofluorobenzene 4 h after the last irradiation, challenged 7 days later on the ears with dinitrofluorobenzene, and 24-h ear swelling assessed. High dose: Mice were treated similarly except that a single dose of 10,000 J/m2 of radiation was administered and immunization was performed on the unirradiated shaved abdomen 3 days later. RESULTS: Nicotinamide riboside and pterostilbene together inhibited UVB-induced skin swelling more than either alone. Pterostilbene alone and both given together could inhibit UVB-induced immune suppression in both the low-dose and high-dose models while nicotinamide riboside alone was more effective in the low-dose model than the high-dose model. CONCLUSION: Nicotinamide riboside and pterostilbene have protective effects against UVB radiation-induced tissue swelling and immune suppression.


Asunto(s)
Niacinamida , Niacinamida/análogos & derivados , Compuestos de Piridinio , Estilbenos , Rayos Ultravioleta , Animales , Niacinamida/farmacología , Compuestos de Piridinio/farmacología , Ratones , Rayos Ultravioleta/efectos adversos , Estilbenos/farmacología , Femenino , Dermatitis por Contacto/inmunología , Dermatitis por Contacto/patología , Dermatitis por Contacto/etiología
6.
Drug Dev Res ; 85(3): e22193, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685605

RESUMEN

The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 µM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC50 = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC50 = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.


Asunto(s)
Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Óxidos N-Cíclicos , Diseño de Fármacos , Indolizinas , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas , Compuestos de Piridinio , Humanos , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Indolizinas/farmacología , Indolizinas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Óxidos N-Cíclicos/farmacología , Óxidos N-Cíclicos/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Relación Estructura-Actividad , Pirimidinas/farmacología , Pirimidinas/química , Ensayos de Selección de Medicamentos Antitumorales , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo
7.
Transl Vis Sci Technol ; 13(3): 24, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546981

RESUMEN

Purpose: To investigate the potential effects and mechanism of nicotinamide riboside (NR) on the oxidative stress and fibrosis model of human trabecular meshwork (HTM) cell line cells. Methods: HTM cells were pretreated with NR, followed by the induction of oxidative injury and fibrosis by hydrogen peroxide (H2O2) and TGF-ß2, respectively. Cell viability was tested using Hoechst staining and MTT assays, cell proliferation was assessed by EdU assay, and cell apoptosis was detected by flow cytometry and western blotting. DCFH-DA and DHE probes were used to measure the level of reactive oxygen species (ROS), and MitoTracker staining was used to measure the mitochondrial membrane potential (MMP). Fibrotic responses, including cell migration and deposition of extracellular matrix (ECM) proteins, were detected via Transwell assays, qRT-PCR, and immunoblotting. Results: NR pretreatment improved the viability, proliferation, and MMP of H2O2-treated HTM cells. Compared to cells treated solely with H2O2, HTM cells treated with both NR and H2O2, exhibited a reduced rate of apoptosis and generation of ROS. Compared with H2O2 pretreatment, NR pretreatment upregulated expression of the JAK2/Stat3 pathway but inhibited mitogen-activated protein kinase (MAPK) pathway expression. Moreover, 10-ng/mL TGF-ß2 promoted cell proliferation and migration, which were inhibited by NR pretreatment. Both qRT-PCR and immunoblotting showed that NR inhibited the expression of fibronectin in a TGF-ß2-induced fibrosis model. Conclusions: NR has a protective effect on oxidative stress and fibrosis in HTM cells, which may be related to the JAK2/Stat3 pathway and MAPK pathway. Translational Relevance: Our research provides the ongoing data for potential therapy of NAD+ precursors in glaucoma.


Asunto(s)
Niacinamida/análogos & derivados , Compuestos de Piridinio , Malla Trabecular , Factor de Crecimiento Transformador beta2 , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Malla Trabecular/metabolismo , Malla Trabecular/patología , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/fisiología , Fibrosis
8.
Cells ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474332

RESUMEN

BACKGROUND: Most patients with testicular germ cell tumors (GCTs) are treated with cisplatin (CP)-based chemotherapy. However, some of them may develop CP resistance and therefore represent a clinical challenge. Cyclin-dependent kinase 5 (CDK5) is involved in chemotherapy resistance in different types of cancer. Here, we investigated the possible role of CDK5 and other CDKs targeted by dinaciclib in nonseminoma cell models (both CP-sensitive and CP-resistant), evaluating the potential of the CDK inhibitor dinaciclib as a single/combined agent for the treatment of advanced/metastatic testicular cancer (TC). METHODS: The effects of dinaciclib and CP on sensitive and resistant NT2/D1 and NCCIT cell viability and proliferation were evaluated using MTT assays and direct count methods. Flow cytometry cell-cycle analysis was performed. The protein expression was assessed via Western blotting. The in vivo experiments were conducted in zebrafish embryos xenografted with TC cells. RESULTS: Among all the CDKs analyzed, CDK5 protein expression was significantly higher in CP-resistant models. Dinaciclib reduced the cell viability and proliferation in each cell model, inducing changes in cell-cycle distribution. In drug combination experiments, dinaciclib enhances the CP effect both in vitro and in the zebrafish model. CONCLUSIONS: Dinaciclib, when combined with CP, could be useful for improving nonseminoma TC response to CP.


Asunto(s)
Cisplatino , Óxidos N-Cíclicos , Indolizinas , Neoplasias de Células Germinales y Embrionarias , Compuestos de Piridinio , Neoplasias Testiculares , Masculino , Animales , Humanos , Cisplatino/farmacología , Pez Cebra , Proliferación Celular , Inhibidores de Proteínas Quinasas/farmacología
9.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38446233

RESUMEN

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Asunto(s)
Reactivadores de la Colinesterasa , Compuestos de Pralidoxima , Taurina/análogos & derivados , Ratas , Humanos , Animales , Reactivadores de la Colinesterasa/farmacología , Trimedoxima/farmacología , Butirilcolinesterasa , Acetilcolinesterasa , Oximas/farmacología , Compuestos de Piridinio/farmacología , Antídotos/farmacología , Inhibidores de la Colinesterasa/toxicidad , Fósforo , Oxígeno
10.
Cells ; 13(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474420

RESUMEN

NAD+ boosting via nicotinamide riboside (NR) confers anti-inflammatory effects. However, its underlying mechanisms and therapeutic potential remain incompletely defined. Here, we showed that NR increased the expression of CC-chemokine receptor 7 (CCR7) in human M1 macrophages by flow cytometric analysis of cell surface receptors. Consequently, chemokine ligand 19 (CCL19, ligand for CCR7)-induced macrophage migration was enhanced following NR administration. Metabolomics analysis revealed that prostaglandin E2 (PGE2) was increased by NR in human monocytes and in human serum following in vivo NR supplementation. Furthermore, NR-mediated upregulation of macrophage migration through CCL19/CCR7 was dependent on PGE2 synthesis. We also demonstrated that NR upregulated PGE2 synthesis through SIRT3-dependent post-transcriptional regulation of cyclooxygenase 2 (COX-2). The NR/SIRT3/migration axis was further validated using the scratch-test model where NR and SIRT3 promoted more robust migration across a uniformly disrupted macrophage monolayer. Thus, NR-mediated metabolic regulation of macrophage migration and wound healing may have therapeutic potential for the topical management of chronic wound healing.


Asunto(s)
Dinoprostona , Niacinamida/análogos & derivados , Compuestos de Piridinio , Sirtuina 3 , Humanos , Dinoprostona/metabolismo , Ligandos , Receptores CCR7/metabolismo , Macrófagos/metabolismo
11.
Toxicol Lett ; 394: 23-31, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387764

RESUMEN

Intoxications with organophosphorus compounds (OPCs) effect a severe impairment of cholinergic neurotransmission that, as a result of overstimulation may lead to desensitization of nicotinic acetylcholine receptors (nAChRs) and finally to death due to respiratory paralysis. So far, therapeutics, that are capable to address and revert desensitized neuromuscular nAChRs into their resting, i.e. functional state are still missing. Still, among a class of compounds termed bispyridinium salts, which are characterized by the presence of two pyridinium subunits, constituents have been identified, that can counteract organophosphate poisoning by resensitizing desensitized nAChRs. According to comprehensive modeling studies this effect is mediated by an allosteric binding site at the nAChR termed MB327-PAM-1 site. For MB327, the most prominent representative of the bispyridinium salts and all other analogues studied so far, the affinity for the aforementioned binding site and the intrinsic activity measured in ex vivo and in in vivo experiments are distinctly too low, to meet the criteria to be fulfilled for therapeutic use. Hence, in order to identify new compounds with higher affinities for the MB327-PAM-1 binding site, as a basic requirement for an enhanced potency, two compound libraries, the ChemDiv library with 60 constituents and the Tocriscreen Plus library with 1280 members have been screened for hit compounds addressing the MB327-PAM-1 binding site, utilizing the [2H6]MB327 MS Binding Assay recently developed by us. This led to the identification of a set of 10 chemically diverse compounds, all of which exhibit an IC50 value of ≤ 10 µM (in the [2H6]MB327 MS Binding Assay), which had been defined as selection criteria. The three most affine ligands, which besides a quinazoline scaffold share similarities with regard to the substitution pattern and the nature of the substituents, are UNC0638, UNC0642 and UNC0646. With binding affinities expressed as pKi values of 6.01 ± 0.10, 5.97 ± 0.05 and 6.23 ± 0.02, respectively, these compounds exceed the binding affinity of MB327 by more than one log unit. This renders them promising starting points for the development of drugs for the treatment of organophosphorus poisoning by addressing the MB327-PAM-1 binding site of the nAChR.


