Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.019
Filtrar
1.
Food Res Int ; 187: 114423, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763674

RESUMEN

The ß-cyclodextrin and short-chain alkyl gallates (A-GAs), which are representative of phenolipids, such as butyl, propyl, ethyl, and methyl gallates, were chosen to form inclusion complexes by the use of the freeze-drying process. In the everted rat gut sac model, HPLC-UV analysis demonstrated that the released A-GAs from inclusion complexes were degraded to yield free gallic acid (GA) (sustained-release function 1). The small intestine membrane may be crossed by both the GA and the A-GAs. A-GAs may also undergo hydrolysis to provide GA (sustained-release function 2) following transmembrane transfer. Clearly, a helpful technique for the dual sustained-release of phenolic compounds is to produce ß-cyclodextrin inclusion complexes with short-chain phenolipids. This will increase the bioactivities of phenolic compounds and prolong their in vivo residence length. Moreover, changing the carbon-chain length of these ß-cyclodextrin inclusion complexes would readily modify the dual sustained-release behavior of the phenolic compounds. Thus, our work effectively established a theoretical foundation for the use of ß-cyclodextrin inclusion complexes containing short-chain phenolipids as new source of functional food components to provide the body with phenolic compounds more efficiently.


Asunto(s)
Preparaciones de Acción Retardada , Ácido Gálico , Fenoles , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Animales , Ratas , Ácido Gálico/química , Masculino , Fenoles/química , Ratas Sprague-Dawley , Liofilización
2.
Food Res Int ; 187: 114452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763687

RESUMEN

The antioxidant activity of the natural phenolic extracts is limited in particular food systems due to the existence of phenolic compounds in glycoside form. Acid hydrolysis post-treatment could be a tool to convert the glycosidic polyphenols in the extracts to aglycones. Therefore, this research investigated the effects of an acid hydrolysis post-treatment on the composition and antioxidant activity of parsley extracts obtained by an ultrasound-assisted extraction method to delay lipid oxidation in a real food system (i.e., soybean oil-in-water emulsion). Acid hydrolysis conditions were varied to maximize total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. When extracts were exposed to 0.6 M HCl for 2 h at 80 ℃, TPC was 716.92 ± 24.43 µmol gallic acid equivalent (GAE)/L, and DPPH radical scavenging activity was 66.89 ± 1.63 %. Not only did acid hydrolysis increase the concentrations of individual polyphenols, but it also resulted in the release of new phenolics such as myricetin and gallic acid. The extract's metal chelating and ferric-reducing activity increased significantly after acid hydrolysis. In soybean oil-in-water emulsion containing a TPC of 400 µmol GAE/L, the acid-hydrolyzed extract had an 11-day lag phase for headspace hexanal compared to the 6-day lag phase of unhydrolyzed extract. The findings indicated that the conversion of glycosidic polyphenols to aglycones in phenolic extracts can help extend the shelf-life of emulsion-based foods.


Asunto(s)
Antioxidantes , Emulsiones , Petroselinum , Fenoles , Extractos Vegetales , Hojas de la Planta , Aceite de Soja , Emulsiones/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aceite de Soja/química , Fenoles/química , Hidrólisis , Antioxidantes/farmacología , Antioxidantes/química , Petroselinum/química , Hojas de la Planta/química , Oxidación-Reducción , Agua/química , Peroxidación de Lípido/efectos de los fármacos , Compuestos de Bifenilo/química , Picratos/química , Polifenoles/química , Polifenoles/farmacología
3.
J Mass Spectrom ; 59(6): e5033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38726726

RESUMEN

A total of 43 compounds, including phenolic acids, flavonoids, lignans, and diterpene, were identified and characterized using UPLC-ESI-Q-TOF-MS coupled with UNIFI software. The identified flavonoids were mostly isomers of luteolin, apigenin, and quercetin, which were elucidated and distinguished for the first time in pepper cultivars. The use of multivariate data analytics for sample discrimination revealed that luteolin derivatives played the most important role in differentiating pepper cultivars. The content of phenolic acids and flavonoids in immature green peppers was generally higher than that of mature red peppers. The pepper extracts possessed significant antioxidant activities, and the antioxidant activities correlated well with phenolic contents and their molecular structure. In conclusion, the findings expand our understanding of the phytochemical components of the Chinese pepper genotype at two maturity stages. Moreover, a UPLC-ESI-Q-TOF-MS in negative ionization mode rapid methods for characterization and isomers differentiation was described.


