Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.528
Filtrar
1.
Nature ; 629(8011): 295-306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720037

RESUMEN

Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.


Asunto(s)
Dióxido de Carbono , Combustibles Fósiles , Industria del Petróleo y Gas , Energía Renovable , Ciclo del Carbono , Dióxido de Carbono/efectos adversos , Dióxido de Carbono/aislamiento & purificación , Carbón Mineral/efectos adversos , Carbón Mineral/provisión & distribución , Combustibles Fósiles/efectos adversos , Combustibles Fósiles/provisión & distribución , Hidrógeno/química , Gas Natural/efectos adversos , Gas Natural/provisión & distribución , Petróleo/efectos adversos , Petróleo/provisión & distribución , Energía Renovable/estadística & datos numéricos , Industria del Petróleo y Gas/métodos , Industria del Petróleo y Gas/tendencias
2.
J Chem Phys ; 160(18)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38716851

RESUMEN

We studied the origin of the vibrational signatures in the sum-frequency generation (SFG) spectrum of fibrillar collagen type I in the carbon-hydrogen stretching regime. For this purpose, we developed an all-reflective, laser-scanning SFG microscope with minimum chromatic aberrations and excellent retention of the polarization state of the incident beams. We performed detailed SFG measurements of aligned collagen fibers obtained from rat tail tendon, enabling the characterization of the magnitude and polarization-orientation dependence of individual tensor elements Xijk2 of collagen's nonlinear susceptibility. Using the three-dimensional atomic positions derived from published crystallographic data of collagen type I, we simulated its Xijk2 elements for the methylene stretching vibration and compared the predicted response with the experimental results. Our analysis revealed that the carbon-hydrogen stretching range of the SFG spectrum is dominated by symmetric stretching modes of methylene bridge groups on the pyrrolidine rings of the proline and hydroxyproline residues, giving rise to a dominant peak near 2942 cm-1 and a shoulder at 2917 cm-1. Weak asymmetric stretches of the methylene bridge group of glycine are observed in the region near 2870 cm-1, whereas asymmetric CH2-stretching modes on the pyrrolidine rings are found in the 2980 to 3030 cm-1 range. These findings help predict the protein's nonlinear optical properties from its crystal structure, thus establishing a connection between the protein structure and SFG spectroscopic measurements.


Asunto(s)
Carbono , Colágeno Tipo I , Hidrógeno , Hidrógeno/química , Carbono/química , Colágeno Tipo I/química , Ratas , Animales , Análisis Espectral/métodos
3.
Drug Des Devel Ther ; 18: 1399-1414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707612

RESUMEN

Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.


Asunto(s)
Hidrógeno , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Hidrógeno/farmacología , Hidrógeno/química , Humanos , Animales , Antioxidantes/farmacología , Antioxidantes/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química
4.
J Am Chem Soc ; 146(19): 13488-13498, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709095

RESUMEN

Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.


Asunto(s)
Hidrógeno , Péptidos , Hidrógeno/química , Catálisis , Péptidos/química , Modelos Moleculares , Hidrólisis
5.
Anal Methods ; 16(19): 3020-3029, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38690766

RESUMEN

A concise and rapid detection method for Mycoplasma pneumoniae is urgently required due to its severe impact on human health. To meet such a need, this study proposed and constructed an innovative point-of-care testing (POCT) platform that consists of a hydrogen ion-selective loop-mediated isothermal amplification (H+-LAMP) sensor and an electrochemical detection device. The H+-LAMP sensor successfully integrated the working and reference electrodes and converted the H+ generated during the LAMP process into an electrochemical signal. High sensitivity and stability for pathogen detection were also achieved by treating the working electrode with an electrodeposited polyaniline solid contact layer and by using an ion-selective membrane. As a result, the sensor shows a sensitivity of 68.26 mV per pH, a response time of less than 2 s, and a potential drift of less than 5 mV within one hour, which well meets the urgent need. The results also demonstrated that the detection limit for Mycoplasma pneumoniae was lowered to 1 copy per µL, the nucleic acid extraction and detection process could be completed in 30 minutes, and the impact of interfering ions on the sensor was negligible. Validation with 20 clinical samples yielded satisfactory results. More importantly, the storage lifespan of such an electrochemical sensor is over seven days, which is a great advantage for on-site pathogen detection. Therefore, the hydrogen ion-selective sensor constructed in this investigation is particularly suitable as a core component for instant pathogen detection platforms.


Asunto(s)
Técnicas Electroquímicas , Límite de Detección , Mycoplasma pneumoniae , Técnicas de Amplificación de Ácido Nucleico , Mycoplasma pneumoniae/aislamiento & purificación , Mycoplasma pneumoniae/genética , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Hidrógeno/química , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/microbiología , Técnicas Biosensibles/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Electrodos
6.
PLoS One ; 19(5): e0302972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722925

RESUMEN

Electroless nickel plating is a suitable technology for the hydrogen industry because electroless nickel can be mass-produced at a low cost. Investigating in a complex environment where hydrogen permeation and friction/wear work simultaneously is necessary to apply it to hydrogen valves for hydrogen fuel cell vehicles. In this research, the effects of hydrogen permeation on the mechanical characteristics of electroless nickel-plated free-cutting steel (SUM 24L) were investigated. Due to the inherent characteristics of electroless nickel plating, the damage (cracks and delamination of grain) and micro-particles by hydrogen permeation were clearly observed at the grain boundaries and triple junctions. In particular, the cracks grew from grain boundary toward the intergranualr. This is because the grain boundaries and triple junctions are hydrogen permeation pathways and increasing area of the hydrogen partial pressure. As a result, its surface roughness increased by a maximum of two times, and its hardness and adhesion strength decreased by hydrogen permeation. In particular, hydrogen permeation increased the friction coefficient of the electroless nickel-plated layer, and the damage caused by adhesive wear was significantly greater, increasing the wear depth by up to 5.7 times. This is believed to be due to the decreasing in wear resistance of the electroless nickel plating layer damaged by hydrogen permeation. Nevertheless, the Vickers hardness and the friction coefficient of the electroless nickel plating layer were improved by about 3 and 5.6 times, respectively, compared with those of the free-cutting steel. In particular, the electroless nickel-plated specimens with hydrogen embrittlement exhibited significantly better mechanical characteristics and wear resistance than the free-cutting steel.


Asunto(s)
Hidrógeno , Níquel , Acero , Hidrógeno/química , Níquel/química , Acero/química , Suministros de Energía Eléctrica , Propiedades de Superficie , Ensayo de Materiales
7.
J Chromatogr A ; 1726: 464946, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38744185

RESUMEN

On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak.


Asunto(s)
Hidrocarburos , Aceite Mineral , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Gases/métodos , Aceite Mineral/química , Aceite Mineral/análisis , Hidrocarburos/análisis , Nitrógeno/análisis , Helio/química , Hidrógeno/química , Ionización de Llama/métodos , Gases/química
8.
Nat Commun ; 15(1): 4226, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762502

RESUMEN

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.


Asunto(s)
Metano , Óxido Nitroso , Óxido Nitroso/metabolismo , Metano/metabolismo , Concentración de Iones de Hidrógeno , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxígeno/metabolismo , Oxidación-Reducción , Anaerobiosis , Metanol/metabolismo , Hidrógeno/metabolismo , Oxigenasas/metabolismo , Oxigenasas/genética
9.
J Environ Manage ; 359: 120961, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696851

RESUMEN

Plastic pollution poses a significant environmental threat, particularly to marine ecosystems, as conventional plastics persist without degradation, accumulating plastic waste in landfills and natural environments. A promising alternative to address this issue involves the use of hydrogen donor solvents in plastic liquefaction, offering a dual benefit of waste reduction and the generation of valuable liquid products with diverse industrial applications. This review delves into plastic recycling methods with a specific focus on liquefaction using hydrogen donating solvents as an innovative approach to waste management. Liquefaction, conducted at moderate to high temperatures (280-450 °C) and pressures (7-30 MPa), yields high oil conversion using various solvents. This study examined the performance of hydrogen-donating solvents, including water, alcohols, decalin, and cyclohexane, in enhancing the oil yield while minimising the oxygen content. Supercritical water, recognised for its effective plastic degradation and chemical production capabilities, and alcohols, with their alkylating and hydrogen-donating properties, have emerged as key solvents in plastic liquefaction. The use of hydrogen donor solvents stabilizes the free radicals, enhancing the conversion of plastic waste into valuable products. In addition, this review addresses the economic efficiency of the liquefaction process.


Asunto(s)
Hidrógeno , Plásticos , Reciclaje , Solventes , Administración de Residuos , Solventes/química , Administración de Residuos/métodos , Plásticos/química , Hidrógeno/química
10.
Sci Total Environ ; 931: 172898, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697543

RESUMEN

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.


Asunto(s)
Ácidos Grasos Volátiles , Fermentación , Aguas del Alcantarillado , Sulfitos , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Sulfitos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Eliminación de Residuos Líquidos/métodos , Sulfatos/metabolismo , Hidrógeno/metabolismo , Bacterias/metabolismo , Hierro/metabolismo
11.
Sci Total Environ ; 931: 172922, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38701927

RESUMEN

The performance of hydrogen consumption by various inocula derived from mesophilic anaerobic digestion plants was evaluated under ex situ biomethanation. A panel of 11 mesophilic inocula was operated at a concentration of 15 gVS.L-1 at a temperature of 35 °C in batch system with two successive injections of H2:CO2 (4:1 mol:mol). Hydrogen consumption and methane production rates were monitored from 44 h to 72 h. Hydrogen consumption kinetics varies significantly based on the inoculum origin, with no accumulation of volatile fatty acids. Microbial community analyses revealed that microbial indicators such as the increase in Methanosarcina sp. abundance and the increase of the Archaea/Bacteria ratio were associated to high initial hydrogen consumption rates. The improvement in the hydrogen consumption rate between the two injections was correlated with the enrichment in hydrogenotrophic methanogens. This work provides new insights into the early response of microbial communities to hydrogen injection and on the microbial structures that may favor their adaptation to the biomethanation process.


Asunto(s)
Archaea , Hidrógeno , Metano , Metano/metabolismo , Archaea/metabolismo , Hidrógeno/metabolismo , Reactores Biológicos/microbiología , Microbiota , Anaerobiosis
12.
Nat Commun ; 15(1): 3708, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714662

RESUMEN

Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.


Asunto(s)
Aminoácidos , Compuestos de Anilina , Boranos , Péptidos , Compuestos de Anilina/química , Catálisis , Aminoácidos/química , Péptidos/química , Boranos/química , Hidrógeno/química , Simulación por Computador , Oxidación-Reducción , Alquilación , Aprendizaje Automático
13.
Nat Commun ; 15(1): 4151, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755154

RESUMEN

Atmospheric methane oxidizing bacteria (atmMOB) constitute the sole biological sink for atmospheric methane. Still, the physiological basis allowing atmMOB to grow on air is not well understood. Here we assess the ability and strategies of seven methanotrophic species to grow with air as sole energy, carbon, and nitrogen source. Four species, including three outside the canonical atmMOB group USCα, enduringly oxidized atmospheric methane, carbon monoxide, and hydrogen during 12 months of growth on air. These four species exhibited distinct substrate preferences implying the existence of multiple metabolic strategies to grow on air. The estimated energy yields of the atmMOB were substantially lower than previously assumed necessary for cellular maintenance in atmMOB and other aerobic microorganisms. Moreover, the atmMOB also covered their nitrogen requirements from air. During growth on air, the atmMOB decreased investments in biosynthesis while increasing investments in trace gas oxidation. Furthermore, we confirm that a high apparent specific affinity for methane is a key characteristic of atmMOB. Our work shows that atmMOB grow on the trace concentrations of methane, carbon monoxide, and hydrogen present in air and outlines the metabolic strategies that enable atmMOB to mitigate greenhouse gases.


Asunto(s)
Monóxido de Carbono , Hidrógeno , Metano , Oxidación-Reducción , Metano/metabolismo , Monóxido de Carbono/metabolismo , Hidrógeno/metabolismo , Atmósfera/química , Aire , Nitrógeno/metabolismo , Gases de Efecto Invernadero/metabolismo
14.
Sci Rep ; 14(1): 11068, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744892

RESUMEN

Colombia's continuous contamination of water resources and the low alternatives to produce biofuels have affected the fulfillment of the objectives of sustainable development, deteriorating the environment and affecting the economic productivity of this country. Due to this reality, projects on environmental and economic sustainability, phytoremediation, and the production of biofuels such as ethanol and hydrogen were combined. The objective of this article was to design and develop a sustainable system for wastewater treatment and the generation of biofuels based on the biomass of the aquatic plant Eichhornia crassipes. A system that simulates an artificial wetland with live E. crassipes plants was designed and developed, removing organic matter contaminants; subsequently, and continuing the sustainability project, bioreactors were designed, adapted, and started up to produce bioethanol and biohydrogen with the hydrolyzed biomass used in the phytoremediation process, generating around 12 g/L of bioethanol and around 81 ml H2/g. The proposed research strategy suggests combining two sustainable methods, bioremediation and biofuel production, to preserve the natural beauty of water systems and their surroundings.


Asunto(s)
Biodegradación Ambiental , Biocombustibles , Biomasa , Eichhornia , Aguas Residuales , Eichhornia/metabolismo , Aguas Residuales/química , Purificación del Agua/métodos , Etanol/metabolismo , Reactores Biológicos , Hidrógeno/metabolismo
15.
Sci Rep ; 14(1): 10959, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745034

RESUMEN

Molecular hydrogen is an emerging broad-spectrum antioxidant molecule that can be used to treat myocardial infarction (MI). However, with hydrogen inhalation, the concentration that can be reached within target organs is low and the duration of action is short, which makes it difficult to achieve high dose targeted delivery of hydrogen to the heart, seriously limiting the therapeutic potential of hydrogen for MI. As a result of reactions with the internal environment of the body, subcutaneous implantation of magnesium slices leads to continuous endogenous hydrogen production, leading to a higher hydrogen concentration and a longer duration of action in target organs. In this study, we propose magnesium implant-based hydrogen therapy for MI. After subcutaneous implantation of magnesium slices in the dorsum of rats, we measured hydrogen production and efficiency, and evaluated the safety of this approach. Compared with hydrogen inhalation, it significantly improved cardiac function in rats with MI. Magnesium implantation also cleared free radicals that were released as a result of mitochondrial dysfunction, as well as suppressing cardiomyocyte apoptosis.


Asunto(s)
Hidrógeno , Magnesio , Infarto del Miocardio , Animales , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Magnesio/metabolismo , Ratas , Masculino , Ratas Sprague-Dawley , Apoptosis/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Modelos Animales de Enfermedad
16.
Eur J Med Res ; 29(1): 285, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745325

RESUMEN

INTRODUCTION: Hydrogen (H2) is regarded as a novel therapeutic agent against several diseases owing to its inherent biosafety. Bronchopulmonary dysplasia (BPD) has been widely considered among adverse pregnancy outcomes, without effective treatment. Placenta plays a role in defense, synthesis, and immunity, which provides a new perspective for the treatment of BPD. This study aimed to investigate if H2 reduced the placental inflammation to protect the neonatal rat against BPD damage and potential mechanisms. METHODS: We induced neonatal BPD model by injecting lipopolysaccharide (LPS, 1 µg) into the amniotic fluid at embryonic day 16.5 as LPS group. LPS + H2 group inhaled 42% H2 gas (4 h/day) until the samples were collected. We primarily analyzed the neonatal outcomes and then compared inflammatory levels from the control group (CON), LPS group and LPS + H2 group. HE staining was performed to evaluate inflammatory levels. RNA sequencing revealed dominant differentially expressed genes. Bioinformatics analysis (GO and KEGG) of RNA-seq was applied to mine the signaling pathways involved in protective effect of H2 on the development of LPS-induced BPD. We further used qRT-PCR, Western blot and ELISA methods to verify differential expression of mRNA and proteins. Moreover, we verified the correlation between the upstream signaling pathways and the downstream targets in LPS-induced BPD model. RESULTS: Upon administration of H2, the inflammatory infiltration degree of the LPS-induced placenta was reduced, and infiltration significantly narrowed. Hydrogen normalized LPS-induced perturbed lung development and reduced the death ratio of the fetus and neonate. RNA-seq results revealed the importance of inflammatory response biological processes and Toll-like receptor signaling pathway in protective effect of hydrogen on BPD. The over-activated upstream signals [Toll-like receptor 4 (TLR4), nuclear factor kappa-B p65 (NF-κB p65), Caspase1 (Casp1) and NLR family pyrin domain containing 3 (NLRP3) inflammasome] in LPS placenta were attenuated by H2 inhalation. The downstream targets, inflammatory cytokines/chemokines [interleukin (IL)-6, IL-18, IL-1ß, C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1)], were decreased both in mRNA and protein levels by H2 inhalation in LPS-induced placentas to rescue them from BPD. Correlation analysis displayed a positive association of TLR4-mediated signaling pathway both proinflammatory cytokines and chemokines in placenta. CONCLUSION: H2 inhalation ameliorates LPS-induced BPD by inhibiting excessive inflammatory cytokines and chemokines via the TLR4-NFκB-IL6/NLRP3 signaling pathway in placenta and may be a potential therapeutic strategy for BPD.


Asunto(s)
Displasia Broncopulmonar , Hidrógeno , Inflamación , Lipopolisacáridos , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Placenta , Transducción de Señal , Receptor Toll-Like 4 , Femenino , Embarazo , Lipopolisacáridos/toxicidad , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Animales , Placenta/metabolismo , Placenta/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Transducción de Señal/efectos de los fármacos , Ratas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Administración por Inhalación , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/inducido químicamente , Displasia Broncopulmonar/tratamiento farmacológico , Displasia Broncopulmonar/prevención & control , Interleucina-6/metabolismo , Interleucina-6/genética , Ratas Sprague-Dawley , Modelos Animales de Enfermedad
17.
Ter Arkh ; 96(3): 260-265, 2024 Apr 16.
Artículo en Ruso | MEDLINE | ID: mdl-38713041

RESUMEN

Рost-COVID-19 syndrome (PS) is one of the medical and social problem. According to WHO, 10-20% of COVID-19 patients suffer from PS. The use of medical gases - inhaled nitric oxide (iNO) and molecular hydrogen (iH2) - may influence on the mechanisms of development PC. AIM: To evaluate the safety and efficacy of the combined inhalation of NO and H2 (iNO/iH2) in patients with respiratory manifestations of PS. MATERIALS AND METHODS: 34 patients with PS (11 men/23 women, 60.0±11.7 years) were included in the prospective open-label controlled study in parallel groups: the main group (n=17) received iNO/iH2 for 90 minutes once a day for 10 days (concentration of NO 60 ppm, H2<4% in the gas mixture), the control group (n=17) didn't receive inhalations. The period from the confirmation of COVID-19 to the start of the study was 641.8±230.5 days. The groups did not differ in the baseline parameters. The clinical symptoms (from the self-observation diary and mMRC questionnaires, "dyspnea language"), FAS, HADS, SF-36 scores, 6-minute walk test, the blood serum parameters of oxidative stress, the dynamics of the microcirculation in the eye bulbar conjunctiva were evaluated. The individual dose of iNO has chosen during a 15-minute test (the positive dynamics of the microcirculation have indicated that the dose was selected correctly). RESULTS: The decrease the symptoms severity, such as dyspnea, cough, fatigue and palpitations (p<0.005), the increase in SF-36 questionnaire scores (p=0.006) and a reducing of FAS score (p=0.001), as well as the anxiety component of HADS (p=0.02) were revealed at the end of treatment in the main group compared to the control group. We observed an improvement in distance walked (p=0.01) and the values SpO2 (p=0.04) in 6-minute walk test, the increase in the volumetric blood flow velocity in venules (p<0.001), and the date in oxidative damage (p<0.001) and antioxidant activity (p=0.03) parameters in the blood serum. CONCLUSION: The results of the study demonstrate clinical efficacy iNO/iH2 on clinical indicators, parameters of oxidative stress and microcirculation in patients with PS.


Asunto(s)
COVID-19 , Hidrógeno , Óxido Nítrico , Humanos , Femenino , Masculino , Óxido Nítrico/administración & dosificación , COVID-19/complicaciones , Hidrógeno/administración & dosificación , Persona de Mediana Edad , Administración por Inhalación , Estudios Prospectivos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Resultado del Tratamiento , Anciano
18.
Microb Cell Fact ; 23(1): 125, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698392

RESUMEN

BACKGROUND: The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius is able to produce hydrogen gas (H2) through the water-gas shift (WGS) reaction. To date this process has been evaluated under controlled conditions, with gas feedstocks comprising carbon monoxide and variable proportions of air, nitrogen and hydrogen. Ultimately, an economically viable hydrogenogenic system would make use of industrial waste/synthesis gases that contain high levels of carbon monoxide, but which may also contain contaminants such as H2, oxygen (O2) and other impurities, which may be toxic to P. thermoglucosidasius. RESULTS: We evaluated the effects of synthesis gas (syngas) mimetic feedstocks on WGS reaction-driven H2 gas production by P. thermoglucosidasius DSM 6285 in small-scale fermentations. Improved H2 gas production yields and faster onset towards hydrogen production were observed when anaerobic synthetic syngas feedstocks were used, at the expense of biomass accumulation. Furthermore, as the WGS reaction is an anoxygenic process, we evaluated the influence of O2 perturbation on P. thermoglucosidasius hydrogenogenesis. O2 supplementation improved biomass accumulation, but reduced hydrogen yields in accordance with the level of oxygen supplied. However, H2 gas production was observed at low O2 levels. Supplementation also induced rapid acetate consumption, likely to sustain growth. CONCLUSION: The utilisation of anaerobic syngas mimetic gas feedstocks to produce H2 and the relative flexibility of the P. thermoglucosidasius WGS reaction system following O2 perturbation further supports its applicability towards more robust and continuous hydrogenogenic operation.


Asunto(s)
Fermentación , Hidrógeno , Oxígeno , Hidrógeno/metabolismo , Oxígeno/metabolismo , Monóxido de Carbono/metabolismo , Anaerobiosis , Biomasa , Gases/metabolismo
19.
Molecules ; 29(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38611957

RESUMEN

This study evaluated the feasibility of contextually producing hydrogen, microbial proteins, and polyhydroxybutyrate (PHB) using a mixed culture of purple phototrophic bacteria biomass under photo fermentative conditions. To this end, three consecutive batch tests were conducted to analyze the biomass growth curve and to explore the potential for optimizing the production process. Experimental findings indicated that inoculating reactors with microorganisms from the exponential growth phase reduced the duration of the process. Furthermore, the most effective approach for simultaneous hydrogen production and the valorization of microbial biomass was found when conducting the process during the exponential growth phase of the biomass. At this stage, achieved after 3 days of fermentation, the productivities of hydrogen, PHB, and microbial proteins were measured at 63.63 L/m3 d, 0.049 kg/m3 d, and 0.045 kg/m3 d, respectively. The biomass composition comprised a total intracellular compound percentage of 56%, with 27% representing PHB and 29% representing proteins. Under these conditions, the estimated daily revenue was maximized, amounting to 0.6 $/m3 d.


Asunto(s)
Bacterias , Hidrógeno , Fermentación , Biomasa
20.
Sci Rep ; 14(1): 8248, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589617

RESUMEN

Characterization of the microbial activity impacts on transport and storage of hydrogen is a crucial aspect of successful Underground Hydrogen Storage (UHS). Microbes can use hydrogen for their metabolism, which can then lead to formation of biofilms. Biofilms can potentially alter the wettability of the system and, consequently, impact the flow dynamics and trapping mechanisms in the reservoir. In this study, we investigate the impact of microbial activity on wettability of the hydrogen/brine/rock system, using the captive-bubble cell experimental approach. Apparent contact angles are measured for bubbles of pure hydrogen in contact with a solid surface inside a cell filled with living brine which contains sulphate reducing microbes. To investigate the impact of surface roughness, two different solid samples are used: a "rough" Bentheimer Sandstone sample and a "smooth" pure Quartz sample. It is found that, in systems where buoyancy and interfacial forces are the main acting forces, the impact of biofilm formation on the apparent contact angle highly depends on the surface roughness. For the "rough" Bentheimer sandstone, the apparent contact angle was unchanged by biofilm formation, while for the smooth pure Quartz sample the apparent contact angle decreased significantly, making the system more water-wet. This decrease in apparent contact angle is in contrast with an earlier study present in the literature where a significant increase in contact angle due to microbial activity was reported. The wettability of the biofilm is mainly determined by the consistency of the Extracellular Polymeric Substances (EPS) which depends on the growth conditions in the system. Therefore, to determine the impact of microbial activity on the wettability during UHS will require accurate replication of the reservoir conditions including surface roughness, chemical composition of the brine, the microbial community, as well as temperature, pressure and pH-value conditions.


Asunto(s)
Hidrógeno , Cuarzo , Humectabilidad , Sales (Química)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...