Asunto(s)
Intoxicación por Organofosfatos , Compuestos de Piridinio , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Sales (Química)/metabolismo , Sales (Química)/uso terapéutico , Relación Estructura-Actividad , Sitios de Unión , Intoxicación por Organofosfatos/tratamiento farmacológico , Ligandos
12.
ACS Appl Mater Interfaces ; 16(8): 10590-10600, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38343039

RESUMEN

To inhibit viral infection, it is necessary for the surface of polypropylene (PP), a polymer of significant industrial relevance, to possess biocidal properties. However, due to its low surface energy, PP weakly interacts with other organic molecules. The biocidal effects of quaternary ammonium compounds (QACs) have inspired the development of nonwoven PP fibers with surface-bound quaternary ammonium (QA). Despite this advancement, there is limited knowledge regarding the durability of these coatings against scratching and abrasion. It is hypothesized that the durability could be improved if the thickness of the coating layer were controlled and increased. We herein functionalized PP with three-dimensionally surface-grafted poly(N-benzyl-4-vinylpyridinium bromide) (PBVP) by a simple and rapid method involving graft polymerization and benzylation and examined the influence of different factors on the antiviral effect of the resulting plastic by using a plaque assay. The thickness of the PBVP coating, surface roughness, and amount of QACs, which jointly determine biocidal activity, could be controlled by adjusting the duration and intensity of the ultraviolet irradiation used for grafting. The best-performing sample reduced the viral infection titer of an enveloped model virus (bacteriophage ϕ6) by approximately 5 orders of magnitude after 60 min of contact and retained its antiviral activity after surface polishing-simulated scratching and abrasion, which indicated the localization of QACs across the coating interior. Our method may expand the scope of application to resin plates as well as fibers of PP. Given that the developed approach is not limited to PP and may be applied to other low-surface-energy olefinic polymers such as polyethylene and polybutene, our work paves the way for the fabrication of a wide range of biocidal surfaces for use in diverse environments, helping to prevent viral infection.


Asunto(s)
Polipropilenos , Polivinilos , Compuestos de Piridinio , Compuestos de Vinilo , Virosis , Humanos , Polipropilenos/farmacología , Compuestos de Amonio Cuaternario/farmacología , Polímeros/farmacología , Antivirales/farmacología
13.
Int J Biol Sci ; 20(4): 1194-1217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385069

RESUMEN

Alpers' syndrome is an early-onset neurodegenerative disorder usually caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase-gamma (POLG), which is essential for mitochondrial DNA (mtDNA) replication. The disease is progressive, incurable, and inevitably it leads to death from drug-resistant status epilepticus. The neurological features of Alpers' syndrome are intractable epilepsy and developmental regression, with no effective treatment; the underlying mechanisms are still elusive, partially due to lack of good experimental models. Here, we generated the patient derived induced pluripotent stem cells (iPSCs) from one Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), and further differentiated them into cortical organoids and neural stem cells (NSCs) for mechanistic studies of neural dysfunction in Alpers' syndrome. Patient cortical organoids exhibited a phenotype that faithfully replicated the molecular changes found in patient postmortem brain tissue, as evidenced by cortical neuronal loss and depletion of mtDNA and complex I (CI). Patient NSCs showed mitochondrial dysfunction leading to ROS overproduction and downregulation of the NADH pathway. More importantly, the NAD+ precursor nicotinamide riboside (NR) significantly ameliorated mitochondrial defects in patient brain organoids. Our findings demonstrate that the iPSC model and brain organoids are good in vitro models of Alpers' disease; this first-in-its-kind stem cell platform for Alpers' syndrome enables therapeutic exploration and has identified NR as a viable drug candidate for Alpers' disease and, potentially, other mitochondrial diseases with similar causes.