Asunto(s)
Antioxidantes , Capsicum , Fenoles , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Capsicum/química , Isomerismo , Fenoles/química , Fenoles/análisis , Flavonoides/química , Flavonoides/análisis , Extractos Vegetales/química , Pueblos del Este de Asia
4.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731432

RESUMEN

Dairy products are highly susceptible to contamination from microorganisms. This study aimed to evaluate the efficacy of hydroxypropyl methylcellulose (HPMC) and propolis film as protective coatings for cheese. For this, microbiological analyses were carried out over the cheese' ripening period, focusing on total mesophilic bacteria, yeasts and moulds, lactic acid bacteria, total coliforms, Escherichia coli, and Enterobacteriaceae. Physicochemical parameters (pH, water activity, colour, phenolic compounds content) were also evaluated. The statistical analysis (conducted using ANOVA and PERMANOVA) showed a significant interaction term between the HPMC film and propolis (factor 1) and storage days (factor 2) with regard to the dependent variables: microbiological and physicochemical parameters. A high level of microbial contamination was identified at the baseline. However, the propolis films were able to reduce the microbial count. Physicochemical parameters also varied with storage time, with no significant differences found for propolis-containing films. Overall, the addition of propolis to the film influenced the cheeses' colour and the quantification of phenolic compounds. Regarding phenolic compounds, their loss was verified during storage, and was more pronounced in films with a higher percentage of propolis. The study also showed that, of the three groups of phenolic compounds (hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids), hydroxycinnamic acids showed the most significant losses. Overall, this study reveals the potential of using HPMC/propolis films as a coating for cheese in terms of microbiological control and the preservation of physicochemical properties.


Asunto(s)
Queso , Conservación de Alimentos , Derivados de la Hipromelosa , Própolis , Queso/microbiología , Queso/análisis , Própolis/química , Derivados de la Hipromelosa/química , Conservación de Alimentos/métodos , Fenoles/química , Fenoles/análisis , Microbiología de Alimentos , Escherichia coli/efectos de los fármacos
5.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731494

RESUMEN

Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in aqueous extracts of two Algerian popular fig varieties, azendjar (Az) and taamriouth (Ta), as well as their in vitro antioxidant activity. In this study, we assessed hydroethanolic extracts of these fig varieties. The total phenolic content was measured, along with the phenolic profile. Rutin was determined to be the dominant phenolic compound, followed by vanillic acid, 3,4-dihydroxybenzoic acid, quercetin, 4-hydroxybenzoic acid, rosmarinic acid (in Az only), and cinnamic acid. The antioxidant activity of the extracts was evaluated both in vitro (DPPH and FRAP assays) and in vivo, in rats intoxicated with carbon tetrachloride. In all assays, the fig extract-especially the dark-peeled fig variety azendjar-showed antioxidant potency. The administration of fig extract resulted in a reduction in liver damage, expressed by both different biochemical markers and histopathological study (less degraded liver architecture, reduced fibrosis, and only mild inflammation). A dose-dependent therapeutic effect was observed. The extract from the dark-peeled fig variety, Az, was characterized by a higher phenolic content and a stronger antioxidant activity than the extract from the light-peeled variety-Ta. Our study justifies the use of figs in traditional healing and shows the potential of using fig extracts in natural medicines and functional foods.


