Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Circulation ; 149(16): 1268-1284, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38362779

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype. METHODS: FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification. RESULTS: We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis. CONCLUSIONS: Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.


Asunto(s)
Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Enfermedades Mitocondriales , Fenilalanina-ARNt Ligasa , Animales , Humanos , Recién Nacido , Ratones , Ratas , Cardiomiopatía Hipertrófica/patología , Insuficiencia Cardíaca/patología , Homeostasis , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Pez Cebra/genética , Mutación
2.
Fly (Austin) ; 18(1): 2308737, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38374657

RESUMEN

Amino acyl-tRNA synthetases perform diverse non-canonical functions aside from their essential role in charging tRNAs with their cognate amino acid. The phenylalanyl-tRNA synthetase (PheRS/FARS) is an α2ß2 tetramer that is needed for charging the tRNAPhe for its translation activity. Fragments of the α-subunit have been shown to display an additional, translation-independent, function that activates growth and proliferation and counteracts Notch signalling. Here we show in Drosophila that overexpressing the ß-subunit in the context of the complete PheRS leads to larval roaming, food avoidance, slow growth, and a developmental delay that can last several days and even prevents pupation. These behavioural and developmental phenotypes are induced by PheRS expression in CCHa2+ and Pros+ cells. Simultaneous expression of ß-PheRS, α-PheRS, and the appetite-inducing CCHa2 peptide rescued these phenotypes, linking this ß-PheRS activity to the appetite-controlling pathway. The fragmentation dynamic of the excessive ß-PheRS points to ß-PheRS fragments as possible candidate inducers of these phenotypes. Because fragmentation of human FARS has also been observed in human cells and mutations in human ß-PheRS (FARSB) can lead to problems in gaining weight, Drosophila ß-PheRS can also serve as a model for the human phenotype and possibly also for obesity.


Asunto(s)
Aminoacil-ARNt Sintetasas , Fenilalanina-ARNt Ligasa , Animales , Humanos , Apetito/genética , Drosophila/genética , Drosophila/metabolismo , Hormonas , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia
3.
J Phys Chem Lett ; 14(14): 3452-3460, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37010935

RESUMEN

We propose an improved transfer entropy approach called the dynamic version of the force constant fitted Gaussian network model based on molecular dynamics ensemble (dfcfGNMMD) to explore the allosteric mechanism of human mitochondrial phenylalanyl-tRNA synthetase (hmPheRS), one of the aminoacyl-tRNA synthetases that play a crucial role in translation of the genetic code. The dfcfGNMMD method can provide reliable estimates of the transfer entropy and give new insights into the role of the anticodon binding domain in driving the catalytic domain in aminoacylation activity and into the effects of tRNA binding and residue mutation on the enzyme activity, revealing the causal mechanism of the allosteric communication in hmPheRS. In addition, we incorporate the residue dynamic and co-evolutionary information to further investigate the key residues in hmPheRS allostery. This study sheds light on the mechanisms of hmPheRS allostery and can provide important information for related drug design.


Asunto(s)
Aminoacil-ARNt Sintetasas , Fenilalanina-ARNt Ligasa , Humanos , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Entropía , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Anticodón , Dominio Catalítico
4.
Neuropediatrics ; 54(5): 351-355, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36603837

RESUMEN

OBJECTIVE: By loading transfer RNAs with their cognate amino acids, aminoacyl-tRNA synthetases (ARS) are essential for protein translation. Both cytosolic ARS1-deficiencies and mitochondrial ARS2 deficiencies can cause severe diseases. Amino acid supplementation has shown to positively influence the clinical course of four individuals with cytosolic ARS1 deficiencies. We hypothesize that this intervention could also benefit individuals with mitochondrial ARS2 deficiencies. METHODS: This study was designed as a N-of-1 trial. Daily oral L-phenylalanine supplementation was used in a 3-year-old girl with FARS2 deficiency. A period without supplementation was implemented to discriminate the effects of treatment from age-related developments and continuing physiotherapy. Treatment effects were measured through a physiotherapeutic testing battery, including movement assessment battery for children, dynamic gait index, gross motor function measure 66, and quality of life questionnaires. RESULTS: The individual showed clear improvement in all areas tested, especially in gross motor skills, movement abilities, and postural stability. In the period without supplementation, she lost newly acquired motor skills but regained these upon restarting supplementation. No adverse effects and good tolerance of treatment were observed. INTERPRETATION AND CONCLUSION: Our positive results encourage further studies both on L-phenylalanine for other individuals with FARS2 deficiency and the exploration of this treatment rationale for other ARS2 deficiencies. Additionally, treatment costs were relatively low at 1.10 €/day.


Asunto(s)
Fenilalanina-ARNt Ligasa , Niño , Femenino , Humanos , Preescolar , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , Fenilalanina/metabolismo , Calidad de Vida , Mitocondrias/genética , Mitocondrias/metabolismo , ARN de Transferencia/metabolismo , Proteínas Mitocondriales/genética
5.
Hum Cell ; 36(1): 121-131, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36205831

RESUMEN

Hereditary spastic paraplegia (HSP) is a neurodegeneration disease, one of the reasons is caused by autosomal recessive missense mutation of the karyogene that encodes phenylalanyl-tRNA synthetase 2, mitochondrial (FARS2). However, the molecular mechanism underlying FARS2-mediated HSP progression is unknown. Mitochondrial phenylalanyl-tRNA synthetase gene (PheRS-m) is the Drosophila melanogaster homolog gene of human FARS2. This study constructed a Drosophila HSP missense mutation model and a PheRS-m knockout model. Some of the mutant fly phenotypes included developmental delay, shortened lifespan, wing-structure abnormalities and decreased mobility. RNA-sequencing results revealed a relationship between abnormal phenotypes and the hedgehog (Hh) pathway. A qRT-PCR assay was used to determine the key genes (ptc, hib, and slmb) of the Hh pathway that exhibited increased expression during different developmental stages. We demonstrated that Hh signaling transduction is negatively regulated during the developmental stages of PheRS-m mutants but positively regulated during adulthood. By inducing the agonist and inhibitor of Hh pathway in PheRS-m larvae, the developmental delay in mutants can be partly salvaged or postponed. Collectively, our findings indicate that Hh signaling negatively regulates the development of PheRS-m mutants, subsequently leading to developmental delay.


Asunto(s)
Drosophila melanogaster , Proteínas Hedgehog , Fenilalanina-ARNt Ligasa , Animales , Secuencia de Bases , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Mitocondriales/genética , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo
6.
Nat Commun ; 13(1): 2593, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546551

RESUMEN

Migraine is a common complex disorder with a significant polygenic SNP heritability ([Formula: see text]). Here we utilise genome-wide association study (GWAS) summary statistics to study pleiotropy between blood proteins and migraine under the polygenic model. We estimate [Formula: see text] for 4625 blood protein GWASs and identify 325 unique proteins with a significant [Formula: see text] for use in subsequent genetic analyses. Pleiotropy analyses link 58 blood proteins to migraine risk at genome-wide, gene and/or single-nucleotide polymorphism levels-suggesting shared genetic influences or causal relationships. Notably, the identified proteins are largely distinct from migraine GWAS loci. We show that higher levels of DKK1 and PDGFB, and lower levels of FARS2, GSTA4 and CHIC2 proteins have a significant causal effect on migraine. The risk-increasing effect of DKK1 is particularly interesting-indicating a role for downregulation of ß-catenin-dependent Wnt signalling in migraine risk, suggesting Wnt activators that restore Wnt/ß-catenin signalling in brain could represent therapeutic tools against migraine.


Asunto(s)
Trastornos Migrañosos , Fenilalanina-ARNt Ligasa , Vía de Señalización Wnt , beta Catenina , Proteínas Sanguíneas/genética , Pleiotropía Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Polimorfismo de Nucleótido Simple , beta Catenina/genética , beta Catenina/metabolismo
7.
PLoS Genet ; 18(4): e1010185, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35486661

RESUMEN

The alpha subunit of the cytoplasmic Phenylalanyl tRNA synthetase (α-PheRS, FARSA in humans) displays cell growth and proliferation activities and its elevated levels can induce cell fate changes and tumor-like phenotypes that are neither dependent on the canonical function of charging tRNAPhe with phenylalanine nor on stimulating general translation. In intestinal stem cells of Drosophila midguts, α-PheRS levels are naturally slightly elevated and human FARSA mRNA levels are elevated in multiple cancers. In the Drosophila midgut model, elevated α-PheRS levels caused the accumulation of many additional proliferating cells resembling intestinal stem cells (ISCs) and enteroblasts (EBs). This phenotype partially resembles the tumor-like phenotype described as Notch RNAi phenotype for the same cells. Genetic interactions between α-PheRS and Notch suggest that their activities neutralize each other and that elevated α-PheRS levels attenuate Notch signaling when Notch induces differentiation into enterocytes, type II neuroblast stem cell proliferation, or transcription of a Notch reporter. These non-canonical functions all map to the N-terminal part of α-PheRS which accumulates naturally in the intestine. This truncated version of α-PheRS (α-S) also localizes to nuclei and displays weak sequence similarity to the Notch intracellular domain (NICD), suggesting that α-S might compete with the NICD for binding to a common target. Supporting this hypothesis, the tryptophan (W) residue reported to be key for the interaction between the NICD and the Su(H) BTD domain is not only conserved in α-PheRS and α-S, but also essential for attenuating Notch signaling.


Asunto(s)
Fenilalanina-ARNt Ligasa , Animales , Drosophila/genética , Fenilalanina , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo
8.
FEBS Lett ; 596(7): 947-957, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35038769

RESUMEN

To ensure that correct amino acids are incorporated during protein synthesis, aminoacyl-tRNA synthetases (aaRSs) use proofreading mechanisms collectively referred to as editing. Although editing is important for viability, editing-deficient aaRSs have been identified in host-dependent organisms. In Mycoplasma mobile, editing-deficient PheRS and LeuRS have been identified. We characterized the amino acid activation site of MmPheRS and identified a previously unknown hyperaccurate mutation, L287F. Additionally, we report that m-Tyr, an oxidation byproduct of Phe which is toxic to editing-deficient cells, is poorly discriminated by MmPheRS activation and is not subjected to editing. Furthermore, expressing MmPheRS and the hyperaccurate variants renders Escherichia coli susceptible to m-Tyr stress, indicating that active site discrimination is insufficient in tolerating excess m-Tyr.


Asunto(s)
Aminoacil-ARNt Sintetasas , Mycoplasma/enzimología , Fenilalanina-ARNt Ligasa , Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo
9.
Nat Commun ; 13(1): 459, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075105

RESUMEN

Toxoplasma gondii commonly infects humans and while most infections are controlled by the immune response, currently approved drugs are not capable of clearing chronic infection in humans. Hence, approximately one third of the world's human population is at risk of reactivation, potentially leading to severe sequelae. To identify new candidates for treating chronic infection, we investigated a series of compounds derived from diversity-oriented synthesis. Bicyclic azetidines are potent low nanomolar inhibitors of phenylalanine tRNA synthetase (PheRS) in T. gondii, with excellent selectivity. Biochemical and genetic studies validate PheRS as the primary target of bicyclic azetidines in T. gondii, providing a structural basis for rational design of improved analogs. Favorable pharmacokinetic properties of a lead compound provide excellent protection from acute infection and partial protection from chronic infection in an immunocompromised mouse model of toxoplasmosis. Collectively, PheRS inhibitors of the bicyclic azetidine series offer promise for treatment of chronic toxoplasmosis.


Asunto(s)
Antiprotozoarios/administración & dosificación , Azetidinas/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Toxoplasmosis/tratamiento farmacológico , Animales , Antiprotozoarios/química , Azetidinas/química , Inhibidores Enzimáticos/química , Femenino , Humanos , Cinética , Masculino , Ratones , Ratones Endogámicos CBA , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitología
10.
Nucleic Acids Res ; 49(20): 11800-11809, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34581811

RESUMEN

High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not being directly implicated in PheRS activity. Here, we solve a 3.6 Å cryo-electron microscopy structure of oxidized S. Typhimurium PheRS. We find that oxidation results in widespread structural rearrangements in the ß-subunit editing domain and enlargement of its editing domain. Oxidization also enlarges the phenylalanyl-adenylate binding pocket but to a lesser extent. Together, these changes likely explain why oxidation leads to hyperaccurate editing and decreased misincorporation of tyrosine. Taken together, these results help increase our understanding of the survival of S. Typhimurium during human infection.


Asunto(s)
Proteínas Bacterianas/química , Estrés Oxidativo , Fenilalanina-ARNt Ligasa/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Fenilalanina-ARNt Ligasa/metabolismo , Salmonella typhimurium/enzimología , Salmonella typhimurium/ultraestructura
11.
J Phys Chem B ; 125(28): 7651-7661, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34242030

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs), a family of ubiquitous and essential enzymes, can bind target tRNAs and catalyze the aminoacylation reaction in genetic code translation. In this work, we explore the dynamic properties and allosteric communication of human mitochondrial phenylalanyl-tRNA synthetase (hmPheRS) in free and bound states to understand the mechanisms of its tRNAPhe recognition and allostery using molecular dynamics simulations combined with the torsional mutual information-based network model. Our results reveal that hmPheRS's residue mobility and inter-residue motional coupling are significantly enhanced by tRNAPhe binding, and there occurs a strong allosteric communication which is critical for the aminoacylation reaction, suggesting the vital role of tRNAPhe binding in the enzyme's function. The identified signaling pathways mainly make the connections between the anticodon binding domain (ABD) and catalytic domain (CAD), as well as within the CAD composed of many functional fragments and active sites, revealing the co-regulation role of them to act coordinately and achieve hmPheRS's aminoacylation function. Besides, several key residues along the communication pathways are identified to be involved in mediating the coordinated coupling between anticodon recognition at the ABD and activation process at the CAD, showing their pivotal role in the allosteric network, which are well consistent with the experimental observation. This study sheds light on the allosteric communication mechanism in hmPheRS and can provide important information for the structure-based drug design targeting aaRSs.


Asunto(s)
Aminoacil-ARNt Sintetasas , Fenilalanina-ARNt Ligasa , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Anticodón/genética , Dominio Catalítico , Humanos , Mitocondrias/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo
12.
Protein Sci ; 30(9): 1793-1803, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34184352

RESUMEN

Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl-tRNA synthetases (aaRSs) have been explored as anti-bacterial and anti-fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure-based knowledge of the most advanced three aaRSs-lysyl- (KRS), prolyl- (PRS), and phenylalanyl- (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Antimaláricos/química , Inhibidores Enzimáticos/química , Lisina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/química , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/química , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Antimaláricos/farmacología , Dominio Catalítico , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Expresión Génica , Humanos , Lisina-ARNt Ligasa/antagonistas & inhibidores , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Modelos Moleculares , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
13.
mBio ; 12(3): e0113221, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34126764

RESUMEN

Bacterial antibiotic persistence occurs when bacteria are treated with an antibiotic and the majority of the population rapidly dies off, but a small subpopulation enters into a dormant, persistent state and evades death. Diverse pathways leading to nucleoside triphosphate (NTP) depletion and restricted translation have been implicated in persistence, suggesting alternative redundant routes may exist to initiate persister formation. To investigate the molecular mechanism of one such pathway, functional variants of an essential component of translation (phenylalanyl-tRNA synthetase [PheRS]) were used to study the effects of quality control on antibiotic persistence. Upon amino acid limitation, elevated PheRS quality control led to significant decreases in aminoacylated tRNAPhe accumulation and increased antibiotic persistence. This increase in antibiotic persistence was most pronounced (65-fold higher) when the relA-encoded tRNA-dependent stringent response was inactivated. The increase in persistence with elevated quality control correlated with ∼2-fold increases in the levels of the RNase MazF and the NTPase MazG and a 3-fold reduction in cellular NTP pools. These data reveal a mechanism for persister formation independent of the stringent response where reduced translation capacity, as indicated by reduced levels of aminoacylated tRNA, is accompanied by active reduction of cellular NTP pools which in turn triggers antibiotic persistence. IMPORTANCE Bacterial antibiotic persistence is a transient physiological state wherein cells become dormant and thereby evade being killed by antibiotics. Once the antibiotic is removed, bacterial persisters are able to resuscitate and repopulate. It is thought that antibiotic bacterial persisters may cause reoccurring infections in the clinical setting. The molecular triggers and pathways that cause bacteria to enter into the persister state are not fully understood. Our results suggest that accumulation of deacylated tRNA is a trigger for antibiotic persistence independent of the RelA-dependent stringent response, a pathway thought to be required for persistence in many organisms. Overall, this provides a mechanism where changes in translation quality control in response to physiological cues can directly modulate bacterial persistence.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia/efectos de los fármacos , Aminoácidos/metabolismo , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/fisiología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Viabilidad Microbiana , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo
14.
Nucleic Acids Res ; 49(9): 5351-5368, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33885823

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis, responsible for ∼1.5 million fatalities in 2018, is the deadliest infectious disease. Global spread of multidrug resistant strains is a public health threat, requiring new treatments. Aminoacyl-tRNA synthetases are plausible candidates as potential drug targets, because they play an essential role in translating the DNA code into protein sequence by attaching a specific amino acid to their cognate tRNAs. We report structures of M. tuberculosis Phe-tRNA synthetase complexed with an unmodified tRNAPhe transcript and either L-Phe or a nonhydrolyzable phenylalanine adenylate analog. High-resolution models reveal details of two modes of tRNA interaction with the enzyme: an initial recognition via indirect readout of anticodon stem-loop and aminoacylation ready state involving interactions of the 3' end of tRNAPhe with the adenylate site. For the first time, we observe the protein gate controlling access to the active site and detailed geometry of the acyl donor and tRNA acceptor consistent with accepted mechanism. We biochemically validated the inhibitory potency of the adenylate analog and provide the most complete view of the Phe-tRNA synthetase/tRNAPhe system to date. The presented topography of amino adenylate-binding and editing sites at different stages of tRNA binding to the enzyme provide insights for the rational design of anti-tuberculosis drugs.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Fenilalanina-ARNt Ligasa/química , ARN de Transferencia de Fenilalanina/química , Aminoacilación de ARN de Transferencia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Humanos , Ligandos , Modelos Moleculares , Mycobacterium tuberculosis/genética , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo , Unión Proteica , ARN de Transferencia de Fenilalanina/metabolismo , Thermus thermophilus/enzimología
15.
Dis Model Mech ; 14(3)2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33547043

RESUMEN

Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) not only load the appropriate amino acid onto their cognate tRNAs, but many of them also perform additional functions that are not necessarily related to their canonical activities. Phenylalanyl tRNA synthetase (PheRS/FARS) levels are elevated in multiple cancers compared to their normal cell counterparts. Our results show that downregulation of PheRS, or only its α-PheRS subunit, reduces organ size, whereas elevated expression of the α-PheRS subunit stimulates cell growth and proliferation. In the wing disc system, this can lead to a 67% increase in cells that stain for a mitotic marker. Clonal analysis of twin spots in the follicle cells of the ovary revealed that elevated expression of the α-PheRS subunit causes cells to grow and proliferate ∼25% faster than their normal twin cells. This faster growth and proliferation did not affect the size distribution of the proliferating cells. Importantly, this stimulation proliferation turned out to be independent of the ß-PheRS subunit and the aminoacylation activity, and it did not visibly stimulate translation.This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Fenilalanina-ARNt Ligasa/metabolismo , Biosíntesis de Proteínas , Aminoácidos/metabolismo , Aminoacilación , Animales , Proliferación Celular , Técnicas de Silenciamiento del Gen , Mitosis , Tamaño de los Órganos , Organogénesis
16.
Nat Commun ; 12(1): 343, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436639

RESUMEN

The inhibition of Plasmodium cytosolic phenylalanine tRNA-synthetase (cFRS) by a novel series of bicyclic azetidines has shown the potential to prevent malaria transmission, provide prophylaxis, and offer single-dose cure in animal models of malaria. To date, however, the molecular basis of Plasmodium cFRS inhibition by bicyclic azetidines has remained unknown. Here, we present structural and biochemical evidence that bicyclic azetidines are competitive inhibitors of L-Phe, one of three substrates required for the cFRS-catalyzed aminoacylation reaction that underpins protein synthesis in the parasite. Critically, our co-crystal structure of a PvcFRS-BRD1389 complex shows that the bicyclic azetidine ligand binds to two distinct sub-sites within the PvcFRS catalytic site. The ligand occupies the L-Phe site along with an auxiliary cavity and traverses past the ATP binding site. Given that BRD1389 recognition residues are conserved amongst apicomplexan FRSs, this work lays a structural framework for the development of drugs against both Plasmodium and related apicomplexans.


Asunto(s)
Azetidinas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Malaria/enzimología , Parásitos/enzimología , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Fenilalanina-ARNt Ligasa/química , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Aminoacilación , Animales , Dominio Catalítico , Citosol/enzimología , Resistencia a Medicamentos/genética , Modelos Moleculares , Mutación/genética , Fenilalanina/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo , Plasmodium falciparum/efectos de los fármacos
17.
J Am Chem Soc ; 143(2): 623-627, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33411531

RESUMEN

Antibiotics to treat drug-resistant Gram-negative infections are urgently needed but challenging to discover. Using a cell-based screen, we identified a simple secondary amine that inhibited the growth of wild-type Escherichia coli and Acinetobacter baumannii but not the growth of the Gram-positive organism Bacillus subtilis. Resistance mutations in E. coli and A. baumannii mapped exclusively to the aminoacyl-tRNA synthetase PheRS. We confirmed biochemically that the compound inhibited PheRS from these organisms and showed that it did not inhibit PheRS from B. subtilis or humans. To understand the basis for the compound's high selectivity for only some PheRS enzymes, we solved crystal structures of E. coli and A. baumannii PheRS complexed with the inhibitor. The structures showed that the compound's benzyl group mimics the benzyl of phenylalanine. The other amine substituent, a 2-(cyclohexen-1-yl)ethyl group, induces a hydrophobic pocket in which it binds. Through bioinformatic analysis and mutagenesis, we show that the ability to induce a complementary hydrophobic pocket that can accommodate the second substituent explains the high selectivity of this remarkably simple molecular scaffold for Gram-negative PheRS. Because this secondary amine scaffold is active against wild-type Gram-negative pathogens but is not cytotoxic to mammalian cells, we suggest that it may be possible to develop it for use in combination antibiotic therapy to treat Gram-negative infections.


Asunto(s)
Aminas/farmacología , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Aminas/química , Antibacterianos/química , Bacillus subtilis/enzimología , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fenilalanina-ARNt Ligasa/metabolismo
18.
FEBS J ; 287(17): 3814-3826, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32115907

RESUMEN

Various pathogenic variants in both mitochondrial tRNAPhe and Phenylalanyl-tRNA synthetase mitochondrial protein coding gene (FARS2) gene encoding for the human mitochondrial PheRS have been identified and associated with neurological and/or muscle-related pathologies. An important Guanine-34 (G34)A anticodon mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) syndrome has been reported in hmit-tRNAPhe . The majority of G34 contacts in available aaRSs-tRNAs complexes specifically use that base as an important tRNA identity element. The network of intermolecular interactions providing its specific recognition also largely conserved. However, their conservation depends also on the invariance of the residues in the anticodon binding domain (ABD) of human mitochondrial Phenylalanyl-tRNA synthetase (hmit-PheRS). A defect in recognition of the anticodon of tRNAPhe may happen not only because of G34A mutation, but also due to mutations in the ABD. Indeed, a pathogenic mutation in FARS2 has been recently reported in a 9-year-old female patient harboring a p.Asp364Gly mutation. Asp364 is hydrogen bonded (HB) to G34 in WT hmit-PheRS. Thus, there are two pathogenic variants disrupting HB between G34 and Asp364: one is associated with G34A mutation, and the other with Asp364Gly mutation. We have measured the rates of tRNAPhe aminoacylation catalyzed by WT hmit-PheRS and mutant enzymes. These data ranked the residues making a HB with G34 according to their contribution to activity and the signal transduction pathway in the hmit-PheRS-tRNAPhe complex. Furthermore, we carried out extensive MD simulations to reveal the interdomain contact topology on the dynamic trajectories of the complex, and gaining insight into the structural and dynamic integrity effects of hmit-PheRS complexed with tRNAPhe . DATABASE: Structural data are available in PDB database under the accession number(s): 3CMQ, 3TUP, 5MGH, 5MGV.


Asunto(s)
Pleiotropía Genética , Proteínas Mitocondriales/química , Paraparesia Espástica/genética , Fenilalanina-ARNt Ligasa/química , ARN de Transferencia de Fenilalanina/química , Sustitución de Aminoácidos , Anticodón/química , Anticodón/metabolismo , Ácido Aspártico/química , Niño , Consanguinidad , ADN Mitocondrial/genética , Progresión de la Enfermedad , Femenino , Guanina/química , Humanos , Enlace de Hidrógeno , Síndrome MERRF/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Movimiento (Física) , Mutación Missense , Fenotipo , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Mutación Puntual , Conformación Proteica , Dominios Proteicos
19.
Proc Natl Acad Sci U S A ; 116(20): 10058-10063, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31036643

RESUMEN

Accurate translation of the genetic code is maintained in part by aminoacyl-tRNA synthetases (aaRS) proofreading mechanisms that ensure correct attachment of a cognate amino acid to a transfer RNA (tRNA). During environmental stress, such as oxidative stress, demands on aaRS proofreading are altered by changes in the availability of cytoplasmic amino acids. For example, oxidative stress increases levels of cytotoxic tyrosine isomers, noncognate amino acids normally excluded from translation by the proofreading activity of phenylalanyl-tRNA synthetase (PheRS). Here we show that oxidation of PheRS induces a conformational change, generating a partially unstructured protein. This conformational change does not affect Phe or Tyr activation or the aminoacylation activity of PheRS. However, in vitro and ex vivo analyses reveal that proofreading activity to hydrolyze Tyr-tRNAPhe is increased during oxidative stress, while the cognate Phe-tRNAPhe aminoacylation activity is unchanged. In HPX-, Escherichia coli that lack reactive oxygen-scavenging enzymes and accumulate intracellular H2O2, we found that PheRS proofreading is increased by 11%, thereby providing potential protection against hazardous cytoplasmic m-Tyr accumulation. These findings show that in response to oxidative stress, PheRS proofreading is positively regulated without negative effects on the enzyme's housekeeping activity in translation. Our findings also illustrate that while the loss of quality control and mistranslation may be beneficial under some conditions, increased proofreading provides a mechanism for the cell to appropriately respond to environmental changes during oxidative stress.


Asunto(s)
Fenilalanina-ARNt Ligasa/metabolismo , Biosíntesis de Proteínas , Escherichia coli , Oxidación-Reducción , Estrés Oxidativo , Conformación Proteica , Salmonella enterica
20.
Microbiology (Reading) ; 165(5): 572-584, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30942689

RESUMEN

The gold standard method for the creation of gene deletions in Staphylococcus aureus is homologous recombination using allelic exchange plasmids with a temperature-sensitive origin of replication. A knockout vector that contains regions of homology is first integrated into the chromosome of S. aureus by a single crossover event selected for at high temperatures (non-permissive for plasmid replication) and antibiotic selection. Next, the second crossover event is encouraged by growth without antibiotic selection at low temperature, leading at a certain frequency to the excision of the plasmid and the deletion of the gene of interest. To detect or encourage plasmid loss, either a beta-galactosidase screening method or, more typically, a counterselection step is used. We present here the adaptation of the counter-selectable marker pheS*, coding for a mutated subunit of the phenylalanine tRNA synthetase, for use in S. aureus. The PheS* protein variant allows for the incorporation of the toxic phenylalanine amino acid analogue para-chlorophenylalanine (PCPA) into proteins and the addition of 20-40 mM PCPA to rich media leads to drastic growth reduction for S. aureus and supplementing chemically defined medium with 2.5-5 mM PCPA leads to complete growth inhibition. Using the new allelic exchange plasmid pIMAY*, we delete the magnesium transporter gene mgtE in S. aureus USA300 LAC* (SAUSA300_0910/SAUSA300_RS04895) and RN4220 (SAOUHSC_00945) and demonstrate that cobalt toxicity in S. aureus is mainly mediated by the presence of MgtE. This new plasmid will aid the efficient and easy creation of gene knockouts in S. aureus.


Asunto(s)
Proteínas Bacterianas/genética , Ingeniería Genética , Fenilalanina-ARNt Ligasa/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Técnicas de Inactivación de Genes , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Genoma Bacteriano , Humanos , Fenilalanina-ARNt Ligasa/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...