Asunto(s)
Esclerosis Cerebral Difusa de Schilder , Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Niacinamida/análogos & derivados , Compuestos de Piridinio , Humanos , ADN Polimerasa gamma , NAD/genética , ADN Mitocondrial/genética , Mutación
14.
Toxicology ; 503: 153741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311098

RESUMEN

Organophosphate (OP) poisoning is currently treated with atropine, oximes and benzodiazepines. The nicotinic signs, i.e., respiratory impairment, can only be targeted indirectly via the use of oximes as reactivators of OP-inhibited acetylcholinesterase. Hence, compounds selectively targeting nicotinic acetylcholine receptors (nAChRs) might fundamentally improve current treatment options. The bispyridinium compound MB327 has previously shown some therapeutic effect against nerve agents in vitro and in vivo. Nevertheless, compound optimization was deemed necessary, due to limitations (e.g., toxicity and efficacy). The current study investigated a series of 4-tert-butyl bispyridinium compounds and of corresponding bispyridinium compounds without substituents in a rat diaphragm model using an indirect field stimulation technique. The length of the respective linker influenced the ability of the bispyridinium compounds to restore muscle function in rat hemidiaphragms. The current data show structure-activity relationships for a series of bispyridinium compounds and provide insight for future structure-based molecular modeling.


Asunto(s)
Reactivadores de la Colinesterasa , Agentes Nerviosos , Intoxicación por Organofosfatos , Ratas , Animales , Oximas/farmacología , Oximas/uso terapéutico , Agentes Nerviosos/toxicidad , Diafragma , Acetilcolinesterasa/metabolismo , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/uso terapéutico , Relación Estructura-Actividad , Intoxicación por Organofosfatos/tratamiento farmacológico , Reactivadores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/farmacología
15.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417730

RESUMEN

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Asunto(s)
Sustancias para la Guerra Química , Reactivadores de la Colinesterasa , Agentes Nerviosos , Humanos , Ratones , Animales , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/uso terapéutico , Reactivadores de la Colinesterasa/química , Agentes Nerviosos/toxicidad , Nivel sin Efectos Adversos Observados , Sustancias para la Guerra Química/toxicidad , Oximas/farmacología , Oximas/uso terapéutico , Oximas/química , Compuestos de Piridinio/farmacología , Inhibidores de la Colinesterasa/toxicidad , Inhibidores de la Colinesterasa/química , Colinesterasas , Acetilcolinesterasa , Antídotos/farmacología , Antídotos/uso terapéutico
16.
Neurotherapeutics ; 21(1): e00301, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241160

RESUMEN

Oxidative stress and neuroinflammation are major contributors to the pathophysiology of ALS. Nicotinamide riboside (a NAD+ precursor) and pterostilbene (a natural antioxidant) were efficacious in a human pilot study of ALS patients and in ALS SOD1G93A transgenic mice. Ibudilast targets different phosphodiesterases and the macrophage migration inhibitory factor, reduces neuroinflammation, and in early-phase studies improved survival and slowed progression in ALS patients. Using two ALS murine models (SOD1G93A, FUSR521C) the effects of nicotinamide riboside, pterostilbene, and ibudilast on disease onset, progression and survival were studied. In both models ibudilast enhanced the effects of nicotinamide riboside and pterostilbene on survival and neuromotor functions. The triple combination reduced microgliosis and astrogliosis, and the levels of different proinflammatory cytokines in the CSF. TNFα, IFNγ and IL1ß increased H2O2 and NO generation by motor neurons, astrocytes, microglia and endothelial cells isolated from ALS mice. Nicotinamide riboside and pterostilbene decreased H2O2 and NO generation in all these cells. Ibudilast specifically decreased TNFα levels and H2O2 generation by microglia and endothelial cells. Unexpectedly, pathophysiological concentrations of H2O2 or NO caused minimal motor neuron cytotoxicity. H2O2-induced cytotoxicity was increased by NO via a trace metal-dependent formation of potent oxidants (i.e. OH and -OONO radicals). In conclusion, our results show that the combination of nicotinamide riboside, pterostilbene and ibudilast improve neuromotor functions and survival in ALS murine models. Studies on the underlying mechanisms show that motor neuron protection involves the decrease of oxidative and nitrosative stress, the combination of which is highly damaging to motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral , Indolizinas , Niacinamida/análogos & derivados , Pirazoles , Compuestos de Piridinio , Ratones , Animales , Humanos , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa , Células Endoteliales , Peróxido de Hidrógeno , Proyectos Piloto , Neuronas Motoras , Niacinamida/farmacología , Niacinamida/uso terapéutico , Ratones Transgénicos , Modelos Animales de Enfermedad , Superóxido Dismutasa , Médula Espinal
17.
Toxicol Lett ; 392: 94-106, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216073

RESUMEN

Intoxications with organophosphorus compounds (OPCs) based chemical warfare agents and insecticides may result in a detrimental overstimulation of muscarinic and nicotinic acetylcholine receptors evolving into a cholinergic crisis leading to death due to respiratory failure. In the case of the nicotinic acetylcholine receptor (nAChR), overstimulation leads to a desensitization of the receptor, which cannot be pharmacologically treated so far. Still, compounds interacting with the MB327 binding site of the nAChR like the bispyridinium salt MB327 have been found to re-establish the functional activity of the desensitized receptor. Only recently, a series of quinazoline derivatives with UNC0642 as one of the most prominent representatives has been identified to address the MB327 binding site of the nAChR, as well. In this study, UNC0642 has been utilized as a reporter ligand to establish new Binding Assays for this target. These assays follow the concept of MS Binding Assays for which by assessing the amount of bound reporter ligand by mass spectrometry no radiolabeled material is required. According to the results of the performed MS Binding Assays comprising saturation and competition experiments it can be concluded, that UNC0642 used as a reporter ligand addresses the MB327 binding site of the Torpedo-nAChR. This is further supported by the outcome of ex vivo studies carried out with poisoned rat diaphragm muscles as well as by in silico studies predicting the binding mode of UNC0646, an analog of UNC0642 with the highest binding affinity, in the recently proposed binding site of MB327 (MB327-PAM-1). With UNC0642 addressing the MB327 binding site of the Torpedo-nAChR, this and related quinazoline derivatives represent a promising starting point for the development of novel ligands of the nAChR as antidotes for the treatment of intoxications with organophosphorus compounds. Further, the new MS Binding Assays are a potent alternative to established assays and of particular value, as they do not require the use of radiolabeled material and are based on a commercially available compound as reporter ligand, UNC0642, exhibiting one of the highest binding affinities for the MB327 binding site known so far.


Asunto(s)
Compuestos de Piridinio , Receptores Nicotínicos , Ratas , Animales , Receptores Nicotínicos/metabolismo , Ligandos , Relación Estructura-Actividad , Sitios de Unión , Quinazolinas , Compuestos Organofosforados , Torpedo/metabolismo
18.
Bioorg Med Chem Lett ; 98: 129585, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086468

RESUMEN

Ceramides, crucial sphingolipids in cellular biology, play various roles ranging from structural membrane integrity to signaling pathway regulation. Structurally, a ceramide consists of a fatty acid connected to a sphingoid base. The characteristics of the fatty acid chain, including length and saturation, determine the physiological properties of the ceramide. Ceramides typically fall into the following categories based on chain length: medium, long, very-long, and ultra-long. Among them, two very-long-chain ceramides, Cer(24:1(15Z)) and Cer(24:0), have been extensively studied, and they are known for their regulatory functions. However, the hydrophobic natures of ceramides, arising from their long hydrocarbon chain impedes their solubilities and levels of cellular delivery. Although ω-pyridinium ceramide analogs (ω-PyrCers) have been developed to address this issue, ω-PyrCers with very-long fatty acid chains or unsaturation have not been developed, presumably due to limited access to the corresponding ω-bromo fatty acids required in their syntheses. In this study, we prepared the ω-PyrCers of Cer(24:1(15Z)) and Cer(24:0), PyrCer(24:1(15Z)) and PyrCer(24:0), respectively. The key in the synthesis is the Wittig reaction to prepare the ω-bromo fatty acid with an appropriate chain length and (Z)-double bond position. Preliminary evaluation of the PyrCer(24:1(15Z)) and PyrCer(24:0) revealed their potential in hepatocellular carcinoma treatment.


Asunto(s)
Antineoplásicos , Ceramidas , Esfingolípidos , Ceramidas/farmacología , Ceramidas/química , Ácidos Grasos/farmacología , Compuestos de Piridinio/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico
19.
Biol Reprod ; 110(3): 615-631, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38079523

RESUMEN

Male infertility is a global health problem that disturbs numerous couples worldwide. Basonuclin 1 (BNC1) is a transcription factor mainly expressed in proliferative keratinocytes and germ cells. A frameshift mutation of BNC1 was identified in a large Chinese primary ovarian insufficiency pedigree. The expression of BNC1 was significantly decreased in the testis biopsies of infertile patients with nonobstructive azoospermia. Previous studies have revealed that mice with BNC1 deficiency are generally subfertile and undergo gradual spermatogenic failure. We observed that apoptosis of spermatogonia is tightly related to spermatogenic failure in mice with a Bnc1 truncation mutation. Such impairment is related to mitochondrial dysfunction causing lower mitochondrial membrane potential and higher reactive oxygen species. We showed that downregulation of CREB/SIRT1/FOXO3 signaling participates in the above impairment. Administration of nicotinamide riboside or metformin reversed mitochondrial dysfunction and inhibited apoptosis in Bnc1-knockdown spermatogonia by stimulating CREB/SIRT1/FOXO3 signaling. Dietary supplementation with nicotinamide riboside or metformin in mutated mice increased SIRT1 signaling, improved the architecture of spermatogenic tubules, inhibited apoptosis of the testis, and improved the fertility of mice with a Bnc1 truncation mutation. Our data establish that oral nicotinamide riboside or metformin can be useful for the treatment of spermatogenic failure induced by Bnc1 mutation.


Asunto(s)
Metformina , Enfermedades Mitocondriales , Niacinamida , Compuestos de Piridinio , Animales , Humanos , Masculino , Ratones , Apoptosis , Proteínas de Unión al ADN/metabolismo , Proteína Forkhead Box O3 , Metformina/farmacología , Metformina/uso terapéutico , Niacinamida/análogos & derivados , Sirtuina 1/metabolismo , Espermatogonias/metabolismo , Factores de Transcripción
20.
Reprod Sci ; 31(4): 975-986, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37957471

RESUMEN

Gestational hypoxia inhibits mitochondrial function in the fetal heart and placenta contributing to fetal growth restriction and organ dysfunction. NAD + deficiency may contribute to a metabolic deficit by inhibiting oxidative phosphorylation and ATP synthesis. We tested the effects of nicotinamide riboside (NR), an NAD + precursor, as a treatment for reversing known mitochondrial dysfunction in hypoxic fetal hearts. Pregnant guinea pigs were housed in room air (normoxia) or placed in a hypoxic chamber (10.5%O2) for the last 14 days of gestation (term = 65 days) and administered either water or NR (1.6 mg/ml) in the drinking bottle. Fetuses were excised at term, and NAD + levels of maternal liver, placenta, and fetal heart ventricles were measured. Indices of mitochondrial function (complex IV activity, sirtuin 3 activity, protein acetylation) and ATP synthesis were measured in fetal heart ventricles of NR-treated/untreated normoxic and hypoxic animals. Hypoxia reduced fetal body weight in both sexes (p = 0.01), which was prevented by NR. Hypoxia had no effect on maternal liver NAD + levels but decreased (p = 0.04) placenta NAD + levels, the latter normalized with NR treatment. Hypoxia had no effect on fetal heart NAD + but decreased (p < 0.05) mitochondrial complex IV and sirtuin 3 activities, ATP content, and increased mitochondrial acetylation, which were all normalized with maternal NR. Hypoxia increased (p < 0.05) mitochondrial acetylation in female fetal hearts but had no effect on other mitochondrial indices. We conclude that maternal NR is an effective treatment for normalizing mitochondrial dysfunction and ATP synthesis in the hypoxic fetal heart.


Asunto(s)
Enfermedades Mitocondriales , Niacinamida/análogos & derivados , Compuestos de Piridinio , Sirtuina 3 , Embarazo , Masculino , Cobayas , Femenino , Animales , Humanos , NAD/metabolismo , Sirtuina 3/metabolismo , Hipoxia/metabolismo , Niacinamida/farmacología , Mitocondrias/metabolismo , Corazón Fetal , Enfermedades Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Hipoxia Fetal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...