Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.379
Filtrar
1.
J Ethnopharmacol ; 330: 118232, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38670407

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY: The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS: We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS: In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% âˆ¼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 µM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION: This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.


Asunto(s)
Arbutina , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Arbutina/farmacocinética , Arbutina/farmacología , Espectrometría de Masas en Tándem/métodos , Animales , Humanos , Células CACO-2 , Masculino , Cromatografía Liquida/métodos , Ratas , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Unión Proteica , Sistema Enzimático del Citocromo P-450/metabolismo , Productos Biológicos/farmacocinética , Productos Biológicos/farmacología , Productos Biológicos/química , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Cromatografía Líquida con Espectrometría de Masas
2.
Xenobiotica ; 54(4): 211-216, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591142

RESUMEN

To uncover the effect of danshensu on irbesartan pharmacokinetics and its underlying mechanisms.To investigate the effect of danshensu on the pharmacokinetics of irbesartan, Sprague-Dawley rats (n = 6) were orally administered 30 mg/kg irbesartan alone (control group) or pre-treated with 160 mg/kg danshensu (experimental group). The effect of danshensu on the metabolic stability of irbesartan in RLMs was examined by LC-MS/MS method. The effect of danshensu on CYP2C9 activity was also determined.Danshensu markedly increased the AUC(0-t) (9573 ± 441 vs. 16157 ± 559 µg/L*h) and Cmax (821 ± 24 vs. 1231 ± 44 µg/L) of irbesartan. Danshensu prolonged the t1/2 (13.39 ± 0.98 vs. 16.04 ± 1.21 h) and decreased the clearance rate (2.27 ± 0.14 vs. 1.19 ± 0.10 L/h/kg) of irbesartan. Danshensu enhanced the metabolic stability of irbesartan in vitro with prolonged t1/2 (36.34 ± 11.68 vs. 48.62 ± 12.03 min) and reduced intrinsic clearance (38.14 ± 10.24 vs. 28.51 ± 9.06 µL/min/mg protein). Additionally, the IC50 value for CYP2C9 inhibition by danshensu was 35.74 µM.Danshensu enhanced systemic exposure of irbesartan by suppressing CYP2C9. The finding can also serve as a guidance for further investigation of danshensu-irbesartan interaction in clinical practice.


Asunto(s)
Interacciones Farmacológicas , Irbesartán , Lactatos , Ratas Sprague-Dawley , Irbesartán/farmacología , Animales , Lactatos/metabolismo , Ratas , Citocromo P-450 CYP2C9/metabolismo , Masculino , Compuestos de Bifenilo , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Espectrometría de Masas en Tándem , Tetrazoles/farmacocinética , Tetrazoles/farmacología
3.
Eur J Drug Metab Pharmacokinet ; 49(3): 343-353, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38472634

RESUMEN

BACKGROUND AND OBJECTIVE: In vitro glucuronidation of 17ß-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS: The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS: In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION: Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.


Asunto(s)
Dimetilsulfóxido , Estradiol , Etanol , Glucurónidos , Glucuronosiltransferasa , Microsomas Hepáticos , Solventes , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Estradiol/metabolismo , Estradiol/farmacología , Glucuronosiltransferasa/metabolismo , Humanos , Solventes/farmacología , Animales , Cinética , Etanol/metabolismo , Etanol/farmacología , Glucurónidos/metabolismo , Dimetilsulfóxido/farmacología , Metanol/farmacología , Metanol/metabolismo , Acetonitrilos/farmacología , Acetonitrilos/metabolismo
4.
Xenobiotica ; 54(4): 195-200, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385556

RESUMEN

To assess the effect of Rehmannioside A on CYP450s activity and to estimate its inhibitory properties.The effect of Rehmannioside A on the activity of major CYP450s in human liver microsomes (HLMs) was assessed with the corresponding substrates and marker reactions, and compared with a blank control and the respective inhibitors. Suppression of CYP3A4, 2C9 and 2D6 was assessed by the dose-dependent assay and fitted with non-competitive or competitive inhibition models. The inhibition of CYP3A4 was determined in a time-dependent manner.Rehmannioside A suppressed the activity of CYP3A4, 2C9, and 2D6 with IC50 values of 10.08, 12.62, and 16.43 µM, respectively. Suppression of CYP3A4 was fitted to a non-competitive model with Ki value of 5.08 µM, whereas CYP2C9 and 2D6 were fitted to a competitive model with Ki values of 6.25 and 8.14 µM. Additionally, the inhibitory effect on CYP3A4 was time-dependent with KI value of 8.47 µM-1 and a Kinact of 0.048 min-1.In vitro suppression of CYP3A, 2C9 and 2D6 by Rehmannioside A indicated that Rehmannioside A or its source herbs may interact with drugs metabolised by these CYP450s, which could guide the clinical application.


Asunto(s)
Citocromo P-450 CYP3A , Microsomas Hepáticos , Humanos , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP2D6/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología
5.
Pharmacol Res Perspect ; 10(3): e00958, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35599345

RESUMEN

Fenfluramine (FFA) has potent antiseizure activity in severe, pharmacoresistant childhood-onset developmental and epileptic encephalopathies (e.g., Dravet syndrome). To assess risk of drug interaction affecting pharmacokinetics of FFA and its major metabolite, norfenfluramine (nFFA), we conducted in vitro metabolite characterization, reaction phenotyping, and drug transporter-mediated cellular uptake studies. FFA showed low in vitro clearance in human liver S9 fractions and in intestinal S9 fractions in all three species tested (t1/2  > 120 min). Two metabolites (nFFA and an N-oxide or a hydroxylamine) were detected in human liver microsomes versus six in dog and seven in rat liver microsomes; no metabolite was unique to humans. Selective CYP inhibitor studies showed FFA metabolism partially inhibited by quinidine (CYP2D6, 48%), phencyclidine (CYP2B6, 42%), and furafylline (CYP1A2, 32%) and, to a lesser extent (<15%), by tienilic acid (CYP2C9), esomeprazole (CYP2C19), and troleandomycin (CYP3A4/5). Incubation of nFFA with rCYP1A2, rCYP2B6, rCYP2C19, and rCYP2D6 resulted in 10%-20% metabolism and no clear inhibition of nFFA metabolism by any CYP-selective inhibitor. Reaction phenotyping showed metabolism of FFA by recombinant human cytochrome P450 (rCYP) enzymes rCYP2B6 (10%-21% disappearance for 1 and 10 µM FFA, respectively), rCYP1A2 (22%-23%), rCYP2C19 (49%-50%), and rCYP2D6 (59%-97%). Neither FFA nor nFFA was a drug transporter substrate. Results show FFA metabolism to nFFA occurs through multiple pathways of elimination. FFA dose adjustments may be needed when administered with strong inhibitors or inducers of multiple enzymes involved in FFA metabolism (e.g., stiripentol).


Asunto(s)
Fenfluramina , Norfenfluramina , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Perros , Interacciones Farmacológicas , Fenfluramina/farmacología , Humanos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Norfenfluramina/farmacología , Ratas
6.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164027

RESUMEN

In this study, the phase I hepatic metabolism pathway of a cardiovascular drug nebivolol was proposed on the basis of a human liver microsomes assay with the use of LC-HR-MS coupled with the chemometric method. Six biotransformation products were found with the assistance of chemometric analysis. Five of them were identified as the previously reported products of alicyclic hydroxylation and dihydroxylation, aromatic hydroxylation, as well as alicyclic oxidation of the parent compound. Moreover, one metabolite, not reported so far, was found to be a product of N-dealkylation of nebivolol-2-amino-1-(6-fluoro-3,4-dihydro-2H-1-benzopyran-2-yl)ethan-1-ol. The novel metabolite was submitted to an in silico toxicity analysis to assess its biological properties. The applied computational methods indicated a significantly elevated risk of its mutagenic activity, compared to the parent molecule. Several metabolites of the nebivolol described in the literature were not detected in this study, indicating their non-hepatic origin.


Asunto(s)
Microsomas Hepáticos/metabolismo , Nebivolol/química , Nebivolol/metabolismo , Biotransformación/efectos de los fármacos , Quimiometría , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Nebivolol/análogos & derivados , Espectrometría de Masas en Tándem
7.
J Med Chem ; 65(3): 2571-2592, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35060744

RESUMEN

Peroxisome proliferator-activator receptors α/δ (PPARα/δ) are regarded as potential therapeutic targets for nonalcoholic steatohepatitis (NASH). However, PPARα/δ dual agonist GFT-505 exhibited poor anti-NASH effects in a phase III clinical trial, probably due to its weak PPARα/δ agonistic activity and poor metabolic stability. Other reported PPARα/δ dual agonists either exhibited limited potency or had unbalanced PPARα/δ agonistic activity. Herein, we report a series of novel triazolone derivatives as PPARα/δ dual agonists. Among them, compound H11 exhibited potent and well-balanced PPARα/δ agonistic activity (PPARα EC50 = 7.0 nM; PPARδ EC50 = 8.4 nM) and a high selectivity over PPARγ (PPARγ EC50 = 1316.1 nM) in PPAR transactivation assays. The crystal structure of PPARδ in complex with H11 revealed a unique PPARδ-agonist interaction. H11, which had excellent PK properties and a good safety profile, showed potent in vivo anti-NASH effects in preclinical models. Together, H11 holds a great promise for treating NASH or other inflammatory and fibrotic diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , PPAR alfa/agonistas , PPAR delta/agonistas , Triazoles/uso terapéutico , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Tetracloruro de Carbono , Diseño de Fármacos , Inflamación/tratamiento farmacológico , Inflamación/patología , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/metabolismo , PPAR delta/metabolismo , Ratas Sprague-Dawley , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/metabolismo , Triazoles/farmacocinética
8.
Molecules ; 27(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35056659

RESUMEN

PSTi8 is a pancreastatin inhibitory peptide that is effective in the treatment of diabetic models. This study investigates the pharmacokinetic (PK) properties of PSTi8 in Sprague Dawley rats, for the first time. In vitro and in vivo PK studies were performed to evaluate the solubility, stability in plasma and liver microsomes, plasma protein binding, blood-plasma partitioning, bioavailability, dose proportionality, and gender difference in PK. Samples were analyzed using the validated LC-MS/MS method. The solubility of PSTi8 was found to be 9.30 and 25.75 mg/mL in simulated gastric and intestinal fluids, respectively. The protein binding of PSTi8 was estimated as >69% in rat plasma. PSTi8 showed high stability in rat plasma and liver microsomes and the blood-plasma partitioning was >2. The bioavailability of PSTi8 after intraperitoneal and subcutaneous administration was found to be 95.00 ± 12.15 and 78.47 ± 17.72%, respectively, in rats. PSTi8 showed non-linear PK in dose proportionality studies, and has no gender difference in the PK behavior in rats. The high bioavailability of PSTi8 can be due to high water solubility and plasma protein binding, low clearance and volume of distribution. Our in vitro and in vivo findings support the development of PSTi8 as an antidiabetic agent.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Cromogranina A/antagonistas & inhibidores , Microsomas Hepáticos/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/farmacocinética , Animales , Disponibilidad Biológica , Femenino , Técnicas In Vitro , Masculino , Microsomas Hepáticos/efectos de los fármacos , Unión Proteica , Ratas , Ratas Sprague-Dawley , Distribución Tisular
9.
Toxicol Lett ; 357: 84-93, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35017030

RESUMEN

The association of herb medicine Cortex Dictamni (CD) with severe even fatal hepatotoxicity has been widely reported. Recently, we demonstrated that the metabolic activation of at least ten furanoids in CD was responsible for the liver injury caused by the ethanol extract of CD (ECD) in mice. Protein adduction by reactive metabolites is considered to initiate the process of liver injury. Unlike single chemicals, the mode of and the details of protein modification by multiple components in an herb is unclear. This study aimed to characterize protein adductions derived from the reactive metabolite of furanoids in ECD-treated mice and define the association of protein adduction with liver injury. The hepatic cysteine- and lysine-based protein adducts derived from epoxide or cis-enedione of at least six furanoids were identified in mice. The furanoids with an earlier serum content Tmax were mainly to bind with hepatic glutathione and no protein adducts were formed except for dictamnine. The hepatic proteins were modified by the later absorbed furanoids. The levels of hepatic protein adduct were correlated with the degree of liver injury. In addition, the reactive metabolites of different furanoids can simultaneously bind to the model peptide by the identical reactive moiety, indicating the additive effects of the individual furanoids in the modification of hepatic proteins. In conclusion, hepatic protein adduction by multiple furanoids may play a role in ECD-induced liver injury. The earlier absorbed furanoids were mainly to bind with glutathione whereas the hepatic proteins were modified by the later furanoids.


Asunto(s)
Dictamnus/química , Furanos/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Plantas Medicinales/toxicidad , Proteínas/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas , Cisteína/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/toxicidad , Etanol/química , Glutatión/metabolismo , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Extractos Vegetales/efectos adversos , Plantas Medicinales/química
10.
Chem Biol Interact ; 351: 109709, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34662569

RESUMEN

The selenocysteine-containing enzyme class deiodinases (DIO) consists of three isoforms. DIOs play a role in regulation of thyroid hormone (TH) signaling through the removal of iodide from TH leading to TH that interact with the hypothalamic-pituitary-thyroid (HPT) axis with differing potency. Some gold-containing organic substances are known to inhibit many selenoenzymes, including DIOs. It is, however, unclear whether the Au-containing substances or the Au ions are causing the inhibition. In this study, five organic and inorganic gold substances as well as three gold nanoparticles (AuNPs) were tested for their potential to inhibit DIO1. The enzyme activity was tested using human liver microsomes as an enzyme source and reverse T3 as a substrate; iodide release was measured by the Sandell-Kolthoff method. The three organic gold substances aurothioglucose, auranofin and sodium aurothiomalate inhibited DIO1 with IC50 between 0.38 and 0.75 µM while their structural analogues lacking the gold ion did not. Likewise, the two tested gold salts, Au(I) and Au(III) chloride, showed a concentration-dependent inhibition of the DIO1 with IC50 values of 0.95 and 0.57 µM. Further, AuNPs of different sizes (100, 30 and 5 nm diameter) were tested with only the 5 nm AuNPs leading to inhibition with an IC50 of 8 × 1014 AuNP/L. This inhibition was not caused by the Au ions released by the AuNP into the incubation media. The exact mechanism of inhibition of DIO1 by 5 nm AuNPs should be further examined. In conclusion, the microsomal DIO1 assay demonstrated the inhibition of DIO1 by gold ions originating from different gold-containing substances, but not by Au released from AuNPs; rather DIO1 is inhibited by 5 nm, but not larger, AuNPs.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Oro/farmacología , Yoduro Peroxidasa/antagonistas & inhibidores , Nanopartículas del Metal/química , Inhibidores Enzimáticos/química , Oro/química , Humanos , Microsomas Hepáticos/efectos de los fármacos , Tamaño de la Partícula
11.
Toxicol In Vitro ; 79: 105276, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34875353

RESUMEN

Aloe-emodin (AE) is a natural hydroxyanthraquinone derivative that was found in many medicinal plants and ethnic medicines. AE showed a wide array of pharmacological activities including anticancer, antifungal, laxative, antiviral, and antibacterial effects. However, increasing number of published studies have shown that AE may have some hepatotoxicity effects but the mechanism is not fully understood. Studies have shown that the liver injury induced by some free hydroxyanthraquinone compounds is associated with the inhibition of some metabolic enzymes. In this study, the CYP3A4 and CYP3A1 were found to be the main metabolic enzymes of AE in human and rat liver microsomes respectively. And AE was metabolized by liver microsomes to produce hydroxyl metabolites and rhein. When CYP3A4 was knocked down in L02 and HepaRG cells, the cytotoxicity of AE was increased significantly. Furthermore, AE increased the rates of apoptosis of L02 and HepaRG cells, accompanied by Ca2+ elevation, mitochondrial membrane potential (MMP) loss and reactive oxygen species (ROS) overproduction. The mRNA expression of heme oxygenase-1 in L02 and HepaRG cells increased significantly in the high-dose of AE (40 µmol/L) group, and the mRNA expression of quinone oxidoreductase-1 was activated by AE in all concentrations. Taken together, the inhibition of CYP3A4 enhances the hepatocyte injury of AE. AE can induce mitochondrial injury and the imbalance of oxidative stress of hepatocytes, which results in hepatocyte apoptosis.


Asunto(s)
Antraquinonas/toxicidad , Citocromo P-450 CYP3A/genética , Hepatocitos/efectos de los fármacos , Animales , Línea Celular , Citocromo P-450 CYP3A/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
12.
J Med Chem ; 65(2): 1567-1584, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34931844

RESUMEN

The serine/threonine kinase SGK1 is an activator of the ß-catenin pathway and a powerful stimulator of cartilage degradation that is found to be upregulated under genomic control in diseased osteoarthritic cartilage. Today, no oral disease-modifying treatments are available and chronic treatment in this indication sets high requirements for the drug selectivity, pharmacokinetic, and safety profile. We describe the identification of a highly selective druglike 1H-pyrazolo[3,4-d]pyrimidine SGK1 inhibitor 17a that matches both safety and pharmacokinetic requirements for oral dosing. Rational compound design was facilitated by a novel hSGK1 co-crystal structure, and multiple ligand-based computer models were applied to guide the chemical optimization of the compound ADMET and selectivity profiles. Compounds were selected for subchronic proof of mechanism studies in the mouse femoral head cartilage explant model, and compound 17a emerged as a druglike SGK1 inhibitor, with a highly optimized profile suitable for oral dosing as a novel, potentially disease-modifying agent for osteoarthritis.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Microsomas Hepáticos/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/química , Animales , Artritis Experimental/enzimología , Artritis Experimental/patología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoartritis/enzimología , Osteoartritis/patología , Inhibidores de Proteínas Quinasas/química , Ratas , Ratas Sprague-Dawley
13.
Biochem Pharmacol ; 197: 114887, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34968483

RESUMEN

Many drug oxidations and conjugations are mediated by a variety of cytochromes P450 (P450) and non-P450 enzymes in humans and non-human primates. These non-P450 enzymes include aldehyde oxidases (AOX), carboxylesterases (CES), flavin-containing monooxygenases (FMO), glutathione S-transferases (GST), arylamine N-acetyltransferases (NAT),sulfotransferases (SULT), and uridine 5'-diphospho-glucuronosyltransferases (UGT) and their substrates include both endobiotics and xenobiotics. Cynomolgus macaques (Macaca fascicularis, an Old-World monkey) are widely used in preclinical studies because of their genetic and physiological similarities to humans. However, many reports have indicated the usefulness of common marmosets (Callithrix jacchus, a New World monkey) as an alternative non-human primate model. Although knowledge of the drug-metabolizing properties of non-P450 enzymes in non-human primates is relatively limited, new research has started to provide an insight into the molecular characteristics of these enzymes in cynomolgus macaques and common marmosets. This mini-review provides collective information on the isoforms of non-P450 enzymes AOX, CES, FMO, GST, NAT, SULT, and UGT and their enzymatic profiles in cynomolgus macaques and common marmosets. In general, these non-P450 cynomolgus macaque and marmoset enzymes have high sequence identities and similar substrate recognitions to their human counterparts. However, these enzymes also exhibit some limited differences in function between species, just as P450 enzymes do, possibly due to small structural differences in amino acid residues. The findings summarized here provide a foundation for understanding the molecular mechanisms of polymorphic non-P450 enzymes and should contribute to the successful application of non-human primates as model animals for humans.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Modelos Animales , Preparaciones Farmacéuticas/metabolismo , Animales , Callithrix , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Macaca fascicularis , Oxidación-Reducción/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación
14.
Toxicol In Vitro ; 79: 105281, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34843882

RESUMEN

Hydroxygenkwanin (HGK), a natural flavonoid extracted from the buds of Daphne genkwa Sieb.et Zucc. (Thymelaeaceae), possesses a wide range of pharmacological activities, including anti-inflammatory, antibacterial and anticancer. However, the inhibitory effect of HGK on cytochrome P450 (CYP) remains unclear. This study investigated the potential inhibitory effects of HGK on CYP1A2, 2B1/6, 2C9/11, 2D1/6, 2E1 and 3A2/4 enzymes in human and rat liver microsomes (HLMs and RLMs) by the cocktail approach. HGK exhibited no time-dependent inhibition of CYP activities in HLMs and RLMs. Enzyme inhibition kinetics indicated that HGK was not only a competitive inhibitor of human CYP1A2 and 2C9, but also competitively inhibited rat CYP1A2 and 2C11 activities, with Ki value at 0.84 ± 0.03, 8.09 ± 0.44, 2.68 ± 0.32 and 8.35 ± 0.31 µM, respectively. Further studies showed that the inhibitory effect of HGK on CYP enzymes was weaker than that of diosmetin, which may be related to the substitution of hydroxyl and methoxy in the A and B rings of the flavone skeleton. Therefore, the low Ki values of HGK for CYP1A2 and 2C may lead to potential drug-drug interactions and toxicity.


Asunto(s)
Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Flavonoides/farmacología , Microsomas Hepáticos/efectos de los fármacos , Animales , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Interacciones Farmacológicas , Humanos , Isoenzimas , Cinética , Masculino , Ratas , Ratas Sprague-Dawley , Medición de Riesgo
15.
Biomed Pharmacother ; 146: 112513, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34915414

RESUMEN

The interactions of four sulfonylated Phe(3-Am)-derived inhibitors (MI-432, MI-463, MI-482 and MI-1900) of type II transmembrane serine proteases (TTSP) such as transmembrane protease serine 2 (TMPRSS2) were examined with serum albumin and cytochrome P450 (CYP) isoenzymes. Complex formation with albumin was investigated using fluorescence spectroscopy. Furthermore, microsomal hepatic CYP1A2, 2C9, 2C19 and 3A4 activities in presence of these inhibitors were determined using fluorometric assays. The inhibitory effects of these compounds on human recombinant CYP3A4 enzyme were also examined. In addition, microsomal stability assays (60-min long) were performed using an UPLC-MS/MS method to determine depletion percentage values of each compound. The inhibitors showed no or only weak interactions with albumin, and did not inhibit CYP1A2, 2C9 and 2C19. However, the compounds tested proved to be potent inhibitors of CYP3A4 in both assays performed. Within one hour, 20%, 12%, 14% and 25% of inhibitors MI-432, MI-463, MI-482 and MI-1900, respectively, were degraded. As essential host cell factor for the replication of the pandemic SARS-CoV-2, the TTSP TMPRSS2 emerged as an important target in drug design. Our study provides further preclinical data on the characterization of this type of inhibitors for numerous trypsin-like serine proteases.


Asunto(s)
Antivirales/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores de Proteasas/metabolismo , Serina Endopeptidasas/metabolismo , Albúmina Sérica Humana/metabolismo , Antivirales/análisis , Antivirales/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Isoenzimas/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Inhibidores de Proteasas/análisis , Inhibidores de Proteasas/farmacología , Unión Proteica/fisiología , Serina Endopeptidasas/análisis , Espectrometría de Fluorescencia/métodos , Espectrometría de Masas en Tándem/métodos
16.
Chem Biol Interact ; 352: 109775, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34910929

RESUMEN

Vicagrel, an antiplatelet drug candidate targeting platelet P2Y12 receptor and has finished its phase II clinical trial. The inhibition of six major cytochrome P450 enzymes (P450) (CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six UDP-glucuronosyltransferases (UGT) (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) by vicagrel was evaluated using pooled human liver microsomes and specific probe substrates. Physiology-based pharmacokinetic (PBPK) simulation was further applied to predict the in vivo drug-drug interaction (DDI) potential between vicagrel and bupropion as well as S-mephenytoin. The results suggested that vicagrel inhibited CYP2B6 and CYP2C19 potently with apparent IC50 values of 1.6 and 2.0 µM, respectively. In terms of mode of reversible inhibition, vicagrel exhibited mixed-type inhibition of CYP2B6-catalyzed bupropion hydroxylation and noncompetitive inhibition of CYP2C19-mediated S-mephenytoin 4'-hydroxylation with Ki values of 0.19 µM and 1.2 µM, respectively. Vicagrel displayed profound time-dependent inhibition towards CYP2B6 with maximal rate constant of inactivation (kinact) and half-maximal inactivator concentration (KI) values of 0.062 min-1 and 1.52 µM, respectively. No time-dependent inhibition by vicagrel was noted for CYP2C19. For UGT, negligible to moderate inhibition by vicagrel was observed with IC50 values of >50.0, >50.0, 28.2, 8.7, >50.0 and 28.2 µM for UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7, respectively. In terms of mode of reversible inhibition, vicagrel exhibited mixed-type inhibition of UGT1A6-catalyzed N-Acetylserotonin ß-D-glucuronidation with a Ki value of 5.6 µM. No time-dependent inhibition by vicagrel was noted for UGT1A6. PBPK simulation indicated that neither altered AUC nor Cmax of bupropion and S-mephenytoin was observed in the presence of vicagrel. Our study provides inhibitory constants for future DDI prediction between vicagrel and drug substrates of CYP2B6, CYP2C19 and UGT1A6. In addition, our simulation suggests the lack of clinically important DDI between vicagrel and bupropion or S-mephenytoin.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Fenilacetatos/farmacología , Tiofenos/farmacología , Bupropión/administración & dosificación , Bupropión/farmacocinética , Simulación por Computador , Citocromo P-450 CYP2B6/metabolismo , Inhibidores del Citocromo P-450 CYP2B6/administración & dosificación , Inhibidores del Citocromo P-450 CYP2B6/farmacología , Citocromo P-450 CYP2C19/metabolismo , Inhibidores del Citocromo P-450 CYP2C19/administración & dosificación , Inhibidores del Citocromo P-450 CYP2C19/farmacología , Inhibidores Enzimáticos del Citocromo P-450/administración & dosificación , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Glucuronosiltransferasa/metabolismo , Humanos , Técnicas In Vitro , Cinética , Mefenitoína/administración & dosificación , Mefenitoína/farmacocinética , Fenilacetatos/administración & dosificación , Inhibidores de Agregación Plaquetaria/administración & dosificación , Inhibidores de Agregación Plaquetaria/farmacología , Tiofenos/administración & dosificación
17.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884510

RESUMEN

The zebrafish (Danio rerio) embryo is gaining interest as a bridging tool between in-vitro and in-vivo developmental toxicity studies. However, cytochrome P450 (CYP)-mediated drug metabolism in this model is still under debate. Therefore, we investigated the potential of zebrafish embryos and larvae to bioactivate two known anti-epileptics, carbamazepine (CBZ) and phenytoin (PHE), to carbamazepine-10,11-epoxide (E-CBZ) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH), respectively. First, zebrafish were exposed to CBZ, PHE, E-CBZ and HPPH from 5»- to 120-h post fertilization (hpf) and morphologically evaluated. Second, the formations of E-CBZ and HPPH were assessed in culture medium and in whole-embryo extracts at different time points by targeted LC-MS. Finally, E-CBZ and HPPH formation was also assessed in adult zebrafish liver microsomes and compared with those of human, rat, and rabbit. The present study showed teratogenic effects for CBZ and PHE, but not for E-CBZ and HPPH. No HPPH was detected during organogenesis and E-CBZ was only formed at the end of organogenesis. E-CBZ and HPPH formation was also very low-to-negligible in adult zebrafish compared with the mammalian species. As such, other metabolic pathways than those of mammals are involved in the bioactivation of CBZ and PHE, or, these anti-epileptics are teratogens and do not require bioactivation in the zebrafish.


Asunto(s)
Anticonvulsivantes/toxicidad , Biotransformación , Embrión no Mamífero/patología , Desarrollo Embrionario , Larva/crecimiento & desarrollo , Microsomas Hepáticos/patología , Organogénesis , Animales , Embrión no Mamífero/efectos de los fármacos , Humanos , Larva/efectos de los fármacos , Microsomas Hepáticos/efectos de los fármacos , Conejos , Ratas , Ratas Sprague-Dawley , Teratógenos/toxicidad , Pez Cebra
18.
Bull Exp Biol Med ; 172(2): 133-136, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34853965

RESUMEN

We analyzed changes in activities of enzymes of phases I and II of xenobiotic biotransformation and parameters of NO metabolism in liver microsomes of rats with toxic CCl4-induced hepatitis after a 14-day course of sesquiterpene lactones from Artemisia leucodes (10 mg/kg). It was found that toxic hepatitis was associated with significant inhibition of NADPH-cytochrome c-reductase, benzo(a)pyrene hydroxylase, and NADPH-diaphorase, reduced cytochrome P-450 content, and enhanced induction of nitrate/nitrite reductase with accumulation of NO metabolites in the liver. Administration of sesquiterpene lactones stimulated activity of the studied components of the cytochrome P-450 system and promoted recovery of the NOergic system components; the effects were most pronounced in 7 and 14 days after treatment.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Lactonas/farmacología , Microsomas Hepáticos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Óxido Nítrico/metabolismo , Animales , Animales no Consanguíneos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Sistema Enzimático del Citocromo P-450/metabolismo , Citoprotección/efectos de los fármacos , Lactonas/uso terapéutico , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Fitoquímicos/farmacología , Ratas , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico
19.
Biochem Pharmacol ; 194: 114824, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748821

RESUMEN

Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Difenilamina/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Antiinflamatorios no Esteroideos/toxicidad , Difenilamina/toxicidad , Humanos , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología
20.
J Med Chem ; 64(23): 17259-17276, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34818007

RESUMEN

Polypharmaceutical regimens often impair treatment of patients with metabolic syndrome (MetS), a complex disease cluster, including obesity, hypertension, heart disease, and type II diabetes. Simultaneous targeting of soluble epoxide hydrolase (sEH) and peroxisome proliferator-activated receptor γ (PPARγ) synergistically counteracted MetS in various in vivo models, and dual sEH inhibitors/PPARγ agonists hold great potential to reduce the problems associated with polypharmacy in the context of MetS. However, full activation of PPARγ leads to fluid retention associated with edema and weight gain, while partial PPARγ agonists do not have these drawbacks. In this study, we designed a dual partial PPARγ agonist/sEH inhibitor using a structure-guided approach. Exhaustive structure-activity relationship studies lead to the successful optimization of the designed lead. Crystal structures of one representative compound with both targets revealed potential points for optimization. The optimized compounds exhibited favorable metabolic stability, toxicity, selectivity, and desirable activity in adipocytes and macrophages.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , PPAR gamma/agonistas , Animales , Cristalografía por Rayos X , Células HEK293 , Humanos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Polifarmacia , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...