Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anticancer Agents Med Chem ; 22(7): 1272-1277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34315391

RESUMEN

It is well known that cancer is the second leading cause of death worldwide. Due to this fact, new results for the treatment of cancer are constantly being introduced and verified. Imidazolidine derivatives regulate cell cycle progression and DNA stability. Structurally, a heterocyclic nucleus favors a direct DNA interaction and therefore, control of the DNA replication process. This review aims not only to discuss the role of imidazolidines in cancer therapy but also explore the functionality of such agents in the future aspects of cancer prognosis and treatment. Convincing data from 1996 to 2021 has presented imidazolidine derivatives as a relevant therapeutic tool to modulate cancer progression and malignancy. Here we highlight these aspects in a variety of cell lines, cancer types, involving in vitro and in vivo techniques.


Asunto(s)
Imidazolidinas , Neoplasias , ADN/metabolismo , Humanos , Imidazolidinas/metabolismo , Imidazolidinas/farmacología , Imidazolidinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología
2.
Future Med Chem ; 13(14): 1185-1201, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34148377

RESUMEN

Aim: Indole is an important component of many drug molecules, and its conjugation with thiosemicarbazone moiety would be advantageous in finding lead compounds for the development of diabetic complications. Methodology: We have designed, synthesized and evaluated a series of 17 indole-thiosemicarbazones (3a-q) as aldose reductase (ALR2) and aldehyde reductase (ALR1) inhibitors. Results: After in vitro evaluation, all indole-thiosemicarbazones showed significant inhibition against both enzyme ALR1 and ALR2 with IC50 in range of 0.42-20.7 and 1.02-19.1 µM, respectively. The docking study was also carried out to consider the putative binding of molecules with the target enzymes. Conclusion: Compound 3f was found to be most active and selective for ALR2. The indole-thiosemicarbazones series described here has selective hits for diabetes-mellitus-associated complications.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Indoles/química , Tiosemicarbazonas/química , Aldehído Reductasa/metabolismo , Sitios de Unión , Dominio Catalítico , Inhibidores Enzimáticos/metabolismo , Humanos , Imidazolidinas/química , Imidazolidinas/metabolismo , Simulación del Acoplamiento Molecular , NADP/química , NADP/metabolismo , Relación Estructura-Actividad , Tiosemicarbazonas/metabolismo
3.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808213

RESUMEN

BACKGROUND: Cyclocreatine phosphate (CCrP) is a potent bioenergetic cardioprotective compound known to preserve high levels of cellular adenosine triphosphate during ischemia. Using the standard Isoproterenol (ISO) rat model of heart failure (HF), we recently demonstrated that the administration of CCrP prevented the development of HF by markedly reducing cardiac remodeling (fibrosis and collagen deposition) and maintaining normal ejection fraction and heart weight, as well as physical activity. The novel inflammatory mediator, Nourin is a 3-KDa formyl peptide rapidly released by ischemic myocardium and is associated with post-ischemic cardiac inflammation. We reported that the Nourin-associated miR-137 (marker of cell damage) and miR-106b-5p (marker of inflammation) are significantly upregulated in unstable angina patients and patients with acute myocardial infarction, but not in healthy subjects. OBJECTIVES: To test the hypothesis that Nourin-associated miR-137 and miR-106b-5p are upregulated in ISO-induced "HF rats" and that the administration of CCrP prevents myocardial injury (MI) and reduces Nourin gene expression in "non-HF rats". METHODS: 25 male Wistar rats (180-220 g) were used: ISO/saline (n = 6), ISO/CCrP (0.8 g/kg/day) (n = 5), control/saline (n = 5), and control/CCrP (0.8 g/kg/day) (n = 4). In a limited study, CCrP at a lower dose of 0.4 g/kg/day (n = 3) and a higher dose of 1.2 g/kg/day (n = 2) were also tested. The Rats were injected SC with ISO for two consecutive days at doses of 85 and 170 mg/kg/day, respectively, then allowed to survive for an additional two weeks. CCrP and saline were injected IP (1 mL) 24 h and 1 h before first ISO administration, then daily for two weeks. Serum CK-MB (U/L) was measured 24 h after the second ISO injection to confirm myocardial injury. After 14 days, gene expression levels of miR-137 and miR-106b-5p were measured in serum samples using quantitative real-time PCR (qPCR). RESULTS: While high levels of CK-MB were detected after 24 h in the ISO/saline rats indicative of MI, the ISO/CCrP rats showed normal CK-MB levels, supporting prevention of MI by CCrP. After 14 days, gene expression profiles showed significant upregulation of miR-137 and miR-106b-5p by 8.6-fold and 8.7-fold increase, respectively, in the ISO/saline rats, "HF rats," compared to the control/saline group. On the contrary, CCrP treatment at 0.8 g/kg/day markedly reduced gene expression of miR-137 by 75% and of miR-106b-5p by 44% in the ISO/CCrP rats, "non-HF rats," compared to the ISO/Saline rats, "HF rats." Additionally, healthy rats treated with CCrP for 14 days showed no toxicity in heart, liver, and renal function. CONCLUSIONS: Results suggest a role of Nourin-associated miR-137 and miR-106b-5p in the pathogenesis of HF and that CCrP treatment prevented ischemic injury in "non-HF rats" and significantly reduced Nourin gene expression levels in a dose-response manner. The Nourin gene-based mRNAs may, therefore, potentially be used as monitoring markers of drug therapy response in HF, and CCrP-as a novel preventive therapy of HF due to ischemia.


Asunto(s)
Imidazolidinas/farmacología , MicroARNs/genética , Fosfocreatina/análogos & derivados , Angina Inestable/genética , Animales , Biomarcadores Farmacológicos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Humanos , Imidazolidinas/metabolismo , Isoproterenol/uso terapéutico , Masculino , MicroARNs/metabolismo , Infarto del Miocardio/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Fosfocreatina/genética , Fosfocreatina/metabolismo , Fosfocreatina/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
4.
J Mass Spectrom ; 56(2): e4694, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33410180

RESUMEN

The progression of diabetic complications can be prevented by inhibition of aldose reductase and fidarestat considered to be highly potent. To date, metabolites of the fidarestat, toxicity, and efficacy are unknown. Therefore, the present study on characterization of hitherto unknown in vitro and in vivo metabolites of fidarestat using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) is undertaken. In vitro and in vivo metabolites of fidarestat have been identified and characterized by using LC/ESI/MS/MS and accurate mass measurements. To identify in vivo metabolites, plasma, urine, and feces samples were collected after oral administration of fidarestat to Sprague-Dawley rats, whereas for in vitro metabolites, fidarestat was incubated in human S9 fraction, human liver microsomes, and rat liver microsomes. Furthermore, in silico toxicity and efficacy of the identified metabolites were evaluated. Eighteen metabolites have been identified. The main in vitro phase I metabolites of fidarestat are oxidative deamination, oxidative deamination and hydroxylation, reductive defluroniation, and trihydroxylation. Phase II metabolites are methylation, acetylation, glycosylation, cysteamination, and glucuronidation. Docking studies suggest that oxidative deaminated metabolite has better docking energy and conformation that keeps consensus with fidarestat whereas the rest of the metabolites do not give satisfactory results. Aldose reductase activity has been determined for oxidative deaminated metabolite (F-1), and it shows an IC50 value of 0.44 µM. The major metabolite, oxidative deaminated, did not show any cytotoxicity in H9C2, HEK, HEPG2, and Panc1 cell lines. However, in silico toxicity, the predication result showed toxicity in skin irritation and ocular irritancy SEV/MOD versus MLD/NON (v5.1) model for fidarestat and its all metabolites. In drug discovery and development research, it is distinctly the case that the potential for pharmacologically active metabolites must be considered. Thus, the active metabolites of fidarestat may have an advantage as drug candidates as many drugs were initially observed as metabolites.


Asunto(s)
Imidazolidinas/metabolismo , Imidazolidinas/farmacocinética , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Imidazolidinas/análisis , Imidazolidinas/toxicidad , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
5.
J Med Chem ; 63(10): 5089-5099, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32022560

RESUMEN

We have previously shown that the oral administration of the small molecule hPTHR1 agonist PCO371 and its lead compound, 1 (CH5447240) results in PTH-like calcemic and hypophostemic activity in thyroparathyroidectomized rats. However, 1 was converted to a reactive metabolite in a human liver microsome assay. In this article, we report on the modification path that led to an enhancement of PTHR1 agonistic activity and reduction in the formation of a reactive metabolite to result in a potent, selective, and orally active PTHR1 agonist 1-(3,5-dimethyl-4-(2-((4-oxo-2-(4-(trifluoromethoxy)phenyl)-1,3,8-triazaspiro[4.5]dec-1-en-8-yl)sulfonyl)ethyl)phenyl)-5,5-dimethylimidazolidine-2,4-dione (PCO371, 16c). This compound is currently being evaluated in a phase 1 clinical study for the treatment of hypoparathyroidism.


Asunto(s)
Imidazolidinas/administración & dosificación , Imidazolidinas/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/agonistas , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Compuestos de Espiro/administración & dosificación , Compuestos de Espiro/metabolismo , Administración Oral , Animales , Femenino , Humanos , Hipoparatiroidismo/tratamiento farmacológico , Hipoparatiroidismo/metabolismo , Imidazolidinas/química , Células LLC-PK1 , Ratas , Ratas Sprague-Dawley , Compuestos de Espiro/química , Porcinos
6.
Adv Ther ; 37(1): 578-591, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31832988

RESUMEN

INTRODUCTION: The study objective was to characterize the excretion and metabolic profile of the respiratory syncytial virus fusion protein inhibitor, JNJ-53718678. Prior animal and in vitro studies suggested three main elimination pathways: N-glucuronidation to M8; CYP(3A4) metabolism leading to circulating metabolites M5, M12, M19 and M37; and JNJ-53718678 biliary excretion. To gain insight into the relative contribution of JNJ-53718678 and M8 biliary excretion, duodenal fluid sampling was incorporated into this mass balance study. METHODS: A single oral dose of 500 mg 14C-JNJ-53718678 was administered to six healthy male subjects. Four hours after study drug intake, gallbladder contraction was stimulated and duodenal fluid samples were collected. JNJ-53718678, its key circulating metabolites and total radioactivity (TR) were quantified in plasma, feces, urine and duodenal fluid. Safety was monitored throughout. RESULTS: JNJ-53718678 and M12 represented 47.4% and 17.8%, respectively, of TR area under the curve (AUC)∞ in plasma. M37 (9.6%), M19 (5.2%), M5 (4.3%) and M8 (1.4%) were minor metabolites; 70.6% of TR was recovered in feces and 19.9% in urine. Duodenal fluid concentrations (% of TR) were highest for JNJ-53718678 (11.6%) followed by M8 (10.4%), M5 (5.9%) and M12 (1.1%). In feces, 10-16% of TR was JNJ-53718678, 5-8% M5, < 1% M12 and < 1% M8. N-glucuronidation to M8 and direct biliary excretion of JNJ-53718678 represented 7% and 8% of drug clearance, respectively. JNJ-53718678 was safe and well tolerated. CONCLUSIONS: JNJ-53718678 is primarily eliminated through CYP3A4-mediated metabolism. By integrating duodenal sampling, N-glucuronidation was confirmed as another metabolic pathway despite the low amount of M8 excreted in urine and feces. TRIAL REGISTRATION: Eudract no. 2016-002664-14.


Asunto(s)
Imidazolidinas/metabolismo , Indoles/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Adulto , Animales , Área Bajo la Curva , Citocromo P-450 CYP3A/metabolismo , Humanos , Masculino , Tasa de Depuración Metabólica , Redes y Vías Metabólicas
7.
Bioorg Med Chem Lett ; 30(3): 126908, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31870649

RESUMEN

A series of inhibitors of the soluble epoxide hydrolase (sEH) containing imidazolidine-2,4,5-trione or pirimidine-2,4,6-trione has been synthesized. Inhibition potency of the described compounds ranges from 8.4 µM to 0.4 nM. The tested compounds possess higher water solubility than their preceding ureas. Molecular docking indicates new bond between the triones and the active site of sEH that in part explain the observed potency of the new pharmacophores. While less potent than the corresponding ureas, the modifications of urea group reported herein yield compounds with higher water solubility, thus permitting easier formulation.


Asunto(s)
Inhibidores Enzimáticos/química , Epóxido Hidrolasas/antagonistas & inhibidores , Imidazolidinas/química , Pirimidinas/química , Adamantano/química , Adamantano/metabolismo , Sitios de Unión , Dominio Catalítico , Inhibidores Enzimáticos/metabolismo , Epóxido Hidrolasas/metabolismo , Humanos , Imidazolidinas/metabolismo , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Pirimidinas/metabolismo , Solubilidad , Relación Estructura-Actividad , Urea/química , Urea/metabolismo
8.
Pharmacol Res Perspect ; 7(6): e00525, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31859463

RESUMEN

Creatine transporter deficiency (CTD) is a metabolic disorder resulting in cognitive, motor, and behavioral deficits. Cyclocreatine (cCr), a creatine analog, has been explored as a therapeutic strategy for the treatment of CTD. We developed a rapid, selective, and accurate HILIC ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to simultaneously quantify the intracellular concentrations of cCr, creatine (Cr), creatine-d3 (Cr-d3), phosphocyclocreatine (pcCr), and phosphocreatine (pCr). Using HILIC-UPLC-MS/MS, we measured cCr and Cr-d3 uptake and their conversion to the phosphorylated forms in primary human control and CTD fibroblasts. Altogether, the data demonstrate that cCr enters cells and its dominant intracellular form is pcCr in both control and CTD patient cells. Therefore, cCr may replace creatine as a therapeutic strategy for the treatment of CTD.


Asunto(s)
Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Creatina/deficiencia , Creatinina/análogos & derivados , Fibroblastos/metabolismo , Imidazolidinas/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/tratamiento farmacológico , Fosfocreatina/análogos & derivados , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Encefalopatías Metabólicas Innatas/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Creatina/metabolismo , Creatinina/farmacocinética , Creatinina/uso terapéutico , Humanos , Imidazolidinas/análisis , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Fosfocreatina/análisis , Fosfocreatina/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Cultivo Primario de Células , Espectrometría de Masas en Tándem/métodos
9.
J Pharm Biomed Anal ; 172: 67-77, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31029802

RESUMEN

A potent synthetic α2-adrenergic agonist called PT-31, (3-(2-chloro-6-fluorobenzyl)-imidazolidine-2,4-dione), was recently detected as a potential drug to be used as an adjuvant drug to treat chronic pain. The excellent pharmacological property of PT-31 highlights the importance in elucidating its metabolism, which could provide valuable information about its metabolite profile for further pharmacokinetics studies and additionally to estimate the impact of its metabolites on the efficacy, safety and elimination of PT-31. In this work, the study of the in vitro metabolism of PT-31 was initially carried out by using a liquid chromatography coupled to ion trap multiple-stage mass spectrometer (LC-IT-MSn) and a hybrid triple quadrupole/linear ion trap mass spectrometer (LC-QTrap). The production of at least three unknown oxidative metabolites was observed. Structural identification of the unknown metabolites was carried out by combination of LC-MS experiments, including selected reaction monitoring (SRM) and multi-stage full scan experiments. Further analysis of 1H-NMR led to the structural confirmation of the major metabolite. The results indicated that PT-31 was metabolized by a hydroxylation reaction in the imidazolidine-2,4-dione ring in rat and human liver microsomes, producing the metabolite 3-(2-chloro-6-fluorobenzyl)-5-hydroxyimidazolidine-2,4-dione in rat liver microsomes. A carbon hydroxylation onto the benzyl ring, produced two other minor metabolites of the PT-31 in rat liver microsomes.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/metabolismo , Analgésicos/metabolismo , Microsomas Hepáticos/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacocinética , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Analgésicos/farmacocinética , Analgésicos/uso terapéutico , Animales , Dolor Crónico/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Imidazolidinas/metabolismo , Imidazolidinas/farmacocinética , Imidazolidinas/uso terapéutico , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Ratas , Espectrometría de Masas en Tándem
10.
Mil Med ; 184(Suppl 1): 106-113, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30901419

RESUMEN

Particle size is an important determinant of gastrointestinal absorption of compounds administrated orally. The present study evaluates the effect of a reduction in particle size assessed by homogenization, sonication, and homogenization plus sonication on the bioavailability of imidazolidinedione (IZ), an antimalarial compound with known causal prophylactic activity and radical cure of relapsing malaria. Formulations were administrated intragastrically to mice, and blood samples were collected for LC-MS/MS analysis. The homogenization method manually decreased particle size with minimal variance, resulting in a mean particle diameter of 42.22 µm, whereas the probe sonication method evenly distributed pulses of sound to break apart particles, resulting in a mean diameter of 1.50 µm. Homogenization plus sonication resulted in a mean particle diameter of 1.44 µm, which was similar to that of the sonication method alone. The compound suspensions did not show a significant difference in mean particle size between the different vehicles. The sonically engineered microparticle delivers high sonic energy to the suspension leads to faster breakdown and stabilizing of the micronized particles when compared with homogenizer. The bioavailability of the small particle IZ formulation was 100%, compared to the 55.79% relative bioavailability of IZ with larger particle size. These initial data clearly show that a reduction in particle size of orally administered IZ with probe sonication could significantly increase bioavailability in rodent animals that is affected by a high first-pass effect.


Asunto(s)
Disponibilidad Biológica , Imidazolidinas/farmacocinética , Sonicación/métodos , Humanos , Imidazolidinas/metabolismo , Imidazolidinas/uso terapéutico , Tamaño de la Partícula
11.
J Mol Graph Model ; 80: 173-181, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29414036

RESUMEN

The metabolic mechanisms for imidazolidine oxidation of imidacloprid (IMI) by cytochrome P450 3A4 (CYP3A4) have been investigated using quantum mechanical/molecular mechanical (QM/MM) calculations. The binding mode of CYP3A4 with IMI is examined by molecular docking in collaboration with molecular dynamics (MD) simulations. The results show that there are six amino acid residues, involving Arg192, Phe195, Ile349, Ala285, Phe284 and Phe88, closely distributed around the IMI. The binding free energy analysis exhibits that the CYP3A4-IMI binding structure is stabilized by electrostatic interaction and van der Waals interaction. Arg192 plays a major role in the binding of CYP3A4 with IMI based on its polarity and the hydrogen bond between the H atom in Arg192 side chain and the nitryl O atom of IMI. Two possible pathways, pathway 1 and pathway 2, are evaluated. Two spin states of the Fe (III) center, quartet and doublet, are considered. The free energy calculations are done using QM/MM steered molecular dynamics (SMD) simulation at the B3LYP/6-31 + G(d):ff14SB level for two pathways. The ONIOM QM/MM single-point calculations at the B3LYP/6-311 + G(2d,2p):ff99SB//B3LYP/6-31 + G(d): ff14SB and M06-2X/6-311 + G(2d,2p):ff99SB//B3LYP/6-31 + G(d):ff14SB levels are carried out to obtain more credible energy information. The results indicate that for both pathways, the free energy barriers on the low-spin doublet state are lower than those on the high-spin quartet state. Both pathways are the stepwise processes. Pathway 1 has higher possibility to occur with the free energy barriers being lower by 10-15 kcal·mol-1 compared with pathway 2, which gives rise to trans-5'-hydroxyl-IMI as the final product. The first proton-transfer is the rate-limiting step and the calculated activation free energy is consistent with the experimental conclusion.


Asunto(s)
Citocromo P-450 CYP3A/química , Imidazolidinas/química , Neonicotinoides/química , Nitrocompuestos/química , Relación Estructura-Actividad Cuantitativa , Sitios de Unión , Citocromo P-450 CYP3A/metabolismo , Enlace de Hidrógeno , Imidazolidinas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neonicotinoides/metabolismo , Nitrocompuestos/metabolismo , Oxidación-Reducción , Unión Proteica
12.
Nat Commun ; 8(1): 167, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28761099

RESUMEN

Respiratory syncytial virus is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. Intervention with small-molecule antivirals specific for respiratory syncytial virus presents an important therapeutic opportunity, but no such compounds are approved today. Here we report the structure of JNJ-53718678 bound to respiratory syncytial virus fusion (F) protein in its prefusion conformation, and we show that the potent nanomolar activity of JNJ-53718678, as well as the preliminary structure-activity relationship and the pharmaceutical optimization strategy of the series, are consistent with the binding mode of JNJ-53718678 and other respiratory syncytial virus fusion inhibitors. Oral treatment of neonatal lambs with JNJ-53718678, or with an equally active close analog, efficiently inhibits established acute lower respiratory tract infection in the animals, even when treatment is delayed until external signs of respiratory syncytial virus illness have become visible. Together, these data suggest that JNJ-53718678 is a promising candidate for further development as a potential therapeutic in patients at risk to develop respiratory syncytial virus acute lower respiratory tract infection.Respiratory syncytial virus causes lung infections in children, immunocompromised adults, and in the elderly. Here the authors show that a chemical inhibitor to a viral fusion protein is effective in reducing viral titre and ameliorating infection in rodents and neonatal lambs.


Asunto(s)
Imidazolidinas/metabolismo , Indoles/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Inhibidores de Proteínas Virales de Fusión/metabolismo , Proteínas Virales de Fusión/metabolismo , Animales , Animales Recién Nacidos , Línea Celular Tumoral , Chlorocebus aethiops , Células Epiteliales , Humanos , Imidazolidinas/farmacología , Imidazolidinas/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Estructura Molecular , Neumonía Viral/tratamiento farmacológico , Ratas , Mucosa Respiratoria/citología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/metabolismo , Ovinos , Relación Estructura-Actividad , Células Vero , Inhibidores de Proteínas Virales de Fusión/farmacología , Inhibidores de Proteínas Virales de Fusión/uso terapéutico
13.
J AOAC Int ; 100(6): 1727-1738, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28803600

RESUMEN

The present work focused on the application of design of experiment (DoE) principles to the development and optimization of a stability-indicating method (SIM) for the drug imidapril hydrochloride and its degradation products (DPs). The resolution of peaks for the DPs and their drug in a SIM can be influenced by many factors. The factors studied here were pH, gradient time, organic modifier, flow rate, molar concentration of the buffer, and wavelength, with the aid of a Plackett-Burman design. Results from the Plackett-Burman study conspicuously showed influence of two factors, pH and gradient time, on the analyzed response, particularly, the resolution of the closely eluting DPs (DP-5 and DP-6) and the retention time of the last peak. Optimization of the multiresponse processes was achieved through Derringer's desirability function with the assistance of a full factorial design. Separation was achieved using a C18 Phenomenex Luna column (250 × 4.6 mm id, 5 µm particle size) at a flow rate of 0.8 mL/min at 210 nm. The optimized mobile phase composition was ammonium-acetate buffer (pH 5) in pump A and acetonitrile-methanol (in equal ratio) in pump B with a run time of 40 min using a gradient method.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Imidazolidinas/análisis , Tampones (Química) , Cromatografía Líquida de Alta Presión/instrumentación , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Imidazolidinas/aislamiento & purificación , Imidazolidinas/metabolismo , Límite de Detección
14.
J Fluoresc ; 26(2): 639-49, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26698876

RESUMEN

A series of new steroidal imidazolidine derivatives (4-6) were synthesized after reacting steroidal thiosemicarbazones with chloro ethylacetate in absolute ethanol. After characterization by spectral and analytical data, the interaction studies of compounds (4-6) with DNA were carried out by UV-vis, fluorescence spectroscopy, hydrodynamic measurements, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.63 × 10(3) M(-1), 1.81 × 10(3) M(-1) and 2.06 × 10(3) M(-1), respectively indicating the higher binding affinity of compound 4 towards DNA. Gel electrophoresis demonstrated that compound 4 showed strong interaction during the concentration dependent cleavage activity with pBR322 DNA. The molecular docking study suggested the intercalation of imidazolidine moiety of steroid derivative in minor groove of DNA. During in vitro cytotoxicity, compounds (4-6) revealed potential toxicity against the different human cancer cells (MTT assay). The uptake of compound 4 by MCF-7 and HeLa cells was studied by confocal microscopy which determined cell shrinkage and hence leading to the apoptosis. The results revealed that compound 4 has better prospectus to act as cancer chemotherapeutic candidate which warrants further in vivo anticancer investigations.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , ADN/metabolismo , Imidazolidinas/química , Neoplasias/patología , Espectrometría de Fluorescencia/métodos , Esteroides/química , Antineoplásicos/química , Células HeLa , Humanos , Imidazolidinas/metabolismo , Células MCF-7 , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Esteroides/metabolismo
15.
Dalton Trans ; 44(39): 17346-59, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26387638

RESUMEN

A series of novel Pd(ii) complexes with chelating mono(imidazolin-2-imine) and bis(imidazolin-2-imine) ligands were synthesized. The crystal structures of [Pd(DMEAIm(iPr))Cl2] and [Pd(DPENIm(iPr))Cl2] were determined by X-ray diffraction analysis. The reactivity of the six Pd(ii) complexes, namely, [Pd(en)Cl2], [Pd(EAIm(iPr))Cl2], [Pd(DMEAIm(iPr))Cl2], [Pd(DPENIm(iPr))Cl2], [Pd(BL(iPr))Cl2] and [Pd(DACH(Im(iPr))2)Cl2], were investigated. Spectrophotometric acid-base titrations were performed to determine the pKa values of the coordinated water molecules in [Pd(en)(H2O)2](2+), [Pd(EAIm(iPr))(H2O)2](2+), [Pd(DMEAIm(iPr))(H2O)2](2+), [Pd(DPENIm(iPr))(H2O)2](2+), [Pd(BL(iPr))(H2O)2](2+) and [Pd(DACH(Im(iPr))2)(H2O)2](2+). The substitution of the chloride ligands in these complexes by TU, l-Met, l-His and Gly was studied under pseudo-first-order conditions as a function of the nucleophile concentration and temperature using stopped-flow techniques; the sulfur-donor nucleophiles have shown better reactivity than nitrogen-donor nucleophiles. The obtained results indicate that there is a clear correlation between the nature of the imidazolin-2-imine ligands and the acid-base characteristics and reactivity of the resulting Pd(ii) complexes; the order of reactivity of the investigated Pd(ii) complexes is: [Pd(en)Cl2] > [Pd(EAIm(iPr))Cl2] > [Pd(DMEAIm(iPr))Cl2] > [Pd(DPENIm(iPr))Cl2] > [Pd(BL(iPr))Cl2] > [Pd(DACH(Im(iPr))2)Cl2]. The solubility measurements revealed good solubility of the studied imidazolin-2-imine complexes in water, despite the fact that these Pd(ii) complexes are neutral complexes. Based on the performed studies, three unusual features of the novel imidazolin-2-imine Pd(ii) complexes are observed, that is, good solubility in water, very low reactivity and high pKa values. The coordination geometries around the palladium atoms are distorted square-planar; the [Pd(DMEAIm(iPr))Cl2] complex displays Pd-N distances of 2.013(2) and 2.076(2) Å, while the [Pd(DPENIm(iPr))Cl2] complex displays similar Pd-N distances of 2.034(4) and 2.038(3) Å. The studied systems are of interest because little is known about the substitution behavior of imidazolin-2-imine Pd(ii) complexes with bio-molecules under physiological conditions.


Asunto(s)
Imidazolidinas/química , Iminas/química , Paladio/química , Imidazolidinas/metabolismo , Iminas/metabolismo , Paladio/metabolismo , Difracción de Rayos X
16.
Chem Res Toxicol ; 28(10): 2019-33, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26401548

RESUMEN

The thiazolidine and imidazolidine heterocyclic scaffolds, i.e., the rhodanines, 2,4-thiazolidinediones, 2-thiohydantoins, and hydantoins have been the subject of debate on their suitability as starting points in drug discovery. This attention arose from the wide variety of biological activities exhibited by these scaffolds and their frequent occurrence as hits in screening campaigns. Studies have been conducted to evaluate their value in drug discovery in terms of their biological activity, chemical reactivity, aggregation-based promiscuity, and electronic properties. However, the metabolic profiles and toxicities have not been systematically assessed. In this study, a series of five-membered multiheterocyclic (FMMH) compounds were selected for a systematic evaluation of their metabolic profiles and toxicities on TAMH cells, a metabolically competent rodent liver cell line and HepG2 cells, a model of human hepatocytes. Our studies showed that generally the rhodanines are the most toxic, followed by the thiazolidinediones, thiohydantoins, and hydantoins. However, not all compounds within the family of heterocycles were toxic. In terms of metabolic stability, 5-substituted rhodanines and 5-benzylidene thiohydantoins were found to have short half-lives in the presence of human liver microsomes (t1/2 < 30 min) suggesting that the presence of the endocyclic sulfur and thiocarbonyl group or a combination of C5 benzylidene substituent and thiocarbonyl group in these heterocycles could be recognition motifs for P450 metabolism. However, the stability of these compounds could be improved by installing hydrophilic functional groups. Therefore, the toxicities and metabolic profiles of FMMH derivatives will ultimately depend on the overall chemical entity, and a blanket statement on the effect of the FMMH scaffold on toxicity or metabolic stability cannot and should not be made.


Asunto(s)
Hipoglucemiantes/metabolismo , Imidazolidinas/metabolismo , Tiazolidinedionas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos , Glutatión/metabolismo , Semivida , Células Hep G2 , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/toxicidad , Imidazolidinas/química , Imidazolidinas/toxicidad , Microsomas Hepáticos/metabolismo , Relación Estructura-Actividad , Espectrometría de Masas en Tándem , Tiazolidinedionas/química , Tiazolidinedionas/toxicidad
17.
J Fluoresc ; 25(5): 1377-87, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26245453

RESUMEN

New steroidal imidazolidinone derivatives (7-9) were synthesized after reacting steroidal thiosemicarbazones with oxalyl chloride in absolute ethanol. After characterization by spectral and analytical data, the interaction studies of compounds (7-9) with DNA were carried out by UV-vis, fluorescence spectroscopy, circular dichroism, molecular docking and gel electrophoresis. The compounds bind to DNA preferentially through electrostatic and hydrophobic interactions with Kb; 2.31 × 10(4) M(-1), 2.57 × 10(4) M(-1) and 2.16 × 10(4) M(-1), respectively indicating the higher binding affinity of compound 8 towards DNA. Gel electrophoresis demonstrated that the compounds 7-9 show strong interaction during the cleavage activity with pBR322 DNA. The docking study suggested the intercalation of imidazolidinone moiety of steroid derivative in minor groove of DNA. During in vitro cytotoxicity, compounds 7-9 revealed potential toxicity against the different human cancer cells (MTT assay). Apoptotic degradation of DNA in presence of compounds 7-9 was analyzed by agarose gel electrophoresis and visualized by ethidium bromide staining (comet assay). FACS analysis shows that the compound 8 bring about cell cycle arrest at 7 µM concentration.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , ADN/metabolismo , Imidazolidinas/síntesis química , Imidazolidinas/farmacología , Esteroides/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Sitios de Unión , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Química Sintética , ADN/química , Humanos , Imidazolidinas/química , Imidazolidinas/metabolismo , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico
18.
Eur J Med Chem ; 99: 51-66, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26046313

RESUMEN

A series of novel highly active androgen receptor (AR) antagonists containing spiro-4-(5-oxo-3-phenyl-2-thioxoimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile core was designed based on the SAR studies available from the reported AR antagonists and in silico modeling. Within the series, compound (R)-6 (ONC1-13B) and its related analogues, including its active N-dealkylated metabolite, were found to be the most potent molecules with the target activity (IC50, androgen-sensitive human PCa LNCaP cells) in the range of 59-80 nM (inhibition of PSA production). The disclosed hits were at least two times more active than bicalutamide, nilutamide and enzalutamide within the performed assay. Several compounds were classified as partial agonists. Hit-compounds demonstrated benefit pharmacokinetic profiles in rats. Comparative SAR and 3D molecular docking studies were performed for the hit compounds elucidating the observed differences in the binding potency.


Asunto(s)
Antagonistas de Receptores Androgénicos/síntesis química , Antagonistas de Receptores Androgénicos/farmacología , Diseño de Fármacos , Imidazolidinas/síntesis química , Imidazolidinas/farmacología , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos/farmacocinética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Humanos , Imidazolidinas/metabolismo , Imidazolidinas/farmacocinética , Masculino , Simulación del Acoplamiento Molecular , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Receptores Androgénicos/química
19.
J Photochem Photobiol B ; 147: 24-36, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25837412

RESUMEN

The assessment of biological activities of imidacloprid and its two major metabolites, namely 6-chloronicotinic acid and 2-imidazolidone for nontarget organism, by employing essentially functional biomacromolecules, albumin and hemoglobin as a potentially model with the use of circular dichroism (CD), fluorescence, extrinsic 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence as well as molecular modeling is the theme of this work. By dint of CD spectra and synchronous fluorescence, it was clear that the orderly weak interactions between amino acid residues within globular proteins were disturbed by imidacloprid, and this event led to marginally alterations or self-regulations of protein conformation so as to lodge imidacloprid more tightly. Both steady state and time-resolved fluorescence suggested that the fluorescence of Trp residues in proteins was quenched after the presence of imidacloprid, corresponding to noncovalent protein-imidacloprid complexes formation and, the reaction belongs to moderate association (K=1.888/1.614×10(4)M(-1) for albumin/hemoglobin-imidacloprid, respectively), hydrogen bonds and π stacking performed a vital role in stabilizing the complexes, as derived from thermodynamic analysis and molecular modeling. With the aid of hydrophobic ANS experiments, subdomain IIA and α1ß2 interface of albumin and hemoglobin, respectively, were found to be preserved high-affinity for imidacloprid. These results ties in with the subsequently molecular modeling laying imidacloprid in the Sudlow's site I and close to Trp-213 residue on albumin, while settling down B/Trp-37 residue nearby in hemoglobin, and these conclusions further confirmed by site-directed mutagenesis and molecular dynamics simulation. But, at the same time, several crucial noncovalent bonds came from other amino acid residues, e.g. Arg-194 and Arg-198 (albumin) and B/Arg-40, B/Asp-99 and B/Asn-102 (hemoglobin) cannot be ignored completely. Based on the comparative studies of binding modes between imidacloprid and its two primary metabolites with globular proteins, it is evident to us that the noncovalent interactions of 6-chloronicotinic acid and 2-imidazolidone with biopolymers are not always to be decreased obviously as a result of the relatively small molecular structures of these metabolites, compared with parent compound imidacloprid. Conversely, this could probably strengthen the weak interactions existed in the macromolecules-metabolites conjugation, or rather, the metabolites such as 6-chloronicotinic acid and 2-imidazolidone contributed drastically to the overall toxicity of imidacloprid.


Asunto(s)
Hemoglobinas/metabolismo , Imidazoles/efectos adversos , Imidazoles/química , Imidazoles/metabolismo , Nitrocompuestos/efectos adversos , Nitrocompuestos/química , Nitrocompuestos/metabolismo , Naftalenosulfonatos de Anilina/química , Sitios de Unión , Dicroismo Circular , Hemoglobinas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/farmacología , Imidazolidinas/química , Imidazolidinas/metabolismo , Simulación de Dinámica Molecular , Neonicotinoides , Ácidos Nicotínicos/química , Ácidos Nicotínicos/metabolismo , Nitrocompuestos/farmacología , Conformación Proteica , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Espectrometría de Fluorescencia
20.
J Pharm Biomed Anal ; 102: 386-99, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25459938

RESUMEN

Fidarestat, an aldose reductase inhibitor, has been used for the treatment of the diabetic associated complications such as retinopathy, neuropathy and nephropathy. To better understand the metabolism and pharmacokinetics of fidarestat, we have evaluated plasma protein binding, pharmacokinetics, tissue distribution of the drug and its conjugated metabolites and CYP450 biotransformation by liquid chromatography-high resolution mass spectrometry. Effective chromatographic separation of fidarestat and hydrochlorothiazide (IS) in rat plasma and tissues was achieved on Hypersil gold C-18 column in an isocratic elution mode. For detection, a high-resolution Orbitrap mass spectrometer with heated electrospray ionization inlet in the negative ion mode was used. High-resolution extracted ion chromatograms for each analyte were obtained by processing the full-scan MS mode with 5 ppm mass tolerance. The impact of plasma protein binding with the drug and conjugated metabolites of the drug on pharmacokinetics has been determined. The study indicated that 9.5% of free form of fidarestat may be pharmacologically active and the Cmax for free fidarestat was found to be 80.30 ± 6.78 ng/mL. The AUC0-t and AUC0-∞ were found to be 185.46 ± 32 and 195.92 ± 15.06 ng h/mL, respectively. Among tissues, the maximum observed distribution was found to be in kidney followed by liver and heart. Docking experiments and in vitro CYP450 reaction phenotyping revealed that two CYP1A2 and CYP2D6 are involved in the phase I metabolism of fidarestat. Oxidative deamination and N/O glucuronidation are the major phase I and phase II metabolites, respectively. In vitro CYP450 inhibition assay of fidarestat for drug-drug interaction showed weak inhibition and may not alter pharmacokinetics, distribution or clearance of other co-administered drug.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Imidazolidinas/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Biotransformación/fisiología , Proteínas Sanguíneas/análisis , Cromatografía Liquida/métodos , Sistema Enzimático del Citocromo P-450/análisis , Femenino , Imidazolidinas/análisis , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Distribución Tisular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...