Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Drug Alcohol Depend ; 236: 109501, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35644071

RESUMEN

INTRODUCTION: Benzodiazepines (BZD) are a class of anxiolytics with varying uses, which primarily act on the GABAA receptor resulting in hyperpolarisation. BZDs are often a difficult drug class to cease once neuroadaptation has occurred; recommendations usually involve gradual dose reductions at variable rates. A growing body of evidence has suggested that low-dose flumazenil, a GABAA receptor antagonist, may be a useful agent to allow for rapid detoxification. AIM: To collect pilot data on the safety and efficacy of low-dose subcutaneous flumazenil to reduce BZD use, withdrawal symptoms, and craving in participants taking above and below the therapeutic maximum diazepam equivalent of 30 mg to inform on sample size for future trials. METHOD: In a randomised double-blinded crossover study design, participants received low-dose flumazenil first (4 mg/24 h for approximately eight days) or placebo first. Groups were divided into those taking < 30 mg diazepam equivalent and ≥ 30 mg diazepam equivalent at baseline. Main outcome measures were percentage reduction in daily diazepam use, withdrawal symptoms, and craving scores from baseline, difference in diazepam use across the placebo first group, and flumazenil related adverse events. RESULTS: Twenty-eight participants were recruited and randomised to flumazenil first (n = 14) and placebo first (n = 14). In participants taking ≥ 30 mg diazepam equivalent at baseline (n = 15), flumazenil significantly reduced diazepam use by 30.5% (p = 0.024) compared to placebo. CONCLUSION: Low-dose flumazenil may aid in BZD detoxification in participants taking daily diazepam equivalent doses greater than or equal to the therapeutic maximum (≥30 mg) by reducing the need for diazepam.


Asunto(s)
Benzodiazepinas , Flumazenil , Síndrome de Abstinencia a Sustancias , Benzodiazepinas/administración & dosificación , Benzodiazepinas/efectos adversos , Estudios Cruzados , Diazepam/administración & dosificación , Diazepam/efectos adversos , Método Doble Ciego , Flumazenil/administración & dosificación , Flumazenil/uso terapéutico , Antagonistas de Receptores de GABA-A/administración & dosificación , Antagonistas de Receptores de GABA-A/uso terapéutico , Humanos , Inactivación Metabólica/efectos de los fármacos , Proyectos Piloto , Receptores de GABA-A/metabolismo , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/metabolismo
2.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209079

RESUMEN

Zebrafish (ZF; Danio rerio) larvae have become a popular in vivo model in drug metabolism studies. Here, we investigated the metabolism of methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (4F-MDMB-BINACA) in ZF larvae after direct administration of the cannabinoid via microinjection, and we visualized the spatial distributions of the parent compound and its metabolites by mass spectrometry imaging (MSI). Furthermore, using genetically modified ZF larvae, the role of cannabinoid receptor type 1 (CB1) and type 2 (CB2) on drug metabolism was studied. Receptor-deficient ZF mutant larvae were created using morpholino oligonucleotides (MOs), and CB2-deficiency had a critical impact on liver development of ZF larva, leading to a significant reduction of liver size. A similar phenotype was observed when treating wild-type ZF larvae with 4F-MDMB-BINACA. Thus, we reasoned that the cannabinoid-induced impaired liver development might also influence its metabolic function. Studying the metabolism of two synthetic cannabinoids, 4F-MDMB-BINACA and methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7'N-5F-ADB), revealed important insights into the in vivo metabolism of these compounds and the role of cannabinoid receptor binding.


Asunto(s)
Cannabinoides/farmacología , Inactivación Metabólica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Animales , Cannabinoides/síntesis química , Cannabinoides/química , Fenómenos Químicos , Larva , Hígado/patología , Redes y Vías Metabólicas , Estructura Molecular , Tamaño de los Órganos/efectos de los fármacos , Receptores de Cannabinoides/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Pez Cebra
3.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163656

RESUMEN

Cadmium (Cd) pollution in cultivated land is caused by irresistible geological factors and human activities; intense diffusion and migration have seriously affected the safety of food crops. Plants have evolved mechanisms to control excessive influx of Cd in the environment, such as directional transport, chelation and detoxification. This is done by some specific metalloproteins, whose key amino acid motifs have been investigated by scientists one by one. The application of powerful cell biology, crystal structure science, and molecular probe targeted labeling technology has identified a series of protein families involved in the influx, transport and detoxification of the heavy metal Cd. This review summarizes them as influx proteins (NRAMP, ZIP), chelating proteins (MT, PDF), vacuolar proteins (CAX, ABCC, MTP), long-distance transport proteins (OPT, HMA) and efflux proteins (PCR, ABCG). We selected representative proteins from each family, and compared their amino acid sequence, motif structure, subcellular location, tissue specific distribution and other characteristics of differences and common points, so as to summarize the key residues of the Cd binding target. Then, we explain its special mechanism of action from the molecular structure. In conclusion, this review is expected to provide a reference for the exploration of key amino acid targets of Cd, and lay a foundation for the intelligent design and breeding of crops with high/low Cd accumulation.


Asunto(s)
Aminoácidos/metabolismo , Cadmio/toxicidad , Metaloproteínas/metabolismo , Plantas/metabolismo , Estrés Fisiológico , Inactivación Metabólica/efectos de los fármacos , Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
4.
Biochem Pharmacol ; 194: 114824, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748821

RESUMEN

Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Difenilamina/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Antiinflamatorios no Esteroideos/toxicidad , Difenilamina/toxicidad , Humanos , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
5.
Molecules ; 26(19)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34641534

RESUMEN

Spodoptera litura Fab. is a polyphagous pest causing damage to many agriculture crops leading to yield loss. Recurrent usage of synthetic pesticides to control this pest has resulted in resistance development. Plant-derived diterpenoid compound andrographolide was isolated from the leaves of Andrographis paniculata. It was analysed by gas chromatography-mass spectroscopy and quantified by HPLC. Nutritional indices and digestive enzymatic profile were evaluated. Third, fourth and fifth instar larvae were treated with different concentrations of andrographolide. At 3, 6 and 9 ppm-treated concentrations the larvae showed decreased RGR, RCR, ECI, ECD values with adverse increase in AD. The digestive enzymes were significantly inhibited when compared with control. Conspicuously, andrographolide showed pronounced mortality of S. litura by inhibition of enzyme secretion and intake of food. The binding ability of andrographolide with CYTP450 showed high affinity with low binding energy. Andrographolide has the potential to be exploited as a biocontrol agent against S. litura as an eco-friendly pesticide.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos/farmacología , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Spodoptera/efectos de los fármacos , Amilasas/metabolismo , Andrographis/química , Animales , Diterpenos/aislamiento & purificación , Diterpenos/metabolismo , Diterpenos/toxicidad , Relación Dosis-Respuesta a Droga , Inactivación Metabólica/efectos de los fármacos , Insecticidas/aislamiento & purificación , Insecticidas/metabolismo , Insecticidas/toxicidad , Larva/efectos de los fármacos , Lipasa/metabolismo , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/metabolismo
6.
Toxins (Basel) ; 13(10)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34679013

RESUMEN

Zearalenone (ZEN) is one of the most common mycotoxin contaminants in food. For food safety, an efficient and environmental-friendly approach to ZEN degradation is significant. In this study, an Aspergillus niger strain, FS10, was stimulated with 1.0 µg/mL ZEN for 24 h, repeating 5 times to obtain a stressed strain, Zearalenone-Stressed-FS10 (ZEN-S-FS10), with high degradation efficiency. The results show that the degradation rate of ZEN-S-FS10 to ZEN can be stabilized above 95%. Through metabolomics analysis of the metabolome difference of FS10 before and after ZEN stimulation, it was found that the change of metabolic profile may be the main reason for the increase in the degradation rate of ZEN. The optimization results of degradation conditions of ZEN-S-FS10 show that the degradation efficiency is the highest with a concentration of 104 CFU/mL and a period of 28 h. Finally, we analyzed the degradation products by UPLC-q-TOF, which shows that ZEN was degraded into two low-toxicity products: C18H22O8S (Zearalenone 4-sulfate) and C18H22O5 ((E)-Zearalenone). This provides a wide range of possibilities for the industrial application of this strain.


Asunto(s)
Aspergillus niger/efectos de los fármacos , Aspergillus niger/metabolismo , Zearalenona/toxicidad , Aspergillus niger/genética , Inactivación Metabólica/efectos de los fármacos , Metaboloma , Análisis de Secuencia de ADN , Zearalenona/análogos & derivados , Zearalenona/metabolismo
7.
PLoS One ; 16(8): e0256884, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34460856

RESUMEN

Mesosulfuron-methyl is always applied by foliar spraying in combination with the safener mefenpyr-diethyl to avoid phytotoxicity on wheat (Triticum aestivum L.) cultivars. However, it was observed that the tolerance of Tausch's goatgrass (Aegilops tauschii Coss.) to mesosulfuron-methyl significantly increased in the presence of mefenpyr-diethyl by performing bioassay. This confirmed phenomenon may lead to overuse of mesosulfuron-methyl and weed resistance evolution in field conditions. Therefore, we tested the effect of wheat seed dressing with mefenpyr-diethyl as a possible alternative and disclosed the underlying mechanisms by herbicide dissipation study, enzymatic analysis and transcriptome profiling. The results suggest that increase of ALS activity, enhancement of metabolic processes, and other stress responses are crucial for the regulation of herbicide detoxification induced by mefenpyr-diethyl. Additionally, transcription factors such as AP2/ERF-ERF, bHLH, NAC, and MYB, and protein kinase such as RLK-Pelle_DLSV might play vital regulatory roles. The current study has important implications for mesosulfuron-methyl application in wheat field to control Tausch's goatgrass and provides a comprehensive understanding of the protective effect of mefenpyr-diethyl.


Asunto(s)
Semillas/fisiología , Compuestos de Sulfonilurea/farmacología , Triticum/fisiología , Bioensayo , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión Transferasa/metabolismo , Herbicidas/farmacología , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/genética , Análisis de Componente Principal , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Reproducibilidad de los Resultados , Semillas/efectos de los fármacos , Semillas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triticum/efectos de los fármacos , Triticum/genética
8.
Drug Metab Dispos ; 49(8): 683-693, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074730

RESUMEN

The anticancer drug irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating 1) in vitro metabolism and transport data of irinotecan and its metabolites, 2) ex vivo gut microbial activation of the toxic metabolite SN-38, and 3) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES)-mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared with its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and organic anion transporting polypeptide-2B1-mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein likely facilitates SN-38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by ß-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. SIGNIFICANCE STATEMENT: This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. The quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Eliminación Hepatobiliar , Inactivación Metabólica/efectos de los fármacos , Irinotecán , Transportadores de Anión Orgánico/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidad , Carboxilesterasa/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Glucuronidasa/metabolismo , Eliminación Hepatobiliar/efectos de los fármacos , Eliminación Hepatobiliar/fisiología , Humanos , Irinotecán/análogos & derivados , Irinotecán/farmacocinética , Irinotecán/toxicidad , Hígado/enzimología , Inhibidores de Topoisomerasa I/farmacocinética , Inhibidores de Topoisomerasa I/toxicidad
9.
Drug Metab Dispos ; 49(9): 833-843, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34162688

RESUMEN

Oleuropein (OLE), the main constituent of Olea europaea, displays pleiotropic beneficial effects in health and disease, which are mainly attributed to its anti-inflammatory and cardioprotective properties. Several food supplements and herbal medicines contain OLE and are available without a prescription. This study investigated the effects of OLE on the main cytochrome P450s (P450s) catalyzing the metabolism of many prescribed drugs. Emphasis was given to the role of peroxisome proliferator-activated receptor α (PPARα), a nuclear transcription factor regulating numerous genes including P450s. 129/Sv wild-type and Ppara-null mice were treated with OLE for 6 weeks. OLE induced Cyp1a1, Cyp1a2, Cyp1b1, Cyp3a14, Cyp3a25, Cyp2c29, Cyp2c44, Cyp2d22, and Cyp2e1 mRNAs in liver of wild-type mice, whereas no similar effects were observed in Ppara-null mice, indicating that the OLE-induced effect on these P450s is mediated by PPARα. Activation of the pathways related to phosphoinositide 3-kinase/protein kinase B (AKT)/forkhead box protein O1, c-Jun N-terminal kinase, AKT/p70, and extracellular signal-regulated kinase participates in P450 induction by OLE. These data indicate that consumption of herbal medicines and food supplements containing OLE could accelerate the metabolism of drug substrates of the above-mentioned P450s, thus reducing their efficacy and the outcome of pharmacotherapy. Therefore, OLE-induced activation of PPARα could modify the effects of drugs due to their increased metabolism and clearance, which should be taken into account when consuming OLE-containing products with certain drugs, in particular those of narrow therapeutic window. SIGNIFICANCE STATEMENT: This study indicated that oleuropein, which belongs to the main constituents of the leaves and olive drupes of Olea europaea, induces the synthesis of the major cytochrome P450s (P450s) metabolizing the majority of prescribed drugs via activation of peroxisome proliferator-activated receptor α. This effect could modify the pharmacokinetic profile of co-administered drug substrates of the P450s, thus altering their therapeutic efficacy and toxicity.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Interacciones Farmacológicas , Inactivación Metabólica/efectos de los fármacos , Glucósidos Iridoides/farmacocinética , Oleaceae , PPAR alfa/metabolismo , Animales , Antiinflamatorios/farmacocinética , Cardiotónicos/farmacocinética , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica , Ratones , Fitoquímicos/farmacocinética , Medicamentos bajo Prescripción/farmacocinética
10.
Chem Biol Interact ; 345: 109566, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34174250

RESUMEN

Mammalian carboxylesterases (CES), the key members of the serine hydrolase superfamily, hydrolyze a wide range of endogenous substances and xenobiotics bearing ester or amide bond(s). In humans, most of identified CES are segregated into the CES1A and CES2A subfamilies. Strong inhibition on human CES (including hCES1A and hCES2A) may modulate pharmacokinetic profiles of CES-substrate drugs, thereby changing the pharmacological and toxicological responses of these drugs. This review covered recent advances in discovery of hCES inhibitors from clinically available medications, as well as their impact on CES-associated drug metabolism. Three comprehensive lists of hCES inhibitors deriving from clinically available medications including therapeutic drugs, pharmaceutical excipients and herbal medicines, alongside with their inhibition potentials and inhibition parameters, are summarized. Furthermore, the potential risks of hCES inhibitors to trigger drug/herb-drug interactions (DDIs/HDIs) and future concerns in this field are highlighted. Potent hCES inhibitors may trigger clinically relevant DDIs/HDIs, especially when these inhibitors are co-administrated with CES substrate-drugs with very narrow therapeutic windows. All data and knowledge presented here provide key information for the clinicians to assess the risks of clinically available hCES inhibitors on drug metabolism. In future, more practical and highly specific substrates for hCES1A/hCES2A should be developed and used for studies on CES-mediated DDIs/HDIs both in vitro and in vivo.


Asunto(s)
Carboxilesterasa/antagonistas & inhibidores , Carboxilesterasa/metabolismo , Inhibidores Enzimáticos/farmacología , Preparaciones Farmacéuticas/metabolismo , Animales , Descubrimiento de Drogas , Humanos , Inactivación Metabólica/efectos de los fármacos
11.
Ecotoxicol Environ Saf ; 220: 112405, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34130182

RESUMEN

Hazardous substances, such as microcystin-LR (MC-LR) and phenanthrene (Phe) are ubiquitous co-contaminants in eutrophic freshwaters, which cause harms to aquatic organisms. However, the risks associated with the co-exposure of aquatic biota to these two chemicals in the environment have received little attention. In this study, the single and mixture toxic effects of MC-LR and Phe mixtures were investigated in Daphnia magna after acute and chronic exposure. Acute tests showed that the median effective concentrations (48 h) for MC-LR, Phe and their mixtures were 13.46, 0.57 and 8.84 mg/L, respectively. Mixture toxicity prediction results indicated that the independent action model was more applicable than the concentration addition model. Moreover, combination index method suggested that the mixture toxicity was concentration dependent. Synergism was elicited at low concentrations of MC-LR and Phe exposure (≤4.04 + 0.17 mg/L), whereas antagonistic or additive effects were induced at higher concentrations. The involved mechanism of antagonism was presumably attributable to the protective effects of detoxification genes activated by high concentrations of MC-LR in mixtures. Additionally, chronic results also showed that exposure to a MC-LR and Phe mixture at low concentrations (≤50 +2 µg/L) resulted in greater toxic effects on D. magna life history than either chemical acting alone. The significant inhibition on detoxification genes and increased accumulation of MC-LR could be accounted for their synergistic toxic effects on D. magna. Our findings revealed the exacerbated ecological hazard of MC-LR and Phe at environmental concentrations (≤50 +2 µg/L), and provided new insights to the potential toxic mechanisms of MC-LR and Phe in aquatic animals.


Asunto(s)
Daphnia/efectos de los fármacos , Toxinas Marinas/toxicidad , Microcistinas/toxicidad , Fenantrenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Daphnia/genética , Daphnia/crecimiento & desarrollo , Daphnia/metabolismo , Interacciones Farmacológicas , Agua Dulce/química , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/genética , Estadios del Ciclo de Vida/efectos de los fármacos , Toxinas Marinas/análisis , Microcistinas/análisis , Fenantrenos/análisis
12.
Sci Rep ; 11(1): 9041, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907243

RESUMEN

Insecticides, especially pyrethroids, are the most important in the insect pest control and preventing insect vector-borne human diseases. However, insect pests, including mosquitoes, have developed resistance in the insecticides that used against them. Cytochrome P450s are associated with insecticide resistance through overexpression and detoxification mechanisms in insect species. In this study, we utilized a powerful tool, the RNAi technique, to determine the roles of key P450 genes overexpressed in permethrin resistant mosquitoes that confer insecticide resistance to unravel the molecular basis of resistance mechanisms in the mosquito Culex quinquefasciatus. The results showed that knockdown of 8 key P450 genes using RNAi techniques significantly decreased resistance to permethrin in resistant mosquitoes. In silico modeling and docking analysis further revealed the potential metabolic function of overexpressed P450 genes in the development of insecticide resistance in mosquitoes. These findings not only highlighted the functional importance of these P450 genes in insecticide resistance, but also revealed that overexpression of multiple P450 genes was responsible for the high levels of insecticide resistance in a mosquito population of Culex quinquefasciatus.


Asunto(s)
Culex/genética , Sistema Enzimático del Citocromo P-450/genética , Inactivación Metabólica/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Permetrina/farmacología , Animales , Culex/efectos de los fármacos , Culex/crecimiento & desarrollo , Culex/parasitología , Femenino , Perfilación de la Expresión Génica , Inactivación Metabólica/efectos de los fármacos , Insecticidas/farmacología , Larva/genética , Larva/crecimiento & desarrollo , Larva/parasitología
13.
Ecotoxicol Environ Saf ; 217: 112248, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33901782

RESUMEN

Melatonin (Mel), a powerful antioxidant that has the ability to regulate physiological and biochemical processes in plants under abiotic stresses. However, its roles in pesticide detoxification is poorly understood. Herein, selecting leaf spraying insecticide imidacloprid (IMD) as the model, we demonstrated the detoxification mechanism underlying root pretreatment of Mel on IMD in cucumber. IMD treatment affected the primary light conversion efficiency of photosystem II (Fv/Fm), reduced the quantum yield, and increased hydrogen peroxide and superoxide anions contents as well as the levels of membrane lipid peroxidation, indicating that excessive IMD treatment induces oxidative stress. Nonetheless, by increasing the appropriate levels of exogenous Mel, the photosynthesis of cucumber under IMD treatment reached the control levels, effectively removing reactive oxygen species. Furthermore, the content and ratio of ascorbate (AsA) and glutathione (GSH) were decreased under IMD treatment; Mel treatment enhanced the AsA/DHA and GSH/GSSG ratios, as well as the activities of MDHAR, DHAR and GR, suggesting that Mel could alleviate oxidative stress of cucumber treated with IMD by regulating the ascorbic acid-glutathione cycle. Importantly, IMD degradation rate and glutathione S-transferase (GST) activity increased after Mel treatment. The levels of transcripts encoding antioxidant enzymes GPX and GST (GST1,2 and 3) were also increased, indicating that Mel accelerated IMD degradation. These results suggest that Mel plays an important role in the detoxification of IMD by promoting GST activity and transcription and the AsA-GSH cycle, thus providing an approach for plants to reduce IMD residue through the plant's own detoxification mechanism.


Asunto(s)
Cucumis sativus/fisiología , Glutatión/metabolismo , Insecticidas/toxicidad , Melatonina/metabolismo , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Cucumis sativus/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Peróxido de Hidrógeno/metabolismo , Inactivación Metabólica/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
14.
Mol Nutr Food Res ; 65(12): e2001149, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33900027

RESUMEN

This study's previous work showed that the carcinogen and mutagen benzo(a)pyrene (BaP) can be adsorbed by Lactobacillus cells in vitro. However, in vivo BaP detoxification by lactic acid bacteria has not yet been investigated. The present study evaluates the effects of orally administered Lactobacillus plantarum CICC 23121 in BaP-treated mice. Oral administration of 50 mg kg-1 BaP perturbed the intestinal microflora, caused Proteobacteria to predominate, and severely damaged DNA. However, oral administration of 5 × 1010 CFU mL-1 CICC 23121 in BaP-treated mice enhances fecal BaP excretion from 181.70 ± 1.04 µg/(g∙h) to 271.47 ± 11.71 µg/(g∙h) after 6 h. Fecal BaP excretion reaches up to 280.66 ± 22.97 µg/(g∙h) after the first 4 days of orally administered CICC 23121 and decreased to 94.31 ± 2.64 µg/(g∙h) by day 11. Intestinal microbiota are restored and Firmicutes predominates. CICC 23121 alleviates BaP-induced DNA damage and reduces tail length from 56.37 ± 5.31  to 39.69 ± 4.27 µm. Therefore, oral CICC23121 consumption is a promising strategy for reducing BaP toxicity in mice. To the best of our knowledge, this report is the first report to demonstrate in vivo that Lactobacillus cells can detoxify BaP.


Asunto(s)
Benzo(a)pireno/administración & dosificación , Benzo(a)pireno/farmacocinética , Inactivación Metabólica/efectos de los fármacos , Lactobacillus plantarum , Administración Oral , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Daño del ADN , Ácidos Grasos Volátiles/metabolismo , Heces , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Hígado/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Probióticos/farmacología , Aumento de Peso/efectos de los fármacos
15.
Sci Rep ; 11(1): 5800, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707704

RESUMEN

Tea plant (Camellia sinensis) is a well-known Al-accumulating plant, showing a high level of aluminum (Al) tolerance. However, the molecular mechanisms of Al tolerance and accumulation are poorly understood. We carried out transcriptome analysis of tea plant leaves in response to three different Al levels (0, 1, 4 mM, for 7 days). In total, 794, 829 and 585 differentially expressed genes (DEGs) were obtained in 4 mM Al vs. 1 mM Al, 0 Al vs. 1 mM Al, and 4 mM Al vs. 0 Al comparisons, respectively. Analysis of genes related to polysaccharide and cell wall metabolism, detoxification of reactive oxygen species (ROS), cellular transport, and signal transduction were involved in the Al stress response. Furthermore, the transcription factors such as zinc finger, myeloblastosis (MYB), and WRKY played a critical role in transcriptional regulation of genes associated with Al resistance in tea plant. In addition, the genes involved in phenolics biosynthesis and decomposition were overwhelmingly upregulated in the leaves treated with either 0 Al and 4 mM Al stress, indicating they may play an important role in Al tolerance. These results will further help us to understand mechanisms of Al stress and tolerance in tea plants regulated at the transcriptional level.


Asunto(s)
Aluminio/toxicidad , Camellia sinensis/genética , Camellia sinensis/fisiología , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Estrés Fisiológico/genética , Transcriptoma/genética , Antioxidantes/metabolismo , Transporte Biológico/genética , Camellia sinensis/efectos de los fármacos , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Genoma de Planta , Inactivación Metabólica/efectos de los fármacos , Anotación de Secuencia Molecular , Pectinas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Polisacáridos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transducción de Señal/genética , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo , Transcriptoma/efectos de los fármacos
16.
Chem Biol Interact ; 340: 109448, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33775687

RESUMEN

Metabolic deactivation by cytochrome P450 (CYP) is considered a potential mechanism of anticancer drug resistance. However, this hypothesis is predominantly based on indirect pieces of evidence and/or is influenced by interfering factors such as the use of multienzymatic models. Thus, an experimental approach for its verification is needed. In the present work, we employed HepG2 cells transduced with CYP enzymes involved in docetaxel, paclitaxel and vincristine metabolism to provide mechanistic evidence on their possible roles in resistance to these chemotherapeutic agents. Using MTT proliferation tests, we showed that overexpression of CYP3A4 resulted in decreased antiproliferative activity of 1 µM docetaxel (by 11.2, 23.2 and 22.9% at 24, 48 and 72 h intervals, respectively), while the sensitivity of CYP3A4-transduced cells was restored by co-administration of ketoconazole. Paclitaxel exhibited differential efficacy in CYP2C8- and empty vector-transduced cells (significant differences between 10.9 and 24.4% for 0.01, 0.1 and 1 µM concentrations), but neither montelukast nor clotrimazole was capable of affecting this asymmetry. Finally, the pharmacological activity of vincristine was not influenced by CYP3A4 or CYP3A5 overexpression. In the follow-up caspase activation assays, docetaxel was confirmed to be a victim of CYP3A4-mediated resistance, which is, at least partly, brought by impaired activation of caspases 3/7, 8 and 9. In summary, our data demonstrate that CYP3A4-mediated metabolic deactivation of docetaxel might represent a significant mechanism of pharmacokinetic resistance to this drug. In contrast, the possible role of CYPs in resistance to paclitaxel and vincristine has been disconfirmed. Importantly, the expression of CYP3A4 in HepG2_CYP3A4 cells is comparable to that in primary hepatocytes and HepaRG cells, which suggests that our results might be relevant for in vivo conditions, e.g., for hepatocellular carcinoma. Thus, our data may serve as a valuable in vitro background for future in vivo studies exploring the area of intratumoural metabolism-based drug resistance.


Asunto(s)
Antineoplásicos/farmacología , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citostáticos/farmacología , Resistencia a Antineoplásicos/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inactivación Metabólica/efectos de los fármacos , Tasa de Depuración Metabólica/efectos de los fármacos
17.
Biochem Biophys Res Commun ; 553: 141-147, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33770579

RESUMEN

Cantharidin is a potent anti-cancer drug and is known to exert its cytotoxic effects in several cancer cell lines. Although we have ample knowledge about its mode of action, we still know a little about cantharidin associated drug resistance mechanisms which dictates the efficacy and cytotoxic potential of this drug. In this direction, in the present study we employed Sacharomyces cerevisiae as a model organism and screened mutants of pleiotropic drug resistance network of genes for their susceptibility to cantharidin. We show that growth of pdr1Δ and pdr1Δpdr3Δ was severely reduced in presence of cantharidin whereas that of pdr3Δ remain unaffected when compared to wildtype. Loss of one of the PDR1 target genes PDR5, encoding an ABC membrane efflux pump, rendered the cells hypersensitive whereas overexpression of it conferred resistance. Additionally, cantharidin induced the upregulation of both PDR1 and PDR5 genes. Interestingly, pdr1Δpdr5Δ double deletion mutants were hypersensitive to cantharidin showing a synergistic effect in its cellular detoxification. Furthermore, transcriptional activation of PDR5 post cantharidin treatment was majorly dependent on the presence of Pdr1 and less significantly of Pdr3 transcription factors. Altogether our findings suggest that Pdr1 acts to increase cantharidin resistance by elevating the level of Pdr5 which serves as a major detoxification safeguard under CAN stress.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Cantaridina/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Cantaridina/toxicidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Inactivación Metabólica/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos
18.
Cancer Res ; 81(7): 1654-1666, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648930

RESUMEN

Overcoming drug resistance is one of the biggest challenges in cancer chemotherapy. In this study, we examine whether targeting the long noncoding RNA taurine upregulated gene 1 (TUG1) could be an effective therapeutic approach to overcome drug resistance in pancreatic ductal adenocarcinoma (PDAC). TUG1 was expressed at significantly higher levels across 197 PDAC tissues compared with normal pancreatic tissues. Overall survival of patients with PDAC who had undergone 5-FU-based chemotherapy was shorter in high TUG1 group than in low TUG1 group. Mechanistically, TUG1 antagonized miR-376b-3p and upregulated dihydropyrimidine dehydrogenase (DPD). TUG1 depletion induced susceptibility to 5-FU in BxPC-3 and PK-9 pancreatic cell lines. Consistently, the cellular concentration of 5-FU was significantly higher under TUG1-depleted conditions. In PDAC xenograft models, intravenous treatment with a cancer-specific drug delivery system (TUG1-DDS) and 5-FU significantly suppressed PDAC tumor growth compared with 5-FU treatment alone. This novel approach using TUG1-DDS in combination with 5-FU may serve as an effective therapeutic option to attenuate DPD activity and meet appropriate 5-FU dosage requirements in targeted PDAC cells, which can reduce the systemic adverse effects of chemotherapy. SIGNIFICANCE: Targeting TUG1 coupled with a cancer-specific drug delivery system effectively modulates 5-FU catabolism in TUG1-overexpressing PDAC cells, thus contributing to a new combinatorial strategy for cancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1654/F1.large.jpg.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Oligonucleótidos Antisentido/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , ARN Largo no Codificante/antagonistas & inhibidores , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Estudios de Cohortes , Sistemas de Liberación de Medicamentos/métodos , Sinergismo Farmacológico , Femenino , Fluorouracilo/administración & dosificación , Fluorouracilo/farmacocinética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inactivación Metabólica/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida/métodos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/química , ARN Largo no Codificante/efectos de los fármacos , ARN Largo no Codificante/genética , Ensayos Antitumor por Modelo de Xenoinjerto
19.
PLoS One ; 16(2): e0246327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33544749

RESUMEN

Acetaldehyde is the major toxic metabolite of alcohol (ethanol) and enhances fibrosis of the liver through hepatic stellate cells. Additionally, alcohol administration causes the accumulation of reactive oxygen species (ROS), which induce hepatocyte injury-mediated lipid peroxidation. Iso-α-acids, called isohumulones, are bitter acids in beer. The purpose of this study was to investigate the protective effects of iso-α-acids against alcoholic liver injury in hepatocytes in mice. C57BL/6N mice were fed diets containing isomerized hop extract, which mainly consists of iso-α-acids. After 7 days of feeding, acetaldehyde was administered by a single intraperitoneal injection. The acetaldehyde-induced increases in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were suppressed by iso-α-acids intake. Hepatic gene expression analyses showed the upregulation of detoxifying enzyme genes, glutathione-S-transferase (GST) and aldehyde dehydrogenase (ALDH). In vitro, iso-α-acids upregulated the enzymatic activities of GST and ALDH and induced the nuclear translocation of nuclear factor-erythroid-2-related factor 2 (Nfe2l2; Nrf2), a master regulator of antioxidant and detoxifying systems. These results suggest that iso-α-acid intake prevents acetaldehyde-induced liver injury by reducing oxidative stress via Nrf2-mediated gene expression.


Asunto(s)
Ácidos Carboxílicos/farmacología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/prevención & control , Dieta , Regulación de la Expresión Génica , Factor 2 Relacionado con NF-E2/genética , Acetaldehído/metabolismo , Aldehído Deshidrogenasa/metabolismo , Animales , Antioxidantes/metabolismo , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Etanol/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Inactivación Metabólica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Sustancias Protectoras/farmacología , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
20.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33547243

RESUMEN

Varroa destructor is one of the main problems in modern beekeeping. Highly selective acaricides with low toxicity to bees are used internationally to control this mite. One of the key acaricides is the organophosphorus (OP) proinsecticide coumaphos, that becomes toxic after enzymatic activation inside Varroa We show here that mites from the island Andros (AN-CR) exhibit high levels of coumaphos resistance. Resistance is not mediated by decreased coumaphos uptake, target-site resistance, or increased detoxification. Reduced proinsecticide activation by a cytochrome P450 enzyme was the main resistance mechanism, a powerful and rarely encountered evolutionary solution to insecticide selection pressure. After treatment with sublethal doses of [14C] coumaphos, susceptible mite extracts had substantial amounts of coroxon, the activated metabolite of coumaphos, while resistant mites had only trace amounts. This indicates a suppression of the P450 (CYP)-mediated activation step in the AN-CR mites. Bioassays with coroxon to bypass the activation step showed that resistance was dramatically reduced. There are 26 CYPs present in the V. destructor genome. Transcriptome analysis revealed overexpression in resistant mites of CYP4DP24 and underexpression of CYP3012A6 and CYP4EP4 RNA interference of CYP4EP4 in the susceptible population, to mimic underexpression seen in the resistant mites, prevented coumaphos activation and decreased coumaphos toxicity.


Asunto(s)
Abejas/genética , Sistema Enzimático del Citocromo P-450/genética , Varroidae/efectos de los fármacos , Animales , Abejas/efectos de los fármacos , Abejas/parasitología , Cumafos/efectos adversos , Cumafos/farmacología , Inactivación Metabólica/efectos de los fármacos , Insecticidas/efectos adversos , Insecticidas/farmacología , Tasa de Depuración Metabólica/genética , Varroidae/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA