Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.218
Filtrar
1.
Sci Rep ; 14(1): 10561, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719884

RESUMEN

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Asunto(s)
Flavonoides , Lípidos de la Membrana , Flavonoides/química , Flavonoides/farmacología , Flavonoides/metabolismo , Humanos , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Membrana Celular/metabolismo , Halogenación , Citotoxinas/química , Citotoxinas/farmacología , Citotoxinas/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Supervivencia Celular/efectos de los fármacos , Espectrometría Raman , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Línea Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 121(21): e2314570121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739804

RESUMEN

Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lípidos , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Lípidos/química , Regulación de la Expresión Génica de las Plantas , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Lípidos de la Membrana/metabolismo , Ácido Abscísico/metabolismo , Pared Celular/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa
3.
Biointerphases ; 19(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738942

RESUMEN

Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).


Asunto(s)
Membrana Dobles de Lípidos , Análisis Espectral , Membrana Dobles de Lípidos/química , Análisis Espectral/métodos , Vibración , Fosfolípidos/química , Lípidos de la Membrana/química
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732158

RESUMEN

Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.


Asunto(s)
Membrana Celular , Endocitosis , Canales Epiteliales de Sodio , Hipertensión , Neutrófilos , Canales Epiteliales de Sodio/metabolismo , Humanos , Neutrófilos/metabolismo , Hipertensión/metabolismo , Hipertensión/patología , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Masculino , Femenino , Proteínas Inmediatas-Precoces/metabolismo , Persona de Mediana Edad , Microdominios de Membrana/metabolismo
5.
J Colloid Interface Sci ; 668: 252-263, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38678881

RESUMEN

Protein body (PB) formation in wheat seeds is a critical process influencing seed content and nutritional quality. In this study, we investigate the potential mechanisms governing PB formation through an in vitro approach, focusing on γ-gliadin, a key wheat storage protein. We used a microfluidic technique to encapsulate γ-gliadin within giant unilamellar vesicles (GUVs) and tune the physicochemical conditions in a controlled and rapid way. We examined the influence of pH and protein concentration on LLPS and protein-membrane interactions using various microscopy and spectroscopy techniques. We showed that γ-gliadin encapsulated in GUVs can undergo a pH-triggered liquid-liquid phase separation (LLPS) by two distinct mechanisms depending on the γ-gliadin concentration. At low protein concentrations, γ-gliadins phase separate by a nucleation and growth-like process, while, at higher protein concentration and pH above 6.0, γ-gliadin formed a bi-continuous phase suggesting a spinodal decomposition-like mechanism. Fluorescence and microscopy data suggested that γ-gliadin dense phase exhibited affinity for the GUV membrane, forming a layer at the interface and affecting the reversibility of the phase separation.


Asunto(s)
Gliadina , Triticum , Liposomas Unilamelares , Gliadina/química , Gliadina/aislamiento & purificación , Triticum/química , Concentración de Iones de Hidrógeno , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Agua/química , Lípidos de la Membrana/química , Separación de Fases
6.
Nat Commun ; 15(1): 3521, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664456

RESUMEN

Recently, a novel cyclo-heptapeptide composed of alternating D,L-amino acids and a unique thiazolidine heterocycle, called lugdunin, was discovered, which is produced by the nasal and skin commensal Staphylococcus lugdunensis. Lugdunin displays potent antimicrobial activity against a broad spectrum of Gram-positive bacteria, including challenging-to-treat methicillin-resistant Staphylococcus aureus (MRSA). Lugdunin specifically inhibits target bacteria by dissipating their membrane potential. However, the precise mode of action of this new class of fibupeptides remains largely elusive. Here, we disclose the mechanism by which lugdunin rapidly destabilizes the bacterial membrane potential using an in vitro approach. The peptide strongly partitions into lipid compositions resembling Gram-positive bacterial membranes but less in those harboring the eukaryotic membrane component cholesterol. Upon insertion, lugdunin forms hydrogen-bonded antiparallel ß-sheets by the formation of peptide nanotubes, as demonstrated by ATR-FTIR spectroscopy and molecular dynamics simulations. These hydrophilic nanotubes filled with a water wire facilitate not only the translocation of protons but also of monovalent cations as demonstrated by voltage-clamp experiments on black lipid membranes. Collectively, our results provide evidence that the natural fibupeptide lugdunin acts as a peptidic channel that is spontaneously formed by an intricate stacking mechanism, leading to the dissipation of a bacterial cell's membrane potential.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Simulación de Dinámica Molecular , Agua/química , Potenciales de la Membrana/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Antibacterianos/farmacología , Antibacterianos/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Staphylococcus lugdunensis/efectos de los fármacos , Staphylococcus lugdunensis/química , Staphylococcus lugdunensis/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Nanotubos/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología
7.
Methods Mol Biol ; 2790: 427-438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649585

RESUMEN

The biological role of lipids goes far beyond the formation of a structural membrane bilayer platform for membrane proteins and controlling fluxes across the membranes. For example, in photosynthetic thylakoid membranes, lipids occupy well-defined binding niches within protein complexes and determine the structural organization of membrane proteins and their function by controlling generic physicochemical membrane properties. In this chapter, two-dimensional thin-layer chromatography (2D TLC) and gas chromatography (GC) techniques are presented for quantitative analysis of lipid classes and fatty acids in thylakoid membranes. In addition, lipid extraction methods from isolated thylakoid membranes and leaves are described together with a procedure for the derivatization of fatty acids to fatty acid methyl esters (FAME) that is required for GC analysis.


Asunto(s)
Ácidos Grasos , Fotosíntesis , Tilacoides , Tilacoides/metabolismo , Cromatografía en Capa Delgada/métodos , Cromatografía de Gases/métodos , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/química , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Lípidos/química , Lípidos/aislamiento & purificación , Lípidos/análisis
8.
Appl Microbiol Biotechnol ; 108(1): 288, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587638

RESUMEN

Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.


Asunto(s)
Escherichia coli , Lípidos , Ornitina/análogos & derivados , Protones , Escherichia coli/genética , Carbonil Cianuro m-Clorofenil Hidrazona , Lípidos de la Membrana , Fosfatos
9.
ACS Nano ; 18(18): 11644-11654, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38653474

RESUMEN

Nanophotonic devices excel at confining light into intense hot spots of electromagnetic near fields, creating exceptional opportunities for light-matter coupling and surface-enhanced sensing. Recently, all-dielectric metasurfaces with ultrasharp resonances enabled by photonic bound states in the continuum (BICs) have unlocked additional functionalities for surface-enhanced biospectroscopy by precisely targeting and reading out the molecular absorption signatures of diverse molecular systems. However, BIC-driven molecular spectroscopy has so far focused on end point measurements in dry conditions, neglecting the crucial interaction dynamics of biological systems. Here, we combine the advantages of pixelated all-dielectric metasurfaces with deep learning-enabled feature extraction and prediction to realize an integrated optofluidic platform for time-resolved in situ biospectroscopy. Our approach harnesses high-Q metasurfaces specifically designed for operation in a lossy aqueous environment together with advanced spectral sampling techniques to temporally resolve the dynamic behavior of photoswitchable lipid membranes. Enabled by a software convolutional neural network, we further demonstrate the real-time classification of the characteristic cis and trans membrane conformations with 98% accuracy. Our synergistic sensing platform incorporating metasurfaces, optofluidics, and deep learning reveals exciting possibilities for studying multimolecular biological systems, ranging from the behavior of transmembrane proteins to the dynamic processes associated with cellular communication.


Asunto(s)
Inteligencia Artificial , Propiedades de Superficie , Análisis Espectral/métodos , Lípidos de la Membrana/química , Aprendizaje Profundo
10.
J Biomed Sci ; 31(1): 44, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685037

RESUMEN

BACKGROUND: Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS: Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS: CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS: The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.


Asunto(s)
Colesterol/análogos & derivados , Helicobacter pylori , Helicobacter pylori/metabolismo , Helicobacter pylori/fisiología , Ratones , Animales , Humanos , Lípidos de la Membrana/metabolismo , Línea Celular Tumoral , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Ésteres del Colesterol/metabolismo
11.
Food Chem ; 449: 139175, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593723

RESUMEN

Postharvest harmful pathogenic infestation leads to rapid decay in longan fruit. Compared with P. longanae-infected longans, AEOW alleviated fruit disease severity and diminished the O2-. production rate and MDA content. It also increased APX, CAT, and SOD activities, delayed the decrease in the levels of GSH and AsA, as well as the reducing power and DPPH radical scavenging ability, which resulted in a decline in membrane lipid peroxidation in P. longanae-infected longans. Additionally, AEOW reduced LOX, lipase, PI-PLC, PC-PLC, and PLD activities, maintained higher levels of PC, PI, IUFA, USFAs, and U/S, while reducing levels of PA, DAG, SFAs, and CMP. These effects alleviated membrane lipid degradation and peroxidation in P. longanae-infected longans. Consequently, AEOW effectively maintained membrane integrity via improving antioxidant capacity and suppressing membrane lipid peroxidation. This comprehensive coordination of ROS and membrane lipid metabolisms improved fruit resistance and delayed disease development in longans.


Asunto(s)
Frutas , Enfermedades de las Plantas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Frutas/química , Frutas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Oxidación-Reducción , Lípidos de la Membrana/metabolismo , Ascomicetos/química , Agua/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Metabolismo de los Lípidos , Electrólisis
12.
Chem Rev ; 124(6): 3284-3330, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498932

RESUMEN

It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.


Asunto(s)
Membrana Dobles de Lípidos , Lípidos de la Membrana , Lípidos de la Membrana/química , Membrana Dobles de Lípidos/química , Membrana Celular/metabolismo , Membranas/metabolismo , Fosfolípidos/metabolismo , Alquenos/metabolismo
13.
Toxins (Basel) ; 16(3)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38535809

RESUMEN

Aegerolysins are a family of proteins that recognize and bind to specific membrane lipids or lipid domains; hence they can be used as membrane lipid sensors. Although aegerolysins are distributed throughout the tree of life, the most studied are those produced by the fungal genus Pleurotus. Most of the aegerolysin-producing mushrooms code also for proteins containing the membrane attack complex/perforin (MACPF)-domain. The combinations of lipid-sensing aegerolysins and MACPF protein partners are lytic for cells harboring the aegerolysin membrane lipid receptor and can be used as ecologically friendly bioinsecticides. In this work, we have recombinantly expressed four novel aegerolysin/MACPF protein pairs from the mushrooms Heterobasidion irregulare, Trametes versicolor, Mucidula mucida, and Lepista nuda, and compared these proteins with the already studied aegerolysin/MACPF protein pair ostreolysin A6-pleurotolysin B from P. ostreatus. We show here that most of these new mushroom proteins can form active aegerolysin/MACPF cytolytic complexes upon aegerolysin binding to membrane sphingolipids. We further disclose that these mushroom aegerolysins bind also to selected glycerophospholipids, in particular to phosphatidic acid and cardiolipin; however, these interactions with glycerophospholipids do not lead to pore formation. Our results indicate that selected mushroom aegerolysins show potential as new molecular biosensors for labelling phosphatidic acid.


Asunto(s)
Agaricales , Proteínas Fúngicas , Proteínas Hemolisinas , Lípidos de la Membrana , Trametes , Perforina , Glicerofosfolípidos , Ácidos Fosfatidicos
15.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542352

RESUMEN

Previously, we found for the first time the participation of osmolytes in adaptation to acidic conditions in three acidophilic fungi. Because trehalose can protect membranes, we hypothesized a relationship between osmolyte and membrane systems in adaptation to stressors. In the mycelium of Phlebiopsis gigantea, the level of osmolytes reaches 8% of the dry mass, while trehalose and arabitol make up 60% and 33% of the sum, respectively. Cold shock does not change the composition of osmolytes, heat shock causes a twofold increase in the trehalose level, and osmotic shock leads to a marked increase in the amount of trehalose and arabitol. Predominance of phospholipids (89% of the sum) and low proportions of sterols and sphingolipids are characteristic features of the membrane lipids' composition. Phosphatidic acids, along with phosphatidylethanolamines and phosphatidylcholines, are the main membrane lipids. The composition of the membrane lipids remains constant under all shocks. The predominance of linoleic (75% of the sum) and palmitic (20%) acids in phospholipids results in a high degree of unsaturation (1.5). Minor fluctuations in the fatty acid composition are observed under all shocks. The results demonstrate that maintaining or increasing the trehalose level provides stability in the membrane lipid composition during adaptation.


Asunto(s)
Basidiomycota , Lípidos de la Membrana , Polyporales , Alcoholes del Azúcar , Trehalosa , Presión Osmótica , Fosfolípidos
16.
Nature ; 628(8008): 657-663, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509367

RESUMEN

In response to pathogen infection, gasdermin (GSDM) proteins form membrane pores that induce a host cell death process called pyroptosis1-3. Studies of human and mouse GSDM pores have revealed the functions and architectures of assemblies comprising 24 to 33 protomers4-9, but the mechanism and evolutionary origin of membrane targeting and GSDM pore formation remain unknown. Here we determine a structure of a bacterial GSDM (bGSDM) pore and define a conserved mechanism of pore assembly. Engineering a panel of bGSDMs for site-specific proteolytic activation, we demonstrate that diverse bGSDMs form distinct pore sizes that range from smaller mammalian-like assemblies to exceptionally large pores containing more than 50 protomers. We determine a cryo-electron microscopy structure of a Vitiosangium bGSDM in an active 'slinky'-like oligomeric conformation and analyse bGSDM pores in a native lipid environment to create an atomic-level model of a full 52-mer bGSDM pore. Combining our structural analysis with molecular dynamics simulations and cellular assays, our results support a stepwise model of GSDM pore assembly and suggest that a covalently bound palmitoyl can leave a hydrophobic sheath and insert into the membrane before formation of the membrane-spanning ß-strand regions. These results reveal the diversity of GSDM pores found in nature and explain the function of an ancient post-translational modification in enabling programmed host cell death.


Asunto(s)
Gasderminas , Myxococcales , Microscopía por Crioelectrón , Gasderminas/química , Gasderminas/metabolismo , Gasderminas/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Myxococcales/química , Myxococcales/citología , Myxococcales/ultraestructura , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteolisis , Piroptosis
17.
Sci Total Environ ; 924: 171666, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38490418

RESUMEN

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids whose distribution in peatland soils serves as an important proxy for past climate changes due to strong linear correlations with temperature in modern environments. However, commonly used brGDGT-based temperature models are characterized by high uncertainty (ca. 4 °C) and these calibrations can show implausible correlations when applied at an ecosystem level. This lack of accuracy is often attributed to our limited understanding of the exact mechanisms behind the relationship between brGDGTs and temperature and the potential effect of temperature-independent factors on brGDGT distribution. Here, we examine the abundance and distribution of brGDGTs in a boreal peatland after four years of in-situ warming (+0, +2.25, +4.5, +6.75 and +9 °C). We observed that with warming, concentrations of total brGDGTs increased. Furthermore, we determined a shift in brGDGT distribution in the surface aerobic layers of the acrotelm (0-30 cm depth), whereas no detectable change was observed at deeper anaerobic depths (>40 cm), possibly due to limited microbial activity. The response of brGDGTs to warming was also reflected by a strong increase in the methylation index of 5-methyl brGDGTs (MBT'5Me), classically used as a temperature proxy. Further, the relationship between the MBT'5Me index and soil temperature differed between 0-10, 10-20 and 20-30 cm depth, highlighting depth-specific response of brGDGTs to warming, which should be considered in paleoenvironmental and paleoecological studies. As the bacterial community composition was generally unaltered, the rapid changes in brGDGT distribution argue for a physiological adaptation of the microorganisms producing these lipids. Finally, soil temperature and water table depth were better predictors of brGDGT concentration and distribution, highlighting the potential for these drivers to impact brGDGT-based proxies. To summarize, our results provide insights on the response of brGDGT source microorganisms to soil warming and underscore brGDGTs as viable temperature proxies for better understanding of climatic perturbation in peatlands.


Asunto(s)
Ecosistema , Glicerol , Temperatura , Bacterias , Lípidos de la Membrana , Suelo
18.
J Hazard Mater ; 469: 133951, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492385

RESUMEN

Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, ß-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.


Asunto(s)
Arabidopsis , Araceae , Metales Pesados , Aguas Residuales , Arabidopsis/genética , Lipidómica , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Plantas Modificadas Genéticamente , Perfilación de la Expresión Génica , Araceae/metabolismo , Lípidos de la Membrana/metabolismo
19.
Food Microbiol ; 120: 104484, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431329

RESUMEN

Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.


Asunto(s)
Frutas , Hypocreales , Malus , Frutas/microbiología , Malus/microbiología , Especies Reactivas de Oxígeno/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo
20.
Langmuir ; 40(14): 7456-7462, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38546877

RESUMEN

The primary constituents of honeybee venom, melittin and phospholipase A2 (PLA2), display toxin synergism in which the PLA2 activity is significantly enhanced by the presence of melittin. It has been shown previously that this is accomplished by the disruption in lipid packing, which allows PLA2 to become processive on the membrane surface. In this work, we show that melittin is capable of driving miscibility phase transition in giant unilamellar vesicles (GUVs) and that it raises the miscibility transition temperature (Tmisc) in a concentration-dependent manner. The induced phase separation enhances the processivity of PLA2, particularly at its boundaries, where a substantial difference in domain thickness creates a membrane discontinuity. The catalytic action of PLA2, in response, induces changes in the membrane, rendering it more conducive to melittin binding. This, in turn, facilitates further lipid phase separation and eventual vesicle lysis. Overall, our results show that melittin has powerful membrane-altering capabilities that activate PLA2 in various membrane contexts. More broadly, they exemplify how this biochemical system actively modulates and capitalizes on the spatial distribution of membrane lipids to efficiently achieve its objectives.


Asunto(s)
Venenos de Abeja , Meliteno , Meliteno/farmacología , Liposomas Unilamelares , Fosfolipasas A2 , Lípidos de la Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...