Asunto(s)
Antioxidantes , Tetracloruro de Carbono , Ficus , Estrés Oxidativo , Extractos Vegetales , Animales , Ficus/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Ratas , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas Wistar
6.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731503

RESUMEN

This current article was dedicated to the determination of the composition of phenolic compounds in extracts of four species of the genus Filipendula in order to establish a connection between the composition of polyphenols and biological effects. A chemical analysis revealed that the composition of the extracts studied depended both on the plant species and its part (leaf or flower) and on the extractant used. All four species of Filipendula were rich sources of phenolic compounds and contained hydrolyzable tannins, condensed tannins, phenolic acids and their derivatives, and flavonoids. The activities included data on those that are most important for creating functional foods with Filipendula plant components: the influence on blood coagulation measured by prothrombin and activated partial thromboplastin time, and on the activity of the digestive enzymes (pancreatic amylase and lipase). It was established that plant species, their parts, and extraction methods contribute meaningfully to biological activity. The most prominent result is as follows: the plant organ determines the selective inhibition of either amylase or lipase; thus, the anticoagulant activities of F. camtschatica and F. stepposa hold promise for health-promoting food formulations associated with general metabolic disorders.


Asunto(s)
Fenoles , Extractos Vegetales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Flavonoides/química , Flavonoides/farmacología , Flavonoides/análisis , Polifenoles/química , Polifenoles/farmacología , Polifenoles/análisis , Amilasas/antagonistas & inhibidores , Amilasas/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Humanos , Anticoagulantes/farmacología , Anticoagulantes/química , Hojas de la Planta/química
7.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731544

RESUMEN

Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.


Asunto(s)
Antioxidantes , Berberis , Corteza de la Planta , Extractos Vegetales , Berberis/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Corteza de la Planta/química , Humanos , Línea Celular Tumoral , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Supervivencia Celular/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Cromatografía Líquida de Alta Presión , Tallos de la Planta/química
8.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731557

RESUMEN

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Asunto(s)
Antioxidantes , Fenoles , Extractos Vegetales , Solventes , Solventes/química , Fenoles/química , Fenoles/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos , Tecnología Química Verde , Simulación de Dinámica Molecular , Hidroxibenzoatos/química , Hidroxibenzoatos/aislamiento & purificación
9.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731583

RESUMEN

Xanthorrhizol, an important marker of Curcuma xanthorrhiza, has been recognized for its different pharmacological activities. A green strategy for selective xanthorrhizol extraction is required. Herein, natural deep eutectic solvents (NADESs) based on glucose and organic acids (lactic acid, malic acid, and citric acid) were screened for the extraction of xanthorrhizol from Curcuma xanthorrhiza. Ultrasound-assisted extraction using glucose/lactic acid (1:3) (GluLA) gave the best yield of xanthorrhizol. The response surface methodology with a Box-Behnken Design was used to optimize the interacting variables of water content, solid-to-liquid (S/L) ratio, and extraction to optimize the extraction. The optimum conditions of 30% water content in GluLA, 1/15 g/mL (S/L), and a 20 min extraction time yielded selective xanthorrhizol extraction (17.62 mg/g) over curcuminoids (6.64 mg/g). This study indicates the protective effect of GluLA and GluLA extracts against oxidation-induced DNA damage, which was comparable with those obtained for ethanol extract. In addition, the stability of the xanthorrhizol extract over 90 days was revealed when stored at -20 and 4 °C. The FTIR and NMR spectra confirmed the hydrogen bond formation in GluLA. Our study reported, for the first time, the feasibility of using glucose/lactic acid (1:3, 30% water v/v) for the sustainable extraction of xanthorrhizol.


Asunto(s)
Antioxidantes , Curcuma , Fenoles , Extractos Vegetales , Rizoma , Curcuma/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Rizoma/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Disolventes Eutécticos Profundos/química , Ondas Ultrasónicas
10.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731592

RESUMEN

The study aimed to determine the phenolic content and antioxidant capacity of five protein supplements of plant origin. The content and profile of phenolics were determined using the UHPLC-DAD-MS method, while antioxidant capacity (ABTS and DPPH assays) and total phenolic content (TPC) were evaluated using spectrophotometric tests. In the analyzed proteins, twenty-five polyphenols were detected, including eleven phenolic acids, thirteen flavonoids, and one ellagitannin. Hemp protein revealed the highest individual phenolics content and TPC value (1620 µg/g and 1.79 mg GAE/g, respectively). Also, hemp protein showed the highest antioxidant activity determined via ABTS (9.37 µmol TE/g) and DPPH (9.01 µmol TE/g) assays. The contents of p-coumaric acid, m-coumaric acid, kaempferol, rutin, isorhamnetin-3-O-rutinoside, kaempferol-3-O-rutinoside, and TPC value were significantly correlated with antioxidant activity assays. Our findings indicate that plant-based protein supplements are a valuable source of phenols and can also be used in research related to precision medicine, nutrigenetics, and nutrigenomics. This will benefit future health promotion and personalized nutrition in the prevention of chronic diseases.


Asunto(s)
Antioxidantes , Suplementos Dietéticos , Fenoles , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/farmacología , Fenoles/análisis , Fenoles/química , Suplementos Dietéticos/análisis , Flavonoides/análisis , Flavonoides/química , Proteínas de Plantas/análisis , Cromatografía Líquida de Alta Presión , Polifenoles/análisis , Polifenoles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
11.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731598

RESUMEN

Obtaining high-added value compounds from agricultural waste receives increasing attention, as it can both improve resource utilization efficiency and reduce waste generation. In this study, polysaccharides are extracted from the discarded roots of Abelmoschus manihot (L.) by the high-efficiency ultrasound-assisted extraction (UAE). The optimized condition was determined as solid-liquid ratio SL ratio = 1:20, temperature T = 30 °C and time T = 40 min, achieving an extraction yield of 13.41%. Composition analysis revealed that glucose (Glc, 44.65%), rhamnose (Rha, 26.30%), galacturonic acid (GalA, 12.50%) and galactose (Gal, 9.86%) are the major monosaccharides of the extract. The extract showed a low degree of esterification (DE) value of 40.95%, and its Fourier-transform infrared (FT-IR) spectrum exhibited several characteristic peaks of polysaccharides. Inspired by the wide cosmetic applications of polysaccharides, the skincare effect of the extract was evaluated via the moisture retention, total phenolic content (TPC) quantification, 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-free radical scavenging activity, anti-hyaluronidase and anti-elastase activity experiments. The extract solutions demonstrated a 48 h moisture retention rate of 10.75%, which is superior to that of commercially available moisturizer hyaluronic acid (HA). Moreover, both the TPC value of 16.16 mg GAE/g (dw) and DPPH-free radical scavenging activity of 89.20% at the concentration of 2 mg/mL indicated the strong anti-oxidant properties of the extract. Furthermore, the anti-hyaluronidase activity and moderate anti-elastase activity were determined as 72.16% and 42.02%, respectively. In general, in vitro skincare effect experiments suggest moisturizing, anti-oxidant, anti-radical and anti-aging activities of the A. manihot root extract, indicating its potential applications in the cosmetic industry.


Asunto(s)
Abelmoschus , Antioxidantes , Extractos Vegetales , Raíces de Plantas , Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Abelmoschus/química , Antioxidantes/química , Antioxidantes/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Cuidados de la Piel/métodos , Ramnosa/química , Galactosa , Ácidos Hexurónicos/química , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Humanos
12.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731619

RESUMEN

This study aims to investigate the vegetative buds from Picea abies (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS. Moreover, the antioxidant activity with the DPPH method, and the antimicrobial activity were tested. Heavy metal detection was performed by graphite furnace atomic absorption spectrometry. The main components of the alcoholic extract were astragalin, quercetin, kaempferol, shikimic acid, and quinic acid. A total content of 25.32 ± 2.65 mg gallic acid equivalent per gram of dry plant (mg GAE/g DW) and of 10.54 ± 0.083 mg rutin equivalents/g of dry plant (mg RE/g DW) were found. The essential oil had D-limonene, α-cadinol, δ-cadinene, 13-epimanool, and δ-3-carene as predominant components. The spruce vegetative buds exhibited significant antioxidant activity (IC50 of 53 µg/mL) and antimicrobial effects against Staphylococcus aureus. Furthermore, concentrations of heavy metals Pb and Cd were below detection limits, suggesting that the material was free from potentially harmful contaminants. The results confirmed the potential of this indigenous species to be used as a source of compounds with pharmacological utilities.


Asunto(s)
Antiinfecciosos , Antioxidantes , Aceites Volátiles , Fitoquímicos , Picea , Extractos Vegetales , Picea/química , Antioxidantes/farmacología , Antioxidantes/química , Fitoquímicos/farmacología , Fitoquímicos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Pruebas de Sensibilidad Microbiana , Cromatografía de Gases y Espectrometría de Masas , Rumanía , Fenoles/análisis , Fenoles/farmacología , Fenoles/química
13.
Sci Rep ; 14(1): 10528, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719861

RESUMEN

The current study aimed to assess the effect of the germination process of wild mustard seeds on the phenolic profile, antioxidant, antibacterial, and antidiabetic properties, and some relevant enzyme activities. The total phenolic and flavonoid contents increased 5- and 10-fold, respectively, and were maximized on 5-days sprouts. One new phenolic compound was identified on 5-days sprout extract using HPLC. The concentrations of the identified phenolic compounds increased 1.5-4.3 folds on 5-days sprouts compared with dry seeds. The total antioxidant activity multiplied 17- and 21-fold on 5-days sprouts using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assays, respectively. The activity of carbohydrate-cleaving, phenolic-synthesizing and antioxidant enzymes also increased during germination. On 5-days sprouts, there was a substantial correlation between the highest ß-glucosidase and peroxidase activities with highest phenolic and flavonoid levels and maximum antioxidant activity. The phenolic extract of 5-days sprouts exhibited antimicrobial activities against Escherichia coli and Staphylococcus aureus and showed potent antidiabetic activity established by its inhibitory effect against α-amylase and α-glucosidase compared to dry seeds.


Asunto(s)
Antioxidantes , Germinación , Planta de la Mostaza , Fenoles , Extractos Vegetales , Semillas , Fenoles/análisis , Fenoles/farmacología , Fenoles/química , Antioxidantes/farmacología , Antioxidantes/química , Germinación/efectos de los fármacos , Semillas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Planta de la Mostaza/química , Antibacterianos/farmacología , Antibacterianos/química , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Cromatografía Líquida de Alta Presión
14.
Food Res Int ; 186: 114397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729739

RESUMEN

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Asunto(s)
Glucosa , Lisina , Reacción de Maillard , Odorantes , Oxidación-Reducción , Aceite de Sésamo , Aceite de Sésamo/química , Glucosa/química , Odorantes/análisis , Lisina/química , Fenoles/química , Benzodioxoles
15.
Mikrochim Acta ; 191(6): 309, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714599

RESUMEN

Copper-doped carbon dots and aminated carbon nanotubes (Cu-CDs/NH2-CNTs) nanocomposites were synthesized by a one-step growth method, and the composites were characterized for their performance. An electrochemical sensor for sensitive detection of bisphenol A (BPA) was developed for using Cu-CDs/NH2-CNTs nanocomposites modified with glassy carbon electrodes (GCE). The sensor exhibited an excellent electrochemical response to BPA in 0.2 M PBS (pH 7.0) under optimally selected conditions. The linear range of the sensor for BPA detection was 0.5-160 µM, and the detection limit (S/N = 3) was 0.13 µM. Moreover, the sensor has good interference immunity, stability and reproducibility. In addition, the feasibility of the practical application of the sensor was demonstrated by the detection of BPA in bottled drinking water and Liu Yang River water.


Asunto(s)
Compuestos de Bencidrilo , Cobre , Técnicas Electroquímicas , Electrodos , Límite de Detección , Nanotubos de Carbono , Fenoles , Contaminantes Químicos del Agua , Compuestos de Bencidrilo/análisis , Fenoles/análisis , Fenoles/química , Nanotubos de Carbono/química , Cobre/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Contaminantes Químicos del Agua/análisis , Agua Potable/análisis , Puntos Cuánticos/química , Carbono/química , Ríos/química
16.
Anal Chim Acta ; 1307: 342628, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719415

RESUMEN

Bisphenol compounds (BPA, BPS, BPAF, etc.) are one class of the most important and widespread pollutants that poses severe threat to human health and the ecological environment. Because of the presence of multiple bisphenols in environmental and food samples, it is urgent and challenging to develop a rapid and cheap technique for simultaneously detecting BPA and its analogues. In this study, a series of M-N-C (M = Cu, Mg, Ni, Co, Fe, K) single-atom nanozymes (SAzymes) were created by simulating the structure of natural enzyme molecules, which were used as novel sensing platform for the fabrication of electrochemical sensors. Through systematic screening and characterization, it was interestingly discovered that the electrochemical sensor based on Cu-N-C SAzymes exhibited the best sensing performance for bisphenols among all SAzymes, which catalyzed not only BPA like tyrosinase, but also showed excellent catalytic capacity beyond tyrosinase (tyrosinase has no catalytic activity for BPS, BPAF, etc.), and achieved potential-resolved simultaneous rapid detection of BPA, BPS and BPAF. Further structure-activity relationship and catalytic mechanism characterizations of Cu-N-C SAzymes revealed that the presence of single atom Cu was predominantly in the form of Cu+ and Cu2+, which were anchored onto graphene nanosheet support through four coordination bonds with pyridinic N and pyrrolic N and acted as highly efficient active centers for electrocatalytic oxidation of bisphenols. The developed electrochemical sensing method exhibited excellent selectivity, sensitivity, and reliability for the rapid detection of multiple bisphenols in actual samples.


Asunto(s)
Compuestos de Bencidrilo , Técnicas Electroquímicas , Fenoles , Fenoles/análisis , Fenoles/química , Compuestos de Bencidrilo/análisis , Técnicas Electroquímicas/métodos , Nanoestructuras/química , Catálisis , Cobre/química , Grafito/química , Límite de Detección
17.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732269

RESUMEN

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Asunto(s)
Aldehídos , Antibacterianos , Biopelículas , Monoterpenos Ciclopentánicos , Aceite de Oliva , Fenoles , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Aceite de Oliva/química , Aceite de Oliva/farmacología , Fenoles/farmacología , Fenoles/química , Aldehídos/farmacología , Aldehídos/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Adhesión Bacteriana/efectos de los fármacos
18.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731940

RESUMEN

Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.


Asunto(s)
Ácidos Carboxílicos , Muramidasa , Muramidasa/química , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Animales , Células A549 , Amiloide/química , Amiloide/metabolismo , Amiloide/antagonistas & inhibidores , Unión Proteica , Fenoles/química , Fenoles/farmacología , Calixarenos/química , Calixarenos/farmacología , Sulfuros
19.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731987

RESUMEN

Contemporary living is continuously leading to poor everyday choices resulting in the manifestation of various diseases. The benefits of plant-based nutrition are undeniable and research on the topic is rising. Modern man is now aware of the possibilities that plant nutrition can provide and is seeking ways to benefit from it. Dietary phenolic compounds are among the easily accessible beneficial substances that can exhibit antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, anti-diabetic, anti-atherogenic, antiproliferative, as well as cardio-and neuroprotective activities. Several industries are exploring ways to incorporate biologically active substances in their produce. This review is concentrated on presenting current information about the dietary phenolic compounds and their contribution to maintaining good health. Additionally, this content will demonstrate the importance and prosperity of natural compounds for various fields, i.e., food industry, cosmetology, and biotechnology, among others.


Asunto(s)
Antioxidantes , Fenoles , Humanos , Fenoles/química , Fenoles/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Animales , Dieta
20.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696240

RESUMEN

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Asunto(s)
Sustancias Húmicas , Manganeso , Oxidación-Reducción , Fenoles , Manganeso/química , Fenoles/química , Aniones , Compuestos de Manganeso/química , Óxidos/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...