Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301889

RESUMEN

Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.


Asunto(s)
Aciltransferasas , Cardiolipinas , Oxidorreductasas , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa , Aciltransferasas/genética , Aciltransferasas/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Calcio/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Oxidorreductasas/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Animales , Ratones , Técnicas de Inactivación de Genes , Unión Proteica
2.
FEBS J ; 290(8): 2165-2179, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36453802

RESUMEN

Cancer cells, when exposed to the hypoxic tumour microenvironment, respond by activating hypoxia-inducible factors (HIFs). HIF-1 mediates extensive metabolic re-programming, and expression of HIF-1α, its oxygen-regulated subunit, is associated with poor prognosis in cancer. Here we analyse the role of pyruvate dehydrogenase phosphatase 1 (PDP1) in the regulation of HIF-1 activity. PDP1 is a key hormone-regulated metabolic enzyme that dephosphorylates and activates pyruvate dehydrogenase (PDH), thereby stimulating the conversion of pyruvate into acetyl-CoA. Silencing of PDP1 down-regulated HIF transcriptional activity and the expression of HIF-dependent genes, including that of PDK1, the kinase that phosphorylates and inactivates PDH, opposing the effects of PDP1. Inversely, PDP1 stimulation enhanced HIF activity under hypoxia. Alteration of PDP1 levels or activity did not have an effect on HIF-1α protein levels, nuclear accumulation or interaction with its partners ARNT and NPM1. However, depletion of PDP-1 decreased histone H3 acetylation of HIF-1 target gene promoters and inhibited binding of HIF-1 to the respective hypoxia-response elements (HREs) under hypoxia. Furthermore, the decrease of HIF transcriptional activity upon PDP1 depletion could be reversed by treating the cells with acetate, as an exogenous source of acetyl-CoA, or the histone deacetylase (HDAC) inhibitor trichostatin A. These data suggest that the PDP1/PDH/HIF-1/PDK1 axis is part of a homeostatic loop which, under hypoxia, preserves cellular acetyl-CoA production to a level sufficient to sustain chromatin acetylation and transcription of hypoxia-inducible genes.


Asunto(s)
Histonas , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa , Humanos , Acetilcoenzima A/metabolismo , Acetilación , Hipoxia de la Célula/genética , Histonas/genética , Histonas/metabolismo , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Factor 1 Inducible por Hipoxia
3.
Am J Hum Genet ; 108(4): 583-596, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798444

RESUMEN

The contribution of genome structural variation (SV) to quantitative traits associated with cardiometabolic diseases remains largely unknown. Here, we present the results of a study examining genetic association between SVs and cardiometabolic traits in the Finnish population. We used sensitive methods to identify and genotype 129,166 high-confidence SVs from deep whole-genome sequencing (WGS) data of 4,848 individuals. We tested the 64,572 common and low-frequency SVs for association with 116 quantitative traits and tested candidate associations using exome sequencing and array genotype data from an additional 15,205 individuals. We discovered 31 genome-wide significant associations at 15 loci, including 2 loci at which SVs have strong phenotypic effects: (1) a deletion of the ALB promoter that is greatly enriched in the Finnish population and causes decreased serum albumin level in carriers (p = 1.47 × 10-54) and is also associated with increased levels of total cholesterol (p = 1.22 × 10-28) and 14 additional cholesterol-related traits, and (2) a multi-allelic copy number variant (CNV) at PDPR that is strongly associated with pyruvate (p = 4.81 × 10-21) and alanine (p = 6.14 × 10-12) levels and resides within a structurally complex genomic region that has accumulated many rearrangements over evolutionary time. We also confirmed six previously reported associations, including five led by stronger signals in single nucleotide variants (SNVs) and one linking recurrent HP gene deletion and cholesterol levels (p = 6.24 × 10-10), which was also found to be strongly associated with increased glycoprotein level (p = 3.53 × 10-35). Our study confirms that integrating SVs in trait-mapping studies will expand our knowledge of genetic factors underlying disease risk.


Asunto(s)
Enfermedades Cardiovasculares/genética , Variación Estructural del Genoma/genética , Alelos , Colesterol/sangre , Variaciones en el Número de Copia de ADN/genética , Femenino , Finlandia , Genoma Humano/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Proteínas Mitocondriales/genética , Regiones Promotoras Genéticas/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Ácido Pirúvico/metabolismo , Albúmina Sérica Humana/genética
4.
Sci Rep ; 10(1): 3930, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32127618

RESUMEN

A splice site mutation in the canine pyruvate dehydrogenase kinase 4 (PDK4) gene has been shown to be associated with the development of dilated cardiomyopathy (DCM) in Doberman Pinchers (DPs). Subsequent studies have successfully demonstrated the use of dermal fibroblasts isolated from DPs as models for PDK4 deficiency and have shown activation of the intrinsic (mitochondrial mediated) apoptosis pathway in these cells under starvation conditions. For this study, we sought to further explore the functional consequences of PDK4 deficiency in DP fibroblasts representing PDK4wt/wt, PDK4wt/del, and PDK4del/del genotypes. Our results show that starvation conditions cause increased perinuclear localization of mitochondria and decreased cell proliferation, altered expression levels of pyruvate dehydrogenase phosphatase (PDP) and pyruvate dehydrogenase (PDH), dramatically increased PDH activity, and an impaired response to mitochondrial stress in affected cells. In sum, these results show the broad impact of PDK4 deficiency and reveal mechanistic pathways used by these cells in an attempt to compensate for the condition. Our data help to elucidate the mechanisms at play in this extremely prevalent DP disorder and provide further support demonstrating the general importance of metabolic flexibility in cell health.


Asunto(s)
Fibroblastos/enzimología , Proteínas Quinasas/deficiencia , Western Blotting , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Microscopía Fluorescente , Consumo de Oxígeno/genética , Consumo de Oxígeno/fisiología , Fosforilación/genética , Fosforilación/fisiología , Proteínas Quinasas/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158614, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31927141

RESUMEN

The review focuses on the role of vitamin A (retinol) in the control of energy homeostasis, and on the manner in which certain retinoids subvert this process, leading potentially to disease. In eukaryotic cells, the pyruvate dehydrogenase complex (PDHC) is negatively regulated by four pyruvate dehydrogenase kinases (PDKs) and two antagonistically acting pyruvate dehydrogenase phosphatases (PDPs). The second isoform, PDK2, is regulated by an autonomous mitochondrial signal cascade that is anchored on protein kinase Cδ (PKCδ), where retinoids play an indispensible co-factor role. Along with its companion proteins p66Shc, cytochrome c, and vitamin A, the PKCδ/retinol complex is located in the intermembrane space of mitochondria. At this site, and in contrast to cytosolic locations, PKCδ is activated by the site-specific oxidation of its cysteine-rich activation domain (CRD) that is configured into a complex RING-finger. Oxidation involves the transfer of electrons from cysteine moieties to oxidized cytochrome c, a step catalyzed by vitamin A. The PKCδ/retinol signalosome monitors the internal cytochrome c redox state that reflects the workload of the respiratory chain. Upon sensing demands for energy PKCδ signals the PDHC to increase glucose-derived fuel flux entering the KREBS cycle. Conversely, if excessive fuel flux surpasses the capacity of the respiratory chain, threatening the release of damaging reactive oxygen species (ROS), the polarity of the cytochrome c redox system is reversed, resulting in the chemical reduction of the PKCδ CRD, restoration of the RING-finger, refolding of PKCδ into the inactive, globular form, and curtailment of PDHC output, thereby constraining the respiratory capacity within safe margins. Several retinoids, notably anhydroretinol and fenretinide, capable of displacing retinol from binding sites on PKCδ, can co-activate PKCδ signaling but, owing to their extended system of conjugated double bonds, are unable to silence PKCδ in a timely manner. Left in the ON position, PKCδ causes chronic overload of the respiratory chain leading to mitochondrial dysfunction. This review explores how defects in the PKCδ signal machinery potentially contribute to metabolic and degenerative diseases.


Asunto(s)
Metabolismo Energético/genética , Mitocondrias/genética , Proteína Quinasa C-delta/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Glucosa/metabolismo , Homeostasis/genética , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Proteína Quinasa C-delta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Vitamina A/genética , Vitamina A/metabolismo
6.
Toxicol Lett ; 286: 48-53, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29357290

RESUMEN

There have been many concerns about the possible adverse effects of thyroid hormone-disrupting chemicals in the environment. Because thyroid hormones are essential for regulating the growth and differentiation of many tissues, disruption of thyroid hormones during the neonatal period of an organism might lead to permanent effects on that organism. We postulated that there are target genes that are sensitive to thyroid hormones particularly during the neonatal period and that would thus be susceptible to thyroid hormone-disrupting chemicals. Global gene expression analysis was used to identify these genes in the liver of rat neonates. The changes in hepatic gene expression were examined 24 h after administering 1.0, 10, and 100 ng/g body weight (bw) triiodothyronine (T3) to male rats on postnatal day 3. Thirteen upregulated and four downregulated genes were identified in the neonatal liver. Among these, Pdp2 and Slc25a25 were found to be upregulated and more sensitive to T3 than the others, whereas Cyp7b1 and Hdc were found to be downregulated even at the lowest dose of 1.0 ng/g bw T3. Interestingly, when the responses of gene expression to T3 were examined in adult rats (8-week old), one-third of them did not respond to T3. The environmental chemicals with thyroid hormone-like activity, hydroxylated polybrominated diphenyl ethers, were then administered to neonatal rats to examine the effects on expression of the identified genes. The results showed that these chemicals were indeed capable of changing the expression of Slc25a25 and Hdc. Our results demonstrated a series of hepatic T3-responsive genes that are more sensitive to hormones during the neonatal period than during adulthood. These genes might be the potential targets of thyroid hormone-disrupting chemicals in newborns.


Asunto(s)
Disruptores Endocrinos/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Triyodotironina/farmacología , Animales , Animales Recién Nacidos , Familia 7 del Citocromo P450/genética , Familia 7 del Citocromo P450/metabolismo , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica/métodos , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Hígado/metabolismo , Masculino , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Ratas Endogámicas F344 , Medición de Riesgo , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo
7.
J Hypertens ; 36(2): 306-318, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28858979

RESUMEN

OBJECTIVE: Preeclampsia is a severe pregnancy-specific syndrome defined as newly onset hypertension and proteinuria. Abnormal placental development has been generally accepted as the initial cause of the disorder. Recently, miR-195 was identified as one of the downregulated small RNAs in preeclamptic placentas. METHODS: The potential targets of miR-195 in human trophoblast cells were screened by isobaric tags for relative and absolute quantification-based mass spectrum analysis. Localization of miR-195 and its targets was examined by in-situ hybridization and immunohistochemistry in human placenta. Real-time PCR, western blotting and luciferase assay were used for target validation. Apoptosis was accessed by Annexin V/PI costaining, whereas mitochondrial function by ATP measurement and tetramethylrhodamine ethyl ester fluorescence. RESULTS: Two mitochondria-associated proteins, flavin adenine dinucleotide-dependent oxidoreductase domain-containing protein 1 (FOXRED1) and pyruvate dehydrogenase phosphatase regulatory subunit (PDPR), were identified as targets of miR-195. Overexpression of miR-195 in HTR8/SVneo cells resulted in enhanced apoptosis, decreased mitochondrial membrane potential and cellular ATP content upon hydrogen peroxide stimulation. The effects could be partially rescued by FOXRED1 or PDPR. In preeclamptic patients, lowered circulating level of miR-195 were found at early-to-mid gestation and term pregnancy, and marked increase in FOXRED1 and PDPR expression were observed in the placenta when compared with gestational week-matched controls. In addition, chronic hydrogen peroxide stimuli suppressed miR-195 expression in trophoblast cells. CONCLUSION: MiR-195 could suppress mitochondrial energy production via targeting FOXRED1 and PDPR, and lead to trophoblast cell apoptosis under oxidative stress. In preeclamptic placenta, lowered level of miR-195 might be induced by chorionic oxidative stress and subsequently form a compensation mechanism to defend the disturbed energy production and cell apoptosis upon oxidative stress.


Asunto(s)
Metabolismo Energético , MicroARNs/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Preeclampsia/sangre , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Trofoblastos/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Apoptosis , Línea Celular , Femenino , Edad Gestacional , Humanos , Peróxido de Hidrógeno/farmacología , Potencial de la Membrana Mitocondrial , MicroARNs/sangre , MicroARNs/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Oxidantes/farmacología , Estrés Oxidativo , Placenta/metabolismo , Preeclampsia/genética , Embarazo , Tercer Trimestre del Embarazo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Adulto Joven
8.
Cancer Lett ; 394: 13-21, 2017 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-28235541

RESUMEN

A limited number of studies have indicated an association of the mitotic kinase polo-like kinase 1 (PLK1) and cellular metabolism. Here, employing an inducible RNA interference approach in A375 melanoma cells coupled with a PCR array and multiple validation approaches, we demonstrated that PLK1 alters a number of genes associated with cellular metabolism. PLK1 knockdown resulted in a significant downregulation of IDH1, PDP2 and PCK1 and upregulation of FBP1. Ingenuity Pathway Analysis (IPA) identified that 1) glycolysis and the pentose phosphate pathway are major canonical pathways associated with PLK1, and 2) PLK1 inhibition-modulated genes were largely associated with cellular proliferation, with FBP1 being the key modulator. Further, BI 6727-mediated inhibition of PLK1 caused a decrease in PCK1 and increase in FBP1 in A375 melanoma cell implanted xenografts in vivo. Furthermore, an inverse correlation between PLK1 and FBP1 was found in melanoma cells, with FBP1 expression significantly downregulated in a panel of melanoma cells. In addition, BI 6727 treatment resulted in an upregulation in FBP1 in A375, Hs294T and G361 melanoma cells. Overall, our study suggests that PLK1 may be an important regulator of metabolism maintenance in melanoma cells.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético , Técnicas de Silenciamiento del Gen , Melanoma/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Neoplasias Cutáneas/enzimología , Animales , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Melanoma/genética , Melanoma/patología , Ratones , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Transfección , Carga Tumoral , Quinasa Tipo Polo 1
9.
Med Sci Sports Exerc ; 48(12): 2387-2397, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27846149

RESUMEN

PURPOSE: Whole body insulin sensitivity (Si) typically improves after aerobic exercise training; however, individual responses can be highly variable. The purpose of this study was to use global gene expression to identify skeletal muscle genes that correlate with exercise-induced Si changes. METHODS: Longitudinal cohorts from the Studies of Targeted Risk Reduction Intervention through Defined Exercise were used as Discovery (Affymetrix) and Confirmation (Illumina) of vastus lateralis gene expression profiles. Discovery (n = 39; 21 men) and Confirmation (n = 42; 19 men) cohorts were matched for age (52 ± 8 vs 51 ± 10 yr), body mass index (30.4 ± 2.8 vs 29.7 ± 2.8 kg·m), and V˙O2max (30.4 ± 2.8 vs 29.7 ± 2.8 mL·kg·min). Si was determined via intravenous glucose tolerance test pretraining and posttraining. Pearson product-moment correlation coefficients determined relationships between a) baseline and b) training-induced changes in gene expression and %ΔSi after training. RESULTS: Expression of 2454 (Discovery) and 1778 genes (Confirmation) at baseline were significantly (P < 0.05) correlated to %ΔSi; 112 genes overlapped. Pathway analyses identified Ca signaling-related transcripts in this 112-gene list. Expression changes of 1384 (Discovery) and 1288 genes (Confirmation) after training were significantly (P < 0.05) correlated to %ΔSi; 33 genes overlapped, representing contractile apparatus of skeletal and smooth muscle genes. Pyruvate dehydrogenase phosphatase regulatory subunit expression at baseline (P = 0.01, r = 0.41) and posttraining (P = 0.01, r = 0.43) were both correlated with %ΔSi. CONCLUSIONS: Exercise-induced adaptations in skeletal muscle Si are related to baseline levels of Ca-regulating transcripts, which may prime the muscle for adaptation. Relationships between %ΔSi and pyruvate dehydrogenase phosphatase regulatory, a regulatory subunit of the pyruvate dehydrogenase complex, indicate that the Si response is strongly related to key steps in metabolic regulation.


Asunto(s)
Ejercicio Físico/fisiología , Expresión Génica , Resistencia a la Insulina/fisiología , Músculo Esquelético/enzimología , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Señalización del Calcio , Enfermedades Cardiovasculares/prevención & control , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Factores de Riesgo , Conducta Sedentaria
10.
J Biol Chem ; 291(3): 1514-28, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26601949

RESUMEN

Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.


Asunto(s)
Calcitriol/metabolismo , Regulación de la Expresión Génica , Mitocondrias Musculares/metabolismo , Dinámicas Mitocondriales , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Receptores de Calcitriol/agonistas , Calcitriol/análogos & derivados , Células Cultivadas , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , MicroARNs/agonistas , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Mitocondrias Musculares/enzimología , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Interferencia de ARN , Receptores de Calcitriol/antagonistas & inhibidores , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
11.
J Clin Invest ; 125(4): 1579-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25798621

RESUMEN

Metabolic reprogramming is implicated in macrophage activation, but the underlying mechanisms are poorly understood. Here, we demonstrate that the NOTCH1 pathway dictates activation of M1 phenotypes in isolated mouse hepatic macrophages (HMacs) and in a murine macrophage cell line by coupling transcriptional upregulation of M1 genes with metabolic upregulation of mitochondrial oxidative phosphorylation and ROS (mtROS) to augment induction of M1 genes. Enhanced mitochondrial glucose oxidation was achieved by increased recruitment of the NOTCH1 intracellular domain (NICD1) to nuclear and mitochondrial genes that encode respiratory chain components and by NOTCH-dependent induction of pyruvate dehydrogenase phosphatase 1 (Pdp1) expression, pyruvate dehydrogenase activity, and glucose flux to the TCA cycle. As such, inhibition of the NOTCH pathway or Pdp1 knockdown abrogated glucose oxidation, mtROS, and M1 gene expression. Conditional NOTCH1 deficiency in the myeloid lineage attenuated HMac M1 activation and inflammation in a murine model of alcoholic steatohepatitis and markedly reduced lethality following endotoxin-mediated fulminant hepatitis in mice. In vivo monocyte tracking further demonstrated the requirement of NOTCH1 for the migration of blood monocytes into the liver and subsequent M1 differentiation. Together, these results reveal that NOTCH1 promotes reprogramming of mitochondrial metabolism for M1 macrophage activation.


Asunto(s)
Inflamación/inmunología , Activación de Macrófagos/fisiología , Mitocondrias/metabolismo , Receptor Notch1/fisiología , Transducción de Señal/fisiología , Animales , Línea Celular , Transporte de Electrón/genética , Endotoxemia/complicaciones , Hígado Graso Alcohólico/inmunología , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/patología , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Glucosa/metabolismo , Inflamación/metabolismo , Fallo Hepático Agudo/etiología , Fallo Hepático Agudo/inmunología , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/patología , Activación de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Células Mieloides/patología , Óxido Nítrico/metabolismo , Fosforilación Oxidativa , Estructura Terciaria de Proteína , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/antagonistas & inhibidores , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Notch1/deficiencia , Transcripción Genética , Regulación hacia Arriba
12.
J Biol Chem ; 289(31): 21413-22, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24962578

RESUMEN

Many cancer cells rely more on aerobic glycolysis (the Warburg effect) than mitochondrial oxidative phosphorylation and catabolize glucose at a high rate. Such a metabolic switch is suggested to be due in part to functional attenuation of mitochondria in cancer cells. However, how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. We previously reported that tyrosine phosphorylation activates and inhibits mitochondrial pyruvate dehydrogenase kinase (PDK) and phosphatase (PDP), respectively, leading to enhanced inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) and consequently inhibition of pyruvate dehydrogenase complex (PDC) in cancer cells. In particular, Tyr-381 phosphorylation of PDP1 dissociates deacetylase SIRT3 and recruits acetyltransferase ACAT1 to PDC, resulting in increased inhibitory lysine acetylation of PDHA1 and PDP1. Here we report that phosphorylation at another tyrosine residue, Tyr-94, inhibits PDP1 by reducing the binding ability of PDP1 to lipoic acid, which is covalently attached to the L2 domain of dihydrolipoyl acetyltransferase (E2) to recruit PDP1 to PDC. We found that multiple oncogenic tyrosine kinases directly phosphorylated PDP1 at Tyr-94, and Tyr-94 phosphorylation of PDP1 was common in diverse human cancer cells and primary leukemia cells from patients. Moreover, expression of a phosphorylation-deficient PDP1 Y94F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at different tyrosine residues inhibits PDP1 through independent mechanisms, which act in concert to regulate PDC activity and promote the Warburg effect.


Asunto(s)
División Celular , Neoplasias/patología , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/antagonistas & inhibidores , Tirosina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Humanos , Ácido Láctico/metabolismo , Datos de Secuencia Molecular , Neoplasias/enzimología , Consumo de Oxígeno , Fosforilación , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/química , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Homología de Secuencia de Aminoácido
13.
Neurosci Lett ; 525(2): 140-5, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22884618

RESUMEN

Cerebral pyruvate depletion and lactate acidosis are common metabolic characteristics of patients with traumatic brain injury (TBI) and are associated with poor prognosis. Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme coupling glycolysis to mitochondrial tricarboxylic acid (TCA) cycle. Brain PDH activity is regulated by its phosphorylation status and other effectors. Phosphorylation of PDH E1α1 subunit by PDH kinase inhibits PDH activity while dephosphorylation of phosphorylated PDHE1α1 by PDH phosphatase (PDP1) restores PDH activity. In situ hybridization showed that PDP1 mRNA is highly expressed in the cerebral cortex, hippocampus and thalamus of rat. Controlled cortical impact (CCI) induced a significant increase in PDP1 mRNA expression in ipsilateral cerebral cortex at 4 h (P<0.05) and 24 h post CCI (P<0.01) that returned to basal level 72 h post CCI. PDP1 mRNA level increased transiently in ipsilateral hippocampal dentate gyrus and CA1-3 subfields 4 h post CCI (P<0.01) but decreased significantly 24 h and 72 h (P<0.01) post CCI, coinciding with a marked increase in neuronal apoptosis in ipsilateral hippocampus 24 h post CCI. PDP1 mRNA expression in thalamus and other subcortical regions decreased persistently post CCI. Contralateral CCI and craniotomy showed similar effects on PDP1 mRNA expression as ipsilateral CCI. Because GFAP mRNA expression was induced in brain regions where PDP1 expression was altered, further study should determine the potential relationship between astrocyte activation, PDP1 alteration, and pyruvate metabolism following TBI.


Asunto(s)
Lesiones Encefálicas/enzimología , Corteza Cerebral/enzimología , Hipocampo/enzimología , Hiperglucemia/enzimología , Hipoglucemia/enzimología , Neuronas/enzimología , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , ARN Mensajero/metabolismo , Tálamo/enzimología , Animales , Apoptosis , Biomarcadores/metabolismo , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Hipocampo/patología , Hiperglucemia/etiología , Hipoglucemia/etiología , Hibridación in Situ , Masculino , Neuronas/patología , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Ratas , Ratas Sprague-Dawley
14.
Exp Neurol ; 234(1): 31-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22193111

RESUMEN

Dysregulated glucose metabolism and energy deficit is a characteristic of severe traumatic brain injury (TBI) but its mechanism remains to be fully elucidated. Phosphorylation of pyruvate dehydrogenase (PDH) is the rate-limiting mitochondria enzyme reaction coupling glycolysis to the tricarboxylic acid cycle. Phosphorylation of PDH E1α1 subunit catalyzed by PDH kinase (PDK) inhibits PDH activity, effectively decoupling aerobic glycolysis whereas dephosphorylation of phosphorylated PDHE1α1 by PDH phosphatase (PDP) restores PDH activity. We recently reported altered expression and phosphorylation of pyruvate dehydrogenase (PDH) following TBI. However, little is known about PDK and PDP involvement. We determined PDK (PDK1-4) and PDP isoenzyme (PDP1-2) mRNA and protein expression in rat brain using immunohistochemistry and in situ hybridization techniques. We also quantified PDK and PDP mRNA and protein levels in rat brain following TBI using quantitative real-time PCR and Western blot, respectively. Controlled cortical impact-induced TBI (CCI-TBI) and craniotomy significantly enhanced PDK1-2 isoenzyme mRNA expression level but significantly suppressed PDP1 and PDK4 mRNA expression after the injury (4h to 7days). CCI-TBI and craniotomy also significantly increased PDK1-4 isoenzyme protein expression but suppressed PDP1-2 protein expression in rat brain. In summary, the divergent changes between PDK and PDP expression indicate imbalance between PDK and PDP activities that would favor increased PDHE1α1 phosphorylation and enzyme inhibition contributing to impaired oxidative glucose metabolism in TBI as well as craniotomy.


Asunto(s)
Lesiones Encefálicas/patología , Encéfalo/enzimología , Corteza Cerebral/patología , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Análisis de Varianza , Animales , Lesiones Encefálicas/etiología , Craneotomía/efectos adversos , Lateralidad Funcional , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Piruvatos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
15.
J Appl Physiol (1985) ; 111(3): 751-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21680880

RESUMEN

To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), six healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an oral glucose tolerance test (OGTT) and a one-legged knee extensor exercise bout [45 min at 60% maximal load (W(max))] with muscle biopsies obtained from vastus lateralis before, immediately after exercise, and at 3 h of recovery. Blood samples were taken from the femoral vein and artery before and after 40 min of exercise. Glucose intake elicited a larger (P ≤ 0.05) insulin response after bed rest than before, indicating glucose intolerance. There were no differences in lactate release/uptake across the exercising muscle before and after bed rest, but glucose uptake after 40 min of exercise was larger (P ≤ 0.05) before bed rest than after. Muscle glycogen content tended to be higher (0.05< P ≤ 0.10) after bed rest than before, but muscle glycogen breakdown in response to exercise was similar before and after bed rest. PDH-E1α protein content did not change in response to bed rest or in response to the exercise intervention. Exercise increased (P ≤ 0.05) the activity of PDH in the active form (PDHa) and induced (P ≤ 0.05) dephosphorylation of PDH-E1α on Ser²9³, Ser²95 and Ser³°°, with no difference before and after bed rest. In conclusion, although 7 days of bed rest induced whole body glucose intolerance, exercise-induced PDH regulation in skeletal muscle was not changed. This suggests that exercise-induced PDH regulation in skeletal muscle is maintained in glucose-intolerant (e.g., insulin resistant) individuals.


Asunto(s)
Reposo en Cama , Ejercicio Físico , Contracción Muscular , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Músculo Cuádriceps/enzimología , Adulto , Biopsia , Glucemia/metabolismo , Activación Enzimática , Prueba de Esfuerzo , Regulación Enzimológica de la Expresión Génica , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ácido Láctico/sangre , Masculino , Consumo de Oxígeno , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Mensajero/metabolismo , Serina , Factores de Tiempo , Adulto Joven
16.
PLoS Genet ; 7(4): e1001377, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21533078

RESUMEN

The insulin/IGF-1 signaling (IIS) pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase), AGE-1 (PI 3-kinase), and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-ß signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-ß signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-ß signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Longevidad/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Receptor de Insulina/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica , Insulina/metabolismo , Mutación , Fenotipo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Interferencia de ARN , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal
17.
J Trauma ; 67(3): 628-33, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19741411

RESUMEN

BACKGROUND: The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl CoA, effectively controlling the entrance of glycolysis products into aerobic metabolism. Because hyperlactatemia is one of the hallmarks of sepsis, we hyphothesized that gram-positive and negative bacterial toxin treatment will interfere with mRNA levels of regulatory enzymes of the PDC and overall enzyme activity in hepatocytes. METHODS: HEP G2 hepatocarcinoma cells were incubated for 24 hours in the presence of lipopolysaccaride (LPS) or lipoteichoic acid. Total RNA was then isolated and message RNA levels for both pyruvate dehydrogense kinase 4 and phosphatase 2 were determined by RTPCR. Amplified DNA fragments were visualized by ethidium bromide in agarose gels and densitometry of the bands was performed. Data were then normalized to the housekeeping gene, GAPDH. Enzyme activity was then determined by capturing intact PDC on nitrocellulose membranes then determining PDC-dependent production of NADH. RESULTS: LPS treatment led to a time dependent increase in PDK4 message while decreasing PDP2 levels. Enzyme activity, in these cells, also significantly decreased 24 hours after exposure to LPS. Cells cultured in the presence of lipoteichoic acid and insulin exhibited differing message ratios and activity levels when evaluated at 4 hours, but at 24 hours shifted to mimic those observed in LPS treated cells. CONCLUSION: This data may indicate that exposure to bacterial cell wall components and insulin could create cellular environments that result in a build-up of lactate.


Asunto(s)
Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hipoglucemiantes/farmacología , Insulina/farmacología , Lipopolisacáridos/farmacología , Complejo Piruvato Deshidrogenasa/efectos de los fármacos , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , ARN Mensajero/metabolismo
18.
Endocr J ; 56(8): 1019-30, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19706989

RESUMEN

Both glucocorticoid and insulin are known to have an anabolic effect on lipogenesis. The glycolytic pathway is a part of the lipogenic pathway in the liver, and glycolytic enzymes mediate the conversion from glucose to pyruvate, and pyruvate dehydrogenase complex (PDC) mediates the conversion from pyruvate to acetyl-CoA, the activity of which is regulated by pyruvate dehydrogenase kinases (PDKs) and phosphatases (PDPs). In this study, we surveyed the effects of glucocorticoid, insulin, and forskolin (used as a surrogate of glucagon) on the transcriptional activity of glucokinase (GK), phosphofructokinase-1 (PFK1), liver-type pyruvate kinase (LPK), and all the PDKs/PDPs isoform genes. We found that both glucocorticoid and insulin had positive effects on PFK1 and LPK, whereas on GK the two hormones showed the opposite effect. Regarding the PDKs/PDPs, glucocorticoid significantly stimulated the transcriptional activity of all PDKs, among which the effect on PDK4 was the most prominent. Insulin alone had minimal effects on PDKs, but dampened the positive effects of glucocorticoid. On PDPs, glucocorticoid and forskolin showed negative effects, whereas insulin had positive effects; insulin and glucocorticoid/forskolin antagonized each other. Altogether, our data suggest that both glucocorticoid and insulin have lipogenic effects through positive effects on PFK1 and LPK expression. However, glucocorticoid antagonizes the effect of insulin at the level of GK to maintain glucose homeostasis and that of PDKs/PDPs to facilitate gluconeogenesis. Glucagon may also enhance gluconeogenesis by inhibiting PDPs.


Asunto(s)
Glucólisis/efectos de los fármacos , Glucólisis/genética , Hormonas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Células Cultivadas , Colforsina/farmacología , Dexametasona/administración & dosificación , Dexametasona/farmacología , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Enzimas/genética , Enzimas/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/administración & dosificación , Glucocorticoides/farmacología , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Humanos , Insulina/administración & dosificación , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
19.
Hum Genet ; 125(3): 319-26, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19184109

RESUMEN

Pyruvate dehydrogenase phosphatase deficiency has previously only been confirmed at the molecular level in two brothers and two breeds of dog with exercise intolerance. A female patient, who died at 6 months, presented with lactic acidemia in the neonatal period with serum lactate levels ranging from 2.5 to 17 mM. Failure of dichloroacetate to activate the PDH complex in skin fibroblasts was evident, but not in early passages. A homozygous c.277G > T (p.E93X) nonsense mutation in the PDP1 gene was identified in genomic DNA and immunoblotting showed a complete absence of PDP1 protein in mitochondria. Native PDHC activity could be restored by the addition of either recombinant PDP1 or PDP2. This highlights the role of PDP2, the second phosphatase isoform, in PDP1-deficient patients for the first time. We conclude that the severity of the clinical course associated with PDP1 deficiency can be quite variable depending on the exact nature of the molecular defect.


Asunto(s)
Codón sin Sentido , Genes Letales , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/deficiencia , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Acidosis Láctica/sangre , Acidosis Láctica/enzimología , Acidosis Láctica/genética , Acidosis Láctica/patología , Animales , Secuencia de Bases , Encéfalo/patología , Células Cultivadas , Consanguinidad , Cartilla de ADN/genética , Enfermedades de los Perros/enzimología , Enfermedades de los Perros/genética , Perros , Femenino , Fibroblastos/enzimología , Homocigoto , Humanos , Lactante , Isoenzimas/deficiencia , Isoenzimas/metabolismo , Ácido Láctico/sangre , Imagen por Resonancia Magnética , Masculino , Fenotipo
20.
J Mol Biol ; 370(3): 417-26, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17532339

RESUMEN

Pyruvate dehydrogenase phosphatase 1 (PDP1) catalyzes dephosphorylation of pyruvate dehydrogenase (E1) in the mammalian pyruvate dehydrogenase complex (PDC), whose activity is regulated by the phosphorylation-dephosphorylation cycle by the corresponding protein kinases (PDHKs) and phosphatases. The activity of PDP1 is greatly enhanced through Ca2+ -dependent binding of the catalytic subunit (PDP1c) to the L2 (inner lipoyl) domain of dihydrolipoyl acetyltransferase (E2), which is also integrated in PDC. Here, we report the crystal structure of the rat PDP1c at 1.8 A resolution. The structure reveals that PDP1 belongs to the PPM family of protein serine/threonine phosphatases, which, in spite of a low level of sequence identity, share the structural core consisting of the central beta-sandwich flanked on both sides by loops and alpha-helices. Consistent with the previous studies, two well-fixed magnesium ions are coordinated by five active site residues and five water molecules in the PDP1c catalytic center. Structural analysis indicates that, while the central portion of the PDP1c molecule is highly conserved among the members of the PPM protein family, a number of structural insertions and deletions located at the periphery of PDP1c likely define its functional specificity towards the PDC. One notable feature of PDP1c is a long insertion (residues 98-151) forming a unique hydrophobic pocket on the surface that likely accommodates the lipoyl moiety of the E2 domain in a fashion similar to that of PDHKs. The cavity, however, appears more open than in PDHK, suggesting that its closure may be required to achieve tight, specific binding of the lipoic acid. We propose a mechanism in which the closure of the lipoic acid binding site is triggered by the formation of the intermolecular (PDP1c/L2) Ca2+ binding site in a manner reminiscent of the Ca2+ -induced closure of the regulatory domain of troponin C.


Asunto(s)
Isoenzimas/química , Estructura Terciaria de Proteína , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos , Proteína Fosfatasa 1 , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Ratas , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...