Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Mol Recognit ; 33(12): e2849, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32227521

RESUMEN

The insurgence of newly arising, rapidly developing health threats, such as drug-resistant bacteria and cancers, is one of the most urgent public-health issues of modern times. This menace calls for the development of sensitive and reliable diagnostic tools to monitor the response of single cells to chemical or pharmaceutical stimuli. Recently, it has been demonstrated that all living organisms oscillate at a nanometric scale and that these oscillations stop as soon as the organisms die. These nanometric scale oscillations can be detected by depositing living cells onto a micro-fabricated cantilever and by monitoring its displacements with an atomic force microscope-based electronics. Such devices, named nanomotion sensors, have been employed to determine the resistance profiles of life-threatening bacteria within minutes, to evaluate, among others, the effect of chemicals on yeast, neurons, and cancer cells. The data obtained so far demonstrate the advantages of nanomotion sensing devices in rapidly characterizing microorganism susceptibility to pharmaceutical agents. Here, we review the key aspects of this technique, presenting its major applications. and detailing its working protocols.


Asunto(s)
Bacterias/ultraestructura , Infecciones Bacterianas/diagnóstico , Nanotecnología/tendencias , Bacterias/aislamiento & purificación , Infecciones Bacterianas/genética , Farmacorresistencia Microbiana/genética , Humanos , Microscopía de Fuerza Atómica/tendencias , Movimiento (Física)
5.
Acta Pharmacol Sin ; 36(7): 769-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26027658

RESUMEN

Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Preparaciones Farmacéuticas/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Humanos , Microscopía de Fuerza Atómica/tendencias , Nanotecnología/tendencias , Preparaciones Farmacéuticas/administración & dosificación
6.
Nanoscale ; 5(10): 4094-104, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23535827

RESUMEN

Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.


Asunto(s)
Membrana Celular/fisiología , Membrana Celular/ultraestructura , Mecanotransducción Celular/fisiología , Microscopía de Fuerza Atómica/métodos , Microscopía de Fuerza Atómica/tendencias , Animales , Adhesión Celular/fisiología , Humanos
7.
ACS Nano ; 6(6): 4580-4, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22702840

RESUMEN

Plasmonics and near-field optical nanoscopy both deal with expanding optics into the subwavelength regime. However, these two fields have so far followed parallel paths of development and only recently have researchers started to explore combinations of their concepts with potential synergy. In this Perspective, we provide an up-to-date summary of the successful combinations reported and give insight into some new possibilities.


Asunto(s)
Aumento de la Imagen/métodos , Microscopía de Fuerza Atómica/tendencias , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotecnología/tendencias , Resonancia por Plasmón de Superficie/tendencias , Tamaño de la Partícula
8.
Nat Nanotechnol ; 7(4): 217-26, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22466857

RESUMEN

In atomic force microscopy a cantilever with a sharp tip attached to it is scanned over the surface of a sample, and information about the surface is extracted by measuring how the deflection of the cantilever - which is caused by interactions between the tip and the surface - varies with position. In the most common form of atomic force microscopy, dynamic force microscopy, the cantilever is made to vibrate at a specific frequency, and the deflection of the tip is measured at this frequency. But the motion of the cantilever is highly nonlinear, and in conventional dynamic force microscopy, information about the sample that is encoded in the deflection at frequencies other than the excitation frequency is irreversibly lost. Multifrequency force microscopy involves the excitation and/or detection of the deflection at two or more frequencies, and it has the potential to overcome limitations in the spatial resolution and acquisition times of conventional force microscopes. Here we review the development of five different modes of multifrequency force microscopy and examine its application in studies of proteins, the imaging of vibrating nanostructures, measurements of ion diffusion and subsurface imaging in cells.


Asunto(s)
Predicción , Aumento de la Imagen/instrumentación , Sistemas Microelectromecánicos/instrumentación , Micromanipulación/instrumentación , Micromanipulación/tendencias , Microscopía de Fuerza Atómica/instrumentación , Microscopía de Fuerza Atómica/tendencias , Diseño de Equipo
9.
Immunol Res ; 53(1-3): 108-14, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22434515

RESUMEN

Antigen recognition and discrimination by T lymphocyte are essential in initiating appropriate immune responses. The mechanisms underlying exquisite sensitivity and specificity of antigen discrimination are not fully elucidated but involved physical intercellular interactions between T cell and antigen-presenting cell (APC). The specificity of T-cell activation is tightly regulated by T-cell receptor (TCR) recognition of antigenic peptides in complex with major histocompatibility complex (pMHC) glycoproteins on the cell surface of APC. Antigen recognition via TCR/pMHC interactions, together with other co-receptors and co-stimulatory molecules, are spatially organized into the two-dimensional contact zone between T cells and APC, resulting in the formation of an immune synapse (IS). Here, we will review current implementations and applications of a cutting-edge biophysical technique, namely single-cell force spectroscopy (SCFS) that allows us to quantify mechanical forces of IS at APC/T cell-cell contact. The functional impacts of the mechanical strength in regulating T-cell functional activity will be discussed. We will also describe limitations of SCFS techniques, and outline recent investigations focusing on the functional roles of IS as mechanotransducer in regulating T-cell activities.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Sinapsis Inmunológicas/inmunología , Microscopía de Fuerza Atómica/métodos , Análisis de la Célula Individual/métodos , Análisis Espectral/métodos , Linfocitos T/inmunología , Animales , Comunicación Celular/inmunología , Humanos , Activación de Linfocitos , Mecanotransducción Celular/inmunología , Microscopía de Fuerza Atómica/tendencias
10.
Micron ; 43(12): 1211, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22421333

RESUMEN

It is now more than twenty-five years since the initial description of scanning probe microscopy and almost twenty years since the first commercial microscopes found their way into research labs. Currently, we are at a very interesting juncture, during which atomic force microscopy (AFM) is moving from basic research to successful applications in analytical biology and diagnostic medicine. Thus, the timing of this special issue on "Atomic Force Microscopy in Biology & Bionanomedicine", documenting this transition in AFM usage, could not be more appropriate; particularly given the increasing importance of AFM as new or improved methods, reagents, and instrumentation are developed to address outstanding biological questions.


Asunto(s)
Técnicas Citológicas/métodos , Microscopía de Fuerza Atómica/métodos , Investigación Biomédica/tendencias , Técnicas Citológicas/tendencias , Humanos , Microscopía de Fuerza Atómica/tendencias
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 28(2): 396-400, 2011 Apr.
Artículo en Chino | MEDLINE | ID: mdl-21604509

RESUMEN

This article introduces the basic theories about atomic force microscope (AFM) and electron microscope (EM), respectively. New applications of each microscopic technology in regenerative medicine, covering both material science and life science, are discussed. The advantages or disadvantages of the kinds of microscopes in working conditions, sample preparation, resolution and the like, are discussed and compared systematically to make clear each scope of applications. This could be a useful guide for selecting the appropriate microscopic analysis in research work about regenerative medicine.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica/métodos , Medicina Regenerativa/métodos , Humanos , Microscopía de Fuerza Atómica/tendencias , Microscopía Electrónica/tendencias , Medicina Regenerativa/tendencias
12.
Biofizika ; 56(2): 288-303, 2011.
Artículo en Ruso | MEDLINE | ID: mdl-21542359

RESUMEN

The advances of the method of atomic force microscopy for investigating the animal cells and an analysis of its development have been reviewed, with much attention being given to studies of living cells. The features and problems of the method have been considered, and a number of special methods based on the use of atomic force microscopy have been analyzed. The problems of choosing the geometry of probes for studies of animal cells, determination of cell adhesion on substrate, mapping of the cell surface using chemically modified cantilevers, and the distribution of molecular components inside the cell with the use of micro- and nanosurgical approaches have been discussed. The problems of combining the atomic force microscopy with optical and laser scanning confocal microscopy have been considered. Possible applications of the method in biotechnology and medicine are discussed.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Microscopía de Fuerza Atómica/tendencias , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ratones , Microscopía de Fuerza Atómica/instrumentación , Células 3T3 NIH , Células PC12 , Ratas
13.
Nanomedicine (Lond) ; 6(2): 395-403, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21385140

RESUMEN

Progress in nanomedicine relies on the development of advanced tools for imaging and manipulating biological systems on the nanoscale. Atomic force microscopy (AFM) techniques have emerged as a powerful platform for analyzing the structure, properties and functions of microbial pathogens. AFM imaging enables researchers to observe microbial cell walls in solution and at high resolution, and to monitor their remodeling upon interaction with drugs. In addition, single-molecule force spectroscopy analyzes the localization, mechanics and interactions of the individual cell wall constituents, thereby contributing to elucidate the molecular bases of cell adhesion (nanoadhesome) and mechanosensing (nanosensosome). In the future, AFM-based nanoscopy should have an important impact on nanomedicine, particularly for understanding microbe-drug and microbe-host interactions, and for developing new antimicrobial strategies.


Asunto(s)
Bacterias/ultraestructura , Hongos/ultraestructura , Microscopía de Fuerza Atómica/métodos , Nanomedicina/métodos , Nanotecnología/métodos , Animales , Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Interacciones Huésped-Patógeno , Humanos , Microscopía de Fuerza Atómica/tendencias , Nanomedicina/tendencias , Nanotecnología/tendencias
14.
Nat Chem ; 3(4): 273-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21430684

RESUMEN

Recently scanning probe microscopy has made tremendous progress in imaging organic molecules with high lateral resolution. Atoms and bonds within individual molecules have been clearly resolved, indicating the exciting potential of this technique for studying molecular structures, bonding within and between molecules, molecular conformational changes and chemical reactions at the single-molecule level. It turns out that the key step enabling such studies is an atomically controlled functionalization of the microscope tip. In this Perspective, the different techniques used for high-resolution molecular imaging, their implementations, advantages and limitations are described, and possible scientific areas of applications are discussed.


Asunto(s)
Microscopía de Sonda de Barrido/tendencias , Compuestos Orgánicos/química , Aleaciones/química , Anhídridos/química , Química Orgánica/métodos , Microscopía de Fuerza Atómica/métodos , Microscopía de Fuerza Atómica/tendencias , Microscopía de Sonda de Barrido/métodos , Microscopía de Túnel de Rastreo/métodos , Microscopía de Túnel de Rastreo/tendencias , Naftacenos/química , Perileno/análogos & derivados , Perileno/química , Porfirinas/química
16.
Adv Mater ; 23(4): 477-501, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21254251

RESUMEN

The current status and future prospects of non-contact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM) for studying insulating surfaces and thin insulating films in high resolution are discussed. The rapid development of these techniques and their use in combination with other scanning probe microscopy methods over the last few years has made them increasingly relevant for studying, controlling, and functionalizing the surfaces of many key materials. After introducing the instruments and the basic terminology associated with them, state-of-the-art experimental and theoretical studies of insulating surfaces and thin films are discussed, with specific focus on defects, atomic and molecular adsorbates, doping, and metallic nanoclusters. The latest achievements in atomic site-specific force spectroscopy and the identification of defects by crystal doping, work function, and surface charge imaging are reviewed and recent progress being made in high-resolution imaging in air and liquids is detailed. Finally, some of the key challenges for the future development of the considered fields are identified.


Asunto(s)
Microscopía de Fuerza Atómica/instrumentación , Microscopía de Fuerza Atómica/tendencias , Diseño de Equipo , Microscopía de Fuerza Atómica/métodos , Propiedades de Superficie
18.
Anal Bioanal Chem ; 397(3): 987-90, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20066528

RESUMEN

In the last few years, an array of novel technologies, especially the big family of scanning probe microscopy, now often integrated with other powerful imaging tools such as laser confocal microscopy and total internal reflection fluorescence microscopy, have been widely applied in the investigation of biomolecular interactions and dynamics. But it is still a great challenge to directly monitor the dynamics of biomolecular interactions with high spatial and temporal resolution in living cells. An innovative method termed "single-photon atomic force microscopy" (SP-AFM), superior to existing techniques in tracing biomolecular interactions and dynamics in vivo, was proposed on the basis of the combination of atomic force microscopy with the technologies of carbon nanotubes and single-photon detection. As a unique tool, SP-AFM, capable of simultaneous topography imaging and molecular identification at the subnanometer level by synchronous acquisitions and analyses of the surface topography and fluorescent optical signals while scanning the sample, could play a very important role in exploring biomolecular interactions and dynamics in living cells or in a complicated biomolecular background.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Microscopía de Fuerza Atómica/tendencias , Diseño de Equipo , Microscopía de Fuerza Atómica/instrumentación , Nanotubos de Carbono/química , Fotones , Proteínas/química
19.
Biochemistry ; 48(17): 3679-98, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19265434

RESUMEN

In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes for quinones to diffuse freely. Measurement of the intercomplex distances between adjacent LH2 rings of Phaeospirillum molischianum has permitted the first calculation of the separation of bacteriochlorophyll a molecules in the native ICM. A recent AFM analysis of the organization of green plant photosystem II (PSII) in grana thylakoids revealed the protruding oxygen-evolving complex, crowded together in parallel alignment at three distinct levels of stacked membranes over the lumenal surface. The results also confirmed that PSII-LHCII supercomplexes are displaced relative to one another in opposing grana membranes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/ultraestructura , Tilacoides/química , Tilacoides/ultraestructura , Microscopía de Fuerza Atómica/métodos , Microscopía de Fuerza Atómica/tendencias , Fotoquímica/métodos , Fotoquímica/tendencias , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/ultraestructura , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/ultraestructura , Proteobacteria/química , Proteobacteria/enzimología , Proteobacteria/ultraestructura , Tilacoides/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...