Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576089

RESUMEN

SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Uridina/uso terapéutico , Niño , Preescolar , Femenino , Crecimiento y Desarrollo/efectos de los fármacos , Humanos , Lactante , Recién Nacido , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mutantes/metabolismo , Transporte de Proteínas/efectos de los fármacos , Tirotropina/metabolismo , Uridina/farmacología
2.
J Pediatr Endocrinol Metab ; 34(2): 261-266, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33544541

RESUMEN

OBJECTIVES: Biallelic mutations in the SLC25A19 gene impair the function of the thiamine mitochondrial carrier, leading to two distinct clinical phenotypes. Homozygosity for the c.530G > C mutation is invariably associated to Amish lethal microcephaly. The second phenotype, reported only in 8 patients homozygous for different non-Amish mutations (c.373G > A, c.580T > C, c.910G > A, c.869T > A, c.576G > C), is characterized by bilateral striatal necrosis and peripheral polyneuropathy. We report a new patient with the non-Amish SLC25A19 phenotype showing compound heterozygosity for the new variant c.673G > A and the known mutation c.373G > A. CASE PRESENTATION: The natural history of non-Amish SLC25A19 deficiency is characterized by acute episodes of fever-induced encephalopathy accompanied by isolated lactic acidosis and Leigh-like features at magnetic resonance imaging (MRI). Acute episodes are prevented by high-dose thiamine treatment (600 mg/day). As shown in the new case, both mild clinical signs and basal ganglia involvement can precede the acute encephalopathic onset of the disease, potentially allowing treatment anticipation and prevention of acute brain damage. Peripheral axonal neuropathy, observed in 7 out of 9 patients, is not improved by thiamine therapy. In two early treated patients, however, peripheral neuropathy did not occur even on long-term follow-up, suggesting a potential preventive role of treatment anticipation also at the peripheral level. CONCLUSIONS: Non-Amish SLC25A19 deficiency is an extra-rare cause of Leigh syndrome responsive to thiamine treatment. Ex adiuvantibus thiamine treatment is mandatory in any patient with Leigh-like features.


Asunto(s)
Encefalopatías/patología , Cuerpo Estriado/patología , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Mutación , Necrosis , Fenotipo , Polineuropatías/patología , Encefalopatías/complicaciones , Humanos , Lactante , Masculino , Proteínas de Transporte de Membrana Mitocondrial/genética , Polineuropatías/complicaciones , Pronóstico
3.
Neuropathol Appl Neurobiol ; 47(6): 840-855, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33428302

RESUMEN

AIMS: MICU1 encodes the gatekeeper of the mitochondrial Ca2+ uniporter, MICU1 and biallelic loss-of-function mutations cause a complex, neuromuscular disorder in children. Although the role of the protein is well understood, the precise molecular pathophysiology leading to this neuropaediatric phenotype has not been fully elucidated. Here we aimed to obtain novel insights into MICU1 pathophysiology. METHODS: Molecular genetic studies along with proteomic profiling, electron-, light- and Coherent anti-Stokes Raman scattering microscopy and immuno-based studies of protein abundances and Ca2+ transport studies were employed to examine the pathophysiology of MICU1 deficiency in humans. RESULTS: We describe two patients carrying MICU1 mutations, two nonsense (c.52C>T; p.(Arg18*) and c.553C>T; p.(Arg185*)) and an intragenic exon 2-deletion presenting with ataxia, developmental delay and early onset myopathy, clinodactyly, attention deficits, insomnia and impaired cognitive pain perception. Muscle biopsies revealed signs of dystrophy and neurogenic atrophy, severe mitochondrial perturbations, altered Golgi structure, vacuoles and altered lipid homeostasis. Comparative mitochondrial Ca2+ transport and proteomic studies on lymphoblastoid cells revealed that the [Ca2+ ] threshold and the cooperative activation of mitochondrial Ca2+ uptake were lost in MICU1-deficient cells and that 39 proteins were altered in abundance. Several of those proteins are linked to mitochondrial dysfunction and/or perturbed Ca2+ homeostasis, also impacting on regular cytoskeleton (affecting Spectrin) and Golgi architecture, as well as cellular survival mechanisms. CONCLUSIONS: Our findings (i) link dysregulation of mitochondrial Ca2+ uptake with muscle pathology (including perturbed lipid homeostasis and ER-Golgi morphology), (ii) support the concept of a functional interplay of ER-Golgi and mitochondria in lipid homeostasis and (iii) reveal the vulnerability of the cellular proteome as part of the MICU1-related pathophysiology.


Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Calcio/metabolismo , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/genética , Enfermedades Musculares/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Enfermedades Musculares/patología , Proteómica
4.
Eur J Med Genet ; 64(1): 104120, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33278652

RESUMEN

Complex I deficiency is the most common pediatric mitochondrial disease. It can cause a wide range of clinical disorders, including Leigh syndrome. TIMMDC1 encodes an assembly protein of complex I and has been recently associated with early onset mitochondrial disease in three unrelated families. In all three families the same homozygous deep intronic variant was identified leading to inclusion of a new exon resulting in a frameshift and premature stop codon (c.596 + 2146A > G, p.Gly199_Thr200ins5*). Herein, we describe two brothers of Dutch descent, presenting in infancy with hypotonia and respiratory insufficiency and a rapidly progressive and fatal disease course. Laboratory findings and metabolic investigations revealed no specific abnormalities, notably no raised plasma lactate. MRI showed transient lesions in the basal ganglia of brother 1. A muscle biopsy demonstrated complex I deficiency in brother 2. Exome sequencing yielded a novel heterozygous TIMMDC1 variant: c.385C > T, p.(Arg129*). Targeted sequencing revealed the previously published deep intronic variant c.596 + 2146A > G, p.(Gly199_Thr200ins5*) on the second allele which is not detected by exome sequencing. In summary, we present the fourth family with TIMMDC1-related disease, with a novel nonsense variant. This report illustrates the importance of considering mitochondrial disease even when laboratory findings are normal, and the added value of targeted sequencing of introns.


Asunto(s)
Enfermedades Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Fenotipo , Ganglios Basales/diagnóstico por imagen , Codón sin Sentido , Diagnóstico Tardío , Heterocigoto , Humanos , Lactante , Intrones , Ácido Láctico/sangre , Masculino , Enfermedades Mitocondriales/diagnóstico , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Linaje
5.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207633

RESUMEN

Mitochondrial [Ca2+] plays an important role in the regulation of mitochondrial function, controlling ATP production and apoptosis triggered by mitochondrial Ca2+ overload. This regulation depends on Ca2+ entry into the mitochondria during cell activation processes, which is thought to occur through the mitochondrial Ca2+ uniporter (MCU). Here, we have studied the mitochondrial Ca2+ dynamics in control and MCU-defective C. elegans worms in vivo, by using worms expressing mitochondrially-targeted YC3.60 yellow cameleon in pharynx muscle. Our data show that the small mitochondrial Ca2+ oscillations that occur during normal physiological activity of the pharynx were very similar in both control and MCU-defective worms, except for some kinetic differences that could mostly be explained by changes in neuronal stimulation of the pharynx. However, direct pharynx muscle stimulation with carbachol triggered a large and prolonged increase in mitochondrial [Ca2+] that was much larger in control worms than in MCU-defective worms. This suggests that MCU is necessary for the fast mitochondrial Ca2+ uptake induced by large cell stimulations. However, low-amplitude mitochondrial Ca2+ oscillations occurring under more physiological conditions are independent of the MCU and use a different Ca2+ pathway.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/metabolismo , Señalización del Calcio , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Animales , Animales Modificados Genéticamente/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
6.
J Immunol Res ; 2020: 8340329, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851100

RESUMEN

Accumulating evidence has pointed out that metastasis is the leading cause of death in several malignant tumor, including CRC. During CRC, metastatic capacity is closely correlated with reprogrammed energy metabolism. Mitochondrial Pyruvate Carrier 1 (MPC1), as the carrier of transporting pyruvate into mitochondria, linked the glycolysis and TCA cycle, which would affect the energy production. However, the specific role of MPC1 on tumor metastasis in CRC remains unexplored. Here, by data mining of genes involved in pyruvate metabolism using the TCGA dataset, we found that MPC1 was significantly downregulated in CRC compared to nontumor tissues. Similar MPC1 expression pattern was also found in multiple GEO datasets. IHC staining in both human sample and AOM/DSS induced mouse CRC model revealed significant downregulation of MPC1. What is more, we found that MPC1 expression was gradually decreased in normal tissue, primary CRC, and metastasis CRC. Additionally, poor prognosis emerged in the MPC1 low expression patients, especially in patients with metastasis. Following, functional tests showed that MPC1 overexpression inhibited the motility of CRC cells in vitro and MPC1 silencing enhanced liver metastases in vivo. Furthermore, we uncovered that decreased MPC1 activated the Wnt/ß-catenin pathway by promoting nuclear translocation of ß-catenin to mediate the expression of MMP7, E-cadherin, Snail1, and myc. Collectively, our data suggest that MPC1 has the potential to be served as a promising biomarker for diagnosis and a therapeutic target in CRC.


Asunto(s)
Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Neoplasias Hepáticas/secundario , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos/deficiencia , beta Catenina/metabolismo , Adulto , Anciano , Biomarcadores , Línea Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Bases de Datos Genéticas , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Transporte de Proteínas , Carga Tumoral , Vía de Señalización Wnt
7.
Cell Rep ; 30(9): 2889-2899.e6, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130894

RESUMEN

Metabolic pathways regulate T cell development and function, but many remain understudied. Recently, the mitochondrial pyruvate carrier (MPC) was identified as the transporter that mediates pyruvate entry into mitochondria, promoting pyruvate oxidation. Here we find that deleting Mpc1, an obligate MPC subunit, in the hematopoietic system results in a specific reduction in peripheral αß T cell numbers. MPC1-deficient T cells have defective thymic development at the ß-selection, intermediate single positive (ISP)-to-double-positive (DP), and positive selection steps. We find that early thymocytes deficient in MPC1 display alterations to multiple pathways involved in T cell development. This results in preferred escape of more activated T cells. Finally, mice with hematopoietic deletion of Mpc1 are more susceptible to experimental autoimmune encephalomyelitis. Altogether, our study demonstrates that pyruvate oxidation by T cell precursors is necessary for optimal αß T cell development and that its deficiency results in reduced but activated peripheral T cell populations.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Homeostasis , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Linfocitos T/metabolismo , Timo/crecimiento & desarrollo , Timo/metabolismo , Animales , Proteínas de Transporte de Anión/deficiencia , Eliminación de Gen , Glucólisis , Hematopoyesis , Humanos , Inflamación/patología , Células Jurkat , Recuento de Linfocitos , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos/deficiencia , Oxidación-Reducción , Fosforilación Oxidativa , Ácido Pirúvico/metabolismo , Timocitos/metabolismo
8.
Cell Rep ; 29(5): 1274-1286.e6, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665639

RESUMEN

Muscle function is regulated by Ca2+, which mediates excitation-contraction coupling, energy metabolism, adaptation to exercise, and sarcolemmal repair. Several of these actions rely on Ca2+ delivery to the mitochondrial matrix via the mitochondrial Ca2+ uniporter, the pore of which is formed by mitochondrial calcium uniporter (MCU). MCU's gatekeeping and cooperative activation are controlled by MICU1. Loss-of-protein mutation in MICU1 causes a neuromuscular disease. To determine the mechanisms underlying the muscle impairments, we used MICU1 patient cells and skeletal muscle-specific MICU1 knockout mice. Both these models show a lower threshold for MCU-mediated Ca2+ uptake. Lack of MICU1 is associated with impaired mitochondrial Ca2+ uptake during excitation-contraction, aerobic metabolism impairment, muscle weakness, fatigue, and myofiber damage during physical activity. MICU1 deficit compromises mitochondrial Ca2+ uptake during sarcolemmal injury, which causes ineffective repair of the damaged myofibers. Thus, dysregulation of mitochondrial Ca2+ uptake hampers myofiber contractile function, likely through energy metabolism and membrane repair.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Debilidad Muscular/metabolismo , Sarcolema/patología , Síndrome Debilitante/metabolismo , Adolescente , Adulto , Animales , Señalización del Calcio , Proteínas de Unión al Calcio/deficiencia , Proteínas de Transporte de Catión/deficiencia , Membrana Celular/metabolismo , Citosol/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Homeostasis , Humanos , Masculino , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Modelos Biológicos , Contracción Muscular , Debilidad Muscular/complicaciones , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Atrofia Muscular/complicaciones , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Sarcolema/metabolismo , Tétanos , Síndrome Debilitante/complicaciones , Síndrome Debilitante/patología
9.
Biochem Pharmacol ; 167: 116-124, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31326434

RESUMEN

Poly(ADP-ribose) glycohydrolase (Parg) is a central enzyme for poly(ADP-ribose) degradation. We established a Parg+/- mice strain by deletion of a part of exon 1 and around 0.4-kb upstream of sequences of the Parg gene. Parg-/- embryos obtained by intercrossing the Parg+/- mice died in utero between 4.5 and 9.5 days postcoitum. We examined whether poly(ADP-ribose) polymerase-1 (Parp-1) deficiency could rescue embryonic lethality of Parg-/- mice. Parg-/-Parp-1-/- mice were born viable at a reduced frequency from the expected mendelian ratio in the intercross progeny of Parg+/-Parp-1-/- mice. The results suggest a possibility that the presence of Parp-1 is responsible for the lethality of Parg-/- embryos, and Parg molecules or Parg activity degrading poly(ADP-ribose) might be important for embryogenesis. In Parg-/-Parp-1-/- mice, Parg protein was not detected in various tissues, and the protein level of Timm23, a 5'-upstream gene of Parg, was reduced compared with that in Parg+/+Parp-1-/- mice. Parg-/-Parp-1-/- mice showed retarded growth compared with Parg+/+Parp-1-/- mice, and died within 3 months of age accompanied with severe renal failure. Glomerular sclerosis, tubular dilatation, and hyaline casts in the kidney were observed in Parg-/-Parp-1-/- mice. An increase in blood urea nitrogen (p < 0.05), a marked increase of albumin level in urine (p < 0.01) and its concomitant decrease in serum (p < 0.05) were also detected in Parg-/-Parp-1-/- mice compared with the Parg+/+Parp-1-/- counterpart. The results imply that the combined Parg and Parp-1 loss with a hypomorphic state of Timm23 leads to the development of severe renal failure.


Asunto(s)
Glicósido Hidrolasas/deficiencia , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Poli(ADP-Ribosa) Polimerasa-1/deficiencia , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Animales , Técnicas de Cocultivo , Glicósido Hidrolasas/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Poli(ADP-Ribosa) Polimerasa-1/genética , Insuficiencia Renal/genética
10.
Elife ; 82019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31305240

RESUMEN

Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of modulating muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.


Asunto(s)
Glucosa/metabolismo , Redes y Vías Metabólicas , Mitocondrias Musculares/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Delgadez , Adiposidad , Animales , Proteínas de Transporte de Anión/deficiencia , Eliminación de Gen , Lactatos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos/deficiencia , Fuerza Muscular
11.
Sci Rep ; 9(1): 4179, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862943

RESUMEN

Previous studies using citrin/mitochondrial glycerol-3-phosphate (G3P) dehydrogenase (mGPD) double-knockout mice have demonstrated that increased dietary protein reduces the extent of carbohydrate-induced hyperammonemia observed in these mice. This study aimed to further elucidate the mechanisms of this effect. Specific amino acids were initially found to decrease hepatic G3P, or increase aspartate or citrulline levels, in mGPD-knockout mice administered ethanol. Unexpectedly, oral glycine increased ammonia in addition to lowering G3P and increasing citrulline. Subsequently, simultaneous glycine-plus-sucrose (Gly + Suc) administration led to a more severe hyperammonemic state in double-KO mice compared to sucrose alone. Oral arginine, ornithine, aspartate, alanine, glutamate and medium-chain triglycerides all lowered blood ammonia following Gly + Suc administration, with combinations of ornithine-plus-aspartate (Orn + Asp) or ornithine-plus-alanine (Orn + Ala) suppressing levels similar to wild-type. Liver perfusion and portal vein-arterial amino acid differences suggest that oral aspartate, similar to alanine, likely activated ureagenesis from ammonia and lowered the cytosolic NADH/NAD+ ratio through conversion to alanine in the small intestine. In conclusion, Gly + