Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 721
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 331, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725009

RESUMEN

BACKGROUND: The development of neuropathic pain (NP) is one of the reasons why the pain is difficult to treat, and microglial activation plays an important role in NP. Recently, platelet-rich plasma (PRP) has emerged as a novel therapeutic method for knee osteoarthritis (KOA). However, it's unclarified whether PRP has analgesic effects on NP induced by KOA and the underlying mechanisms unknown. PURPOSE: To observe the analgesic effects of PRP on NP induced by KOA and explore the potential mechanisms of PRP in alleviating NP. METHODS: KOA was induced in male rats with intra-articular injections of monosodium iodoacetate (MIA) on day 0. The rats received PRP or NS (normal saline) treatment at days 15, 17, and 19 after modeling. The Von Frey and Hargreaves tests were applied to assess the pain-related behaviors at different time points. After euthanizing the rats with deep anesthesia at days 28 and 42, the corresponding tissues were taken for subsequent experiments. The expression of activating transcription factor 3 (ATF3) in dorsal root ganglia (DRG) and ionized-calcium-binding adapter molecule-1(Iba-1) in the spinal dorsal horn (SDH) was detected by immunohistochemical staining. In addition, the knee histological assessment was performed by hematoxylin-eosin (HE) staining. RESULTS: The results indicated that injection of MIA induced mechanical allodynia and thermal hyperalgesia, which could be reversed by PRP treatment. PRP downregulated the expression of ATF3 within the DRG and Iba-1 within the SDH. Furthermore, an inhibitory effect on cartilage degeneration was observed in the MIA + PRP group only on day 28. CONCLUSION: These results indicate that PRP intra-articular injection therapy may be a potential therapeutic agent for relieving NP induced by KOA. This effect could be attributed to downregulation of microglial activation and reduction in nerve injury.


Asunto(s)
Regulación hacia Abajo , Microglía , Neuralgia , Osteoartritis de la Rodilla , Plasma Rico en Plaquetas , Ratas Sprague-Dawley , Animales , Masculino , Neuralgia/terapia , Neuralgia/metabolismo , Microglía/metabolismo , Ratas , Osteoartritis de la Rodilla/terapia , Factor de Transcripción Activador 3/metabolismo , Ganglios Espinales/metabolismo , Modelos Animales de Enfermedad , Inyecciones Intraarticulares , Proteínas de Unión al Calcio/metabolismo , Ácido Yodoacético/toxicidad , Proteínas de Microfilamentos
2.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710703

RESUMEN

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Factor de Transcripción Activador 3 , Neoplasias Encefálicas , Resistencia a Antineoplásicos , Exosomas , Glioblastoma , Células Madre Neoplásicas , Temozolomida , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Exosomas/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos
3.
J Med Chem ; 67(8): 6810-6821, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38613772

RESUMEN

Anti-PD-L1 immunotherapy, a new lung cancer treatment, is limited to a few patients due to low PD-L1 expression and tumor immunosuppression. To address these challenges, the upregulation of PD-L1 has the potential to elevate the response rate and efficiency of anti-PD-L1 and alleviate the immunosuppression of the tumor microenvironment. Herein, we developed a novel usnic acid-derived Iridium(III) complex, Ir-UA, that boosts PD-L1 expression and converts "cold tumors" to "hot". Subsequently, we administered Ir-UA combined with anti-PD-L1 in mice, which effectively inhibited tumor growth and promoted CD4+ and CD8+ T cell infiltration. To our knowledge, Ir-UA is the first iridium-based complex to stimulate the expression of PD-L1 by explicitly regulating its transcription factors, which not only provides a promising platform for immune checkpoint blockade but, more importantly, provides an effective treatment strategy for patients with low PD-L1 expression.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Iridio , Animales , Iridio/química , Iridio/farmacología , Antígeno B7-H1/metabolismo , Ratones , Humanos , Inmunoterapia/métodos , Factor de Transcripción Activador 3/metabolismo , Línea Celular Tumoral , Ratones Endogámicos C57BL , Microambiente Tumoral/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química
4.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 125-129, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650141

RESUMEN

Myocardial ischemia/reperfusion injury (MIRI) is an irreversible adverse event during the management of coronary heart disease that lacks effective controls. The underlying mechanism of MIRI still requires further investigation. Recent studies have suggested that overexpression of ATF3 protects against MIRI by regulating inflammatory responses, ferroptosis, and autophagy. The downstream target of ATF3, EGR1, also showed cardioprotective properties against MIRI by promoting autophagy. Therefore, further investigating the effect of ATF3/EGR1 pathway on MIRI-induced inflammation and autophagy is needed. Cardiomyocyte MIRI model was established by challenging H9C2 cells with hypoxia/reoxygenation (H/R). The ATF3 overexpression-H/R cell model by transfecting ATF3 plasmid into the H9C2 cell line. The transcription levels of ATF3 and EGR1 were determined using RT-qPCR, the levels of TNF-α and IL-6 were determined using ELISA kits, the protein expression of LC3 I, LC3 II, and P62 was determined via WB, and microstructure of H9C2 cell was observed by transmission electron microscopy (TEM). Overexpression of ATF3 significantly downregulated Egr1 levels, indicating that EGR1 might be the target of ATF3. By upregulating ATF3 levels, the extracellular levels of the inflammatory cytokines TNF-α and IL-6 significantly decreased, and the protein expression of the autophagy markers LC3 I, LC3 II, and P62 significantly increased. TEM results revealed that the cell line in the H/R-ATF3 group exhibited a higher abundance of autophagosome enclosures of mitochondria. The results indicated that ATF3/EGR1 may alleviate inflammation and improve autophagy in an H/R-induced MIRI model of cardiomyocytes.


Asunto(s)
Factor de Transcripción Activador 3 , Autofagia , Proteína 1 de la Respuesta de Crecimiento Precoz , Inflamación , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Factor de Necrosis Tumoral alfa , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Autofagia/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Ratas , Línea Celular , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Transducción de Señal , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética
5.
Cell Death Dis ; 15(4): 290, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658567

RESUMEN

High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.


Asunto(s)
Factor de Transcripción Activador 3 , Cisplatino , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Neoplasias Ováricas , Humanos , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
6.
Cell Commun Signal ; 22(1): 240, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664711

RESUMEN

BACKGROUND: The repair of peripheral nerve injury poses a clinical challenge, necessitating further investigation into novel therapeutic approaches. In recent years, bone marrow mesenchymal stromal cell (MSC)-derived mitochondrial transfer has emerged as a promising therapy for cellular injury, with reported applications in central nerve injury. However, its potential therapeutic effect on peripheral nerve injury remains unclear. METHODS: We established a mouse sciatic nerve crush injury model. Mitochondria extracted from MSCs were intraneurally injected into the injured sciatic nerves. Axonal regeneration was observed through whole-mount nerve imaging. The dorsal root ganglions (DRGs) corresponding to the injured nerve were harvested to test the gene expression, reactive oxygen species (ROS) levels, as well as the degree and location of DNA double strand breaks (DSBs). RESULTS: The in vivo experiments showed that the mitochondrial injection therapy effectively promoted axon regeneration in injured sciatic nerves. Four days after injection of fluorescently labeled mitochondria into the injured nerves, fluorescently labeled mitochondria were detected in the corresponding DRGs. RNA-seq and qPCR results showed that the mitochondrial injection therapy enhanced the expression of Atf3 and other regeneration-associated genes in DRG neurons. Knocking down of Atf3 in DRGs by siRNA could diminish the therapeutic effect of mitochondrial injection. Subsequent experiments showed that mitochondrial injection therapy could increase the levels of ROS and DSBs in injury-associated DRG neurons, with this increase being correlated with Atf3 expression. ChIP and Co-IP experiments revealed an elevation of DSB levels within the transcription initiation region of the Atf3 gene following mitochondrial injection therapy, while also demonstrating a spatial proximity between mitochondria-induced DSBs and CTCF binding sites. CONCLUSION: These findings suggest that MSC-derived mitochondria injected into the injured nerves can be retrogradely transferred to DRG neuron somas via axoplasmic transport, and increase the DSBs at the transcription initiation regions of the Atf3 gene through ROS accumulation, which rapidly release the CTCF-mediated topological constraints on chromatin interactions. This process may enhance spatial interactions between the Atf3 promoter and enhancer, ultimately promoting Atf3 expression. The up-regulation of Atf3 induced by mitochondria further promotes the expression of downstream regeneration-associated genes and facilitates axon regeneration.


Asunto(s)
Factor de Transcripción Activador 3 , Axones , Roturas del ADN de Doble Cadena , Ganglios Espinales , Células Madre Mesenquimatosas , Mitocondrias , Regeneración Nerviosa , Especies Reactivas de Oxígeno , Nervio Ciático , Regulación hacia Arriba , Animales , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo , Axones/metabolismo , Regeneración Nerviosa/genética , Regulación hacia Arriba/genética , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Nervio Ciático/lesiones , Nervio Ciático/patología , Ganglios Espinales/metabolismo , Ratones Endogámicos C57BL , Masculino
7.
J Ethnopharmacol ; 330: 118228, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38643863

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Prostate cancer (PCa) is the most common malignancy of the male genitourinary system and currently lacks effective treatment. Semen Impatientis, the dried ripe seed of Impatiens balsamina L., is described by the Chinese Pharmacopoeia as a traditional Chinese medicine (TCM) and is used in clinical practice to treat tumors, abdominal masses, etc. In our previous study, the ethyl acetate extracts of Semen Impatientis (EAESI) was demonstrated to be the most effective extract against PCa among various extracts. However, the biological effects of EAESI against PCa in vivo and the specific antitumor mechanisms involved remain unknown. AIM OF THE STUDY: In this study, we aimed to investigate the antitumor effect of EAESI on PCa in vitro and in vivo by performing network pharmacology analysis, transcriptomic analysis, and experiments to explore and verify the underlying mechanisms involved. MATERIALS AND METHODS: The antitumor effect of EAESI on PCa in vitro and in vivo was investigated via CCK-8, EdU, flow cytometry, and wound healing assays and xenograft tumor models. Network pharmacology analysis and transcriptomic analysis were employed to explore the underlying mechanism of EAESI against PCa. Activating transcription factor 3 (ATF3) and androgen receptor (AR) were confirmed to be the targets of EAESI against PCa by RT‒qPCR, western blotting, and rescue assays. In addition, the interaction between ATF3 and AR was assessed by coimmunoprecipitation, immunofluorescence, and nuclear-cytoplasmic separation assays. RESULTS: EAESI decreased cell viability, inhibited cell proliferation and migration, and induced apoptosis in AR+ and AR- PCa cells. Moreover, EAESI suppressed the growth of xenograft tumors in vivo. Network pharmacology analysis revealed that the hub targets of EAESI against PCa included AR, AKT1, TP53, and CCND1. Transcriptomic analysis indicated that activating transcription factor 3 (ATF3) was the most likely critical target of EAESI. EAESI downregulated AR expression and decreased the transcriptional activity of AR through ATF3 in AR+ PCa cells; and EAESI promoted the expression of ATF3 and exerted its antitumor effect via ATF3 in AR+ and AR- PCa cells. CONCLUSIONS: EAESI exerts good antitumor effects on PCa both in vitro and in vivo, and ATF3 and AR are the critical targets through which EAESI exerts antitumor effects on AR+ and AR- PCa cells.


Asunto(s)
Acetatos , Factor de Transcripción Activador 3 , Ratones Desnudos , Farmacología en Red , Neoplasias de la Próstata , Receptores Androgénicos , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Animales , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Acetatos/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Transcriptoma/efectos de los fármacos , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
8.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38649772

RESUMEN

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.


Asunto(s)
Factor de Transcripción Activador 3 , Biomarcadores , Accidente Cerebrovascular Isquémico , Neuronas , Traumatismos de la Médula Espinal , Animales , Femenino , Humanos , Masculino , Ratones , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Biomarcadores/metabolismo , Biomarcadores/sangre , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/sangre , Ratones Noqueados , Neuronas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/complicaciones
9.
Redox Biol ; 71: 103118, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490069

RESUMEN

The induction of ferroptosis is promising for cancer therapy. However, the mechanisms enabling cancer cells to evade ferroptosis, particularly in low-cystine environments, remain elusive. Our study delves into the intricate regulatory mechanisms of Activating transcription factor 3 (ATF3) on Cystathionine ß-synthase (CBS) under cystine deprivation stress, conferring resistance to ferroptosis in colorectal cancer (CRC) cells. Additionally, our findings establish a positively correlation between this signaling axis and CRC progression, suggesting its potential as a therapeutic target. Mechanistically, ATF3 positively regulates CBS to resist ferroptosis under cystine deprivation stress. In contrast, the suppression of CBS sensitizes CRC cells to ferroptosis through targeting the mitochondrial tricarboxylic acid (TCA) cycle. Notably, our study highlights that the ATF3-CBS signaling axis enhances ferroptosis-based CRC cancer therapy. Collectively, the findings reveal that the ATF3-CBS signaling axis is the primary feedback pathway in ferroptosis, and blocking this axis could be a potential therapeutic approach for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Cistationina betasintasa/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Ferroptosis/genética , Cistina , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo
10.
Hum Genet ; 143(3): 343-355, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480539

RESUMEN

Colorectal cancer (CRC) is the third most prevalent diagnosed cancer in men and second most prevalent cancer in women. H3K27ac alterations are more commonly than gene mutations in colorectal cancer. Most colorectal cancer genes have significant H3K27ac changes, which leads to an over-expression disorder in gene transcription. Over-expression of STEAP3 is involved in a variety of tumors, participating in the regulation of cancer cell proliferation and migration. The purpose of this work is to investigate the role of STEAP3 in the regulation of histone modification (H3K27ac) expression in colon cancer. Bioinformatic ChIP-seq, ChIP-qPCR and ATAC-seq were used to analyze the histone modification properties and gene accessibility of STEAP3. Western blot and qRT-PCR were used to evaluate relative protein and gene expression, respectively. CRISPR/Cas9 technology was used to knockout STEAP3 on colon cancer cells to analyze the effect of ATF3 on STEAP3. STEAP3 was over-expressed in colon cancer and associated with higher metastases and more invasive and worse stage of colon cancer. ChIP-seq and ChIP-qPCR analyses revealed significant enrichment of H3K27ac in the STEAP3 gene. In addition, knocking down STEAP3 significantly inhibits colon cancer cell proliferation and migration and down-regulates H3K27ac expression. ChIP-seq found that ATF3 is enriched in the STEAP3 gene and CRISPR/Cas9 technology used for the deletion of the ATF3 binding site suppresses the expression of STEAP3. Over-expression of STEAP3 promotes colon cancer cell proliferation and migration. Mechanical studies have indicated that H3K27ac and ATF3 are significantly enriched in the STEAP3 gene and regulate the over-expression of STEAP3.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias del Colon , Regulación Neoplásica de la Expresión Génica , Histonas , Humanos , Proliferación Celular/genética , Movimiento Celular/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Histonas/metabolismo , Histonas/genética , Acetilación , Femenino , Línea Celular Tumoral , Masculino , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo
11.
Cell Signal ; 117: 111087, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316266

RESUMEN

Bladder cancer (BLCA) is ranked among the main causes of mortality in male cancer patients, and research into targeted therapies guided by its genomics and molecular biology has been a prominent focus in BLCA studies. Fatty acid transporter protein 2 (FATP2), a member of the FATPs family,is a key contributor to the progression of cancers such as hepatocellular carcinomas and melanomas.However,its role in BLCA remains poorly understand. This study delved into the function of FATP2 in BLCA through a succession of experiments in vivo and in vitro, employing techniques as quantitative real-time polymerase chain reaction (qRT-PCR), RNA sequencing, transwell assays, immunofluorescence, western blot,and others to dissect its mechanistic actions. The findings revealed that an oncogenic function is executed by FATP2 in bladder cancer, significantly impacting the proliferation and migration capabilities, thereby affecting the prognosis of BLCA patients. Furthermore, A suppression that relies on both time and concentration of BLCA proliferation and migration, trigger of apoptosis, and blockage of the cell cycle at the G2/M phase were observed when the inhibitor of FATP2, Lipofermata, was applied. It was unveiled through subsequent investigations that ATF3 expression is indirectly promoted by Lipofermata through the inhibition of FATP2, ultimately inhibiting the signal transduction of the PI3K/Akt/mTOR pathway. This effect was also responsible for the inhibitory impact on BLCA proliferation. Therefore, FATP2 emerges as an auspicious and emerging molecular target with potential applications in precision therapy in BLCA.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Compuestos de Espiro , Tiadiazoles , Neoplasias de la Vejiga Urinaria , Humanos , Masculino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Proteínas Portadoras/farmacología , Proliferación Celular , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo
12.
ACS Chem Biol ; 19(3): 753-762, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412264

RESUMEN

Activating transcription factor 3 (ATF3) is an activation transcription factor/cyclic adenosine monophosphate (cAMP) responsive element-binding (CREB) protein family member. It is recognized as an important regulator of cancer progression by repressing expression of key inflammatory factors such as interferon-γ and chemokine (C-C motif) ligand 4 (CCL4). Here, we describe a novel library screening approach that probes individual leucine zipper components before combining them to search exponentially larger sequence spaces not normally accessible to intracellular screening. To do so, we employ two individual semirational library design approaches and screen using a protein-fragment complementation assay (PCA). First, a 248,832-member library explored 12 amino acid positions at all five a positions to identify those that provided improved binding, with all e/g positions fixed as Q, placing selection pressure onto the library options provided. Next, a 59,049-member library probed all ten e/g positions with 3 options. Similarly, during e/g library screening, a positions were locked into a generically bindable sequence pattern (AIAIA), weakly favoring leucine zipper formation, while placing selection pressure onto e/g options provided. The combined a/e/g library represents ∼14.7 billion members, with the resulting peptide, ATF3W_aeg, binding ATF3 with high affinity (Tm = 60 °C; Kd = 151 nM) while strongly disfavoring homodimerization. Moreover, ATF3W_aeg is notably improved over component PCA hits, with target specificity found to be driven predominantly by electrostatic interactions. The combined a/e/g exponential library screening approach provides a robust, accelerated platform for exploring larger peptide libraries, toward derivation of potent yet selective antagonists that avoid homoassociation to provide new insight into rational peptide design.


Asunto(s)
Factor de Transcripción Activador 3 , Biblioteca de Péptidos , Factor de Transcripción Activador 3/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Péptidos/metabolismo
13.
Mol Med ; 30(1): 30, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395749

RESUMEN

BACKGROUND: Sepsis is a systemic inflammatory response which is frequently associated with acute lung injury (ALI). Activating transcription factor 3 (ATF3) promotes M2 polarization, however, the biological effects of ATF3 on macrophage polarization in sepsis remain undefined. METHODS: LPS-stimulated macrophages and a mouse model of cecal ligation and puncture (CLP)-induced sepsis were generated as in vitro and in vivo models, respectively. qRT-PCR and western blot were used to detect the expression of ATF3, ILF3, NEAT1 and other markers. The phenotypes of macrophages were monitored by flow cytometry, and cytokine secretion was measured by ELISA assay. The association between ILF3 and NEAT1 was validated by RIP and RNA pull-down assays. RNA stability assay was employed to assess NEAT1 stability. Bioinformatic analysis, luciferase reporter and ChIP assays were used to study the interaction between ATF3 and ILF3 promoter. Histological changes of lung tissues were assessed by H&E and IHC analysis. Apoptosis in lungs was monitored by TUNEL assay. RESULTS: ATF3 was downregulated, but ILF3 and NEAT1 were upregulated in PBMCs of septic patients, as well as in LPS-stimulated RAW264.7 cells. Overexpression of ATF3 or silencing of ILF3 promoted M2 polarization of RAW264.7 cells via regulating NEAT1. Mechanistically, ILF3 was required for the stabilization of NEAT1 through direct interaction, and ATF3 was a transcriptional repressor of ILF3. ATF3 facilitated M2 polarization in LPS-stimulated macrophages and CLP-induced septic lung injury via ILF3/NEAT1 axis. CONCLUSION: ATF3 triggers M2 macrophage polarization to protect against the inflammatory injury of sepsis through ILF3/NEAT1 axis.


Asunto(s)
Factor de Transcripción Activador 3 , Macrófagos , ARN Largo no Codificante , Sepsis , Animales , Humanos , Ratones , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Proteínas del Factor Nuclear 90/genética , Proteínas del Factor Nuclear 90/metabolismo , Células RAW 264.7 , Sepsis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
14.
Nephron ; 148(4): 230-244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37956656

RESUMEN

INTRODUCTION: Suppressor of cytokine signaling 3 (SOCS3) is highly expressed in mice with renal ischemia/reperfusion (RI/R) injury and has the potential to regulate mitophagy. On this basis, this study further investigates the possible mechanism via which SOCS3 affects RI/R by regulating mitophagy. METHOD: After establishing a RI/R injury mouse model and a hypoxia/reoxygenation (H/R) cell model, the effects of silenced SOCS3 on injury and mitophagy in the above models were analyzed by ELISA, quantitative real-time polymerase chain reaction, Western blot, pathological sections, CCK-8 assay, flow cytometry, and JC-1 assay. Mechanistic studies were carried out with the help of database analysis and binding validation experiments (chromatin immunoprecipitation, dual-luciferase reporter assay, and co-immunoprecipitation). After the binding target was identified, the regulatory relationship between the target gene and SOCS3 was verified by rescue experiments. RESULT: The large increase in blood urea nitrogen (BUN) and creatinine (Cr) levels verified the success of the RI/R model. SOCS3 expression was up-regulated in RI/R mice. Silenced SOCS3 alleviated kidney damage and mitochondrial abnormalities in RI/R mice and inhibited mitophagy at the molecular level. Likewise, silenced SOCS3 alleviated H/R-induced cell damage and mitophagy. Finally, activating transcription factor 3 (ATF3) was determined to bind to the promoter of SOCS3, which interacted with insulin-like growth factor 1 receptor (IGF1R). Rescue experiments confirmed the effect of ATF3 on SOCS3 expression and the underlying regulatory mechanism. CONCLUSION: ATF3 mediates SOCS3 expression to promote the activation of mitophagy, thereby aggravating renal ischemia-reperfusion injury.


Asunto(s)
Enfermedades Renales , Daño por Reperfusión , Animales , Ratones , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/farmacología , Regulación de la Expresión Génica , Riñón/patología , Enfermedades Renales/patología , Mitofagia , Daño por Reperfusión/metabolismo
15.
Environ Toxicol ; 39(2): 529-538, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37341073

RESUMEN

Ferroptosis is a novel form of programmed cell death triggered by iron-dependent lipid peroxidation and has been associated with various diseases, including cancer. Erastin, an inhibitor of system Xc-, which plays a critical role in regulating ferroptosis, has been identified as an inducer of ferroptosis in cancer cells. In this study, we investigated the impact of butyrate, a short-chain fatty acid produced by gut microbiota, on erastin-induced ferroptosis in lung cancer cells. Our results demonstrated that butyrate significantly enhanced erastin-induced ferroptosis in lung cancer cells, as evidenced by increased lipid peroxidation and reduced expression of glutathione peroxidase 4 (GPX4). Mechanistically, we found that butyrate modulated the pathway involving activating transcription factor 3 (ATF3) and solute carrier family 7 member 11 (SLC7A11), leading to enhanced erastin-induced ferroptosis. Furthermore, partial reversal of the effect of butyrate on ferroptosis was observed upon knockdown of ATF3 or SLC7A11. Collectively, our findings indicate that butyrate enhances erastin-induced ferroptosis in lung cancer cells by modulating the ATF3/SLC7A11 pathway, suggesting its potential as a therapeutic agent for cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , Humanos , Factor de Transcripción Activador 3/metabolismo , Butiratos/farmacología , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo
16.
J Infect Dis ; 229(2): 522-534, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37647879

RESUMEN

BACKGROUND: Patients with sepsis resulting in acute lung injury (ALI) usually have increased mortality. Ferroptosis is a vital regulator in sepsis-induced ALI. Exploring the association of ferroptosis and sepsis-induced ALI is crucial for the management of sepsis-induced ALI. METHODS: Whole blood was collected from sepsis patients. Mice were treated with cecal ligation and puncture (CLP) to model sepsis. Primary murine pulmonary microvascular endothelial cells were treated with lipopolysaccharide as a cell model. Ferroptosis was evaluated by analyzing levels of iron, malonaldehyde, glutathione, nonheme iron, ferroportin, ferritin, and GPX4. Hematoxylin and eosin and Masson's trichrome staining were applied to examine lung injury and collagen deposition. Cell apoptosis was analyzed by caspase-3 activity and TUNEL assays. Gene regulatory relationship was verified using RNA pull-down and immunoprecipitation assays. RESULTS: CircEXOC5 was highly expressed in sepsis patients and CLP-treated mice, in which knockdown alleviated CLP-induced pulmonary inflammation and injury, and ferroptosis. CircEXOC5 recruited IGF2BP2 to degrade ATF3 mRNA. The demethylase ALKBH5 was responsible for circEXOC5 upregulation through demethylation. CircEXOC5 silencing significantly improved sepsis-induced ALI and survival rate of mice by downregulating ATF3. CONCLUSIONS: ALKBH5-mediated upregulation of circEXOC5 exacerbates sepsis-induced ALI by facilitating ferroptosis through IGF2BP2 recruitment to degrade ATF3 mRNA.


Asunto(s)
Lesión Pulmonar Aguda , Ferroptosis , Sepsis , Humanos , Ratones , Animales , Células Endoteliales/metabolismo , Lesión Pulmonar Aguda/etiología , Pulmón/metabolismo , Sepsis/metabolismo , Hierro/metabolismo , ARN Mensajero/metabolismo , Lipopolisacáridos , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción Activador 3/metabolismo
17.
J Orthop Res ; 42(5): 1033-1044, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38044472

RESUMEN

High fat diets overwhelm the physiological mechanisms for absorption, storage, and utilization of triglycerides (TG); consequently TG, TG-rich lipoproteins (TGRL), and TGRL remnants accumulate, circulate systemically, producing dyslipidemia. This associates with, or is causative for increased atherosclerotic cardiovascular risk, ischemic stroke, fatty liver disease, and pancreatitis. TGRL hydrolysis by endothelial surface-bound lipoprotein lipase (LPL) generates metabolites like free fatty acids which have proinflammatory properties. While osteoblasts utilize fatty acids as an energy source, dyslipidemia is associated with negative effects on the skeleton. In this study we investigated the effects of TGRL lipolysis products (TGRL-LP) on expression of a stress responsive transcription factor, termed activating transcription factor 3 (ATF3), reactive oxygen species (ROS), ATF3 target genes, and angiopoietin-like 4 (Angptl4) in osteoblasts. As ATF3 negatively associates with osteoblast differentiation, we also investigated the skeletal effects of global ATF3 deletion in mice. TGRL-LP increased expression of Atf3, proinflammatory proteins Ptgs2 and IL-6, and induced ROS in MC3T3-E1 osteoblastic cells. Angptl4 is an endogenous inhibitor of LPL which was transcriptionally induced by TGRL-LP, while recombinant Angptl4 prevented TG-driven Atf3 induction. Atf3 global knockout male mice demonstrated increased trabecular and cortical microarchitectural parameters. In summary, we find that TGRL-LP induce osteoblastic cell stress as evidenced by expression of ATF3, which may contribute to the negative impact of dyslipidemia in the skeleton. Further, concomitant induction of Angptl4 in osteoblasts might play a protective role by reducing local lipolysis.


Asunto(s)
Dislipidemias , Lipólisis , Masculino , Animales , Ratones , Lipólisis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Proteínas de Choque Térmico/metabolismo , Triglicéridos/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Osteoblastos/metabolismo
18.
Biochem Pharmacol ; 219: 115939, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000560

RESUMEN

Carfilzomib, a second-generation proteasome inhibitor, has been approved as a treatment for relapsed and/or refractory multiple myeloma. Nevertheless, the molecular mechanism by which Carfilzomib inhibits esophageal squamous cell carcinoma (ESCC) progression largely remains to be determined. In the present study, we found that Carfilzomib demonstrated potent anti-tumor activity against esophageal squamous cell carcinoma both in vitro and in vivo. Mechanistically, carfilzomib triggers mitochondrial apoptosis and reprograms cellular metabolism in ESCC cells. Moreover, it has been identified that activating transcription factor 3 (ATF3) plays a crucial cellular target role in ESCC cells treated with Carfilzomib. Overexpression of ATF3 effectively antagonized the effects of carfilzomib on ESCC cell proliferation, apoptosis, and metabolic reprogramming. Furthermore, the ATF3 protein is specifically bound to lactate dehydrogenase A (LDHA) to effectively suppress LDHA-mediated metabolic reprogramming in response to carfilzomib treatment. Research conducted in xenograft models demonstrates that ATF3 mediates the anti-tumor activity of Carfilzomib. The examination of human esophageal squamous cell carcinoma indicated that ATF3 and LDHA have the potential to function as innovative targets for therapeutic intervention in the treatment of ESCC. Our findings demonstrate the novel function of Carfilzomib in modulating ESCC metabolism and progression, highlighting the potential of Carfilzomib as a promising therapeutic agent for the treatment of ESCC.


Asunto(s)
Factor de Transcripción Activador 3 , Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Oligopéptidos , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Oligopéptidos/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Xenoinjertos , Trasplante de Neoplasias , Humanos , Animales , Ratones , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Apoptosis , Reprogramación Metabólica/efectos de los fármacos , Factor de Transcripción Activador 3/metabolismo
19.
Mol Neurobiol ; 61(4): 2313-2335, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37874483

RESUMEN

Neuronal cell death is acknowledged as the primary pathological basis underlying developmental neurotoxicity in response to sevoflurane exposure, but the exact mechanism remains unclear. Ferroptosis is a form of programmed cell death characterized by iron-dependent lipid peroxidation that is driven by hydrogen peroxide (H2O2) and ferrous iron through the Fenton reaction and participates in the pathogenesis of multiple neurological diseases. As stress response factor, activating transcription factor 3 (ATF3) can be activated by the PERK/ATF4 pathway during endoplasmic reticulum (ER) stress, followed by increased intracellular H2O2, which is involved in regulation of apoptosis, autophagy, and ferroptosis. Here, we investigated whether ferroptosis and ATF3 activation were implicated in sevoflurane-induced neuronal cell death in the developing brain. The results showed that sevoflurane exposure induced neuronal death as a result of iron-dependent lipid peroxidation damage secondary to H2O2 accumulation and ferrous iron increase, which was consistent with the criteria for ferroptosis. Furthermore, we observed that increases in iron and H2O2 induced by sevoflurane exposure were associated with the upregulation and nuclear translocation of ATF3 in response to ER stress. Knockdown of ATF3 expression alleviated iron-dependent lipid peroxidation, which prevented sevoflurane-induced neuronal ferroptosis. Mechanistically, ATF3 promoted sevoflurane-induced H2O2 accumulation by activating NOX4 and suppressing catalase, GPX4, and SLC7A11 expression. Additionally, an increase in H2O2 was accompanied by the upregulation of TFR and TF and downregulation of FPN, which linked iron overload to ferroptosis induced by sevoflurane. Taken together, our results demonstrated that ER stress-mediated ATF3 activation contributed to sevoflurane-induced neuronal ferroptosis via H2O2 accumulation and the resultant iron overload.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Humanos , Peróxido de Hidrógeno/metabolismo , Sevoflurano , Factor de Transcripción Activador 3/metabolismo , Encéfalo/metabolismo , Hierro/metabolismo
20.
Cell Physiol Biochem ; 57(6): 411-425, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37962278

RESUMEN

BACKGROUND/AIMS: Microglial cells play a crucial role in the development of neuroinflammation in response to harmful stimuli, such as infection, ischemia or injury. Their chronic activation, however, is associated with a progression of neurodegenerative diseases. Therefore, looking for potential factors limiting microglial activation, the effect of docosahexaenoic acid (DHA) on the inflammatory response and TREM2-dependent phagocytic activity in microglia was investigated. METHODS: In LPS-induced primary microglia preincubated with DHA, or without preincubation the expression of ATF3 and TREM2 genes and TREM2, Syk, Akt proteins were determined by RT-PCR and WB, respectively. Cell viability was assayed by MTT and cytokine and chemokine expression was determined by the Proteome Profiler assay. Moreover, the phagocytic activity of microglia was assayed using immunofluorescence. RESULTS: We found that DHA significantly increased the expression of ATF3 , and decreased the levels of CINC-1, CINC-2αß, CINC-3 chemokines, IL-1α and IL-1ß cytokines, and ICAM-1 adhesion protein. Additionally, preincubation of microglia with DHA resulted in increased Src/Syk kinases activation associated with increased phagocytic microglia activity. CONCLUSION: These findings indicate that DHA efficiently inhibits ATF3-dependent release of proinflammatory mediators and enhances phagocytic activity of microglia. The study provides a new mechanism of DHA action in reactive microglia, which may help limit neuronal damage caused by the pro-inflammatory milieu in the brain.


Asunto(s)
Ácidos Docosahexaenoicos , Microglía , Humanos , Microglía/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/farmacología , Fagocitosis , Citocinas/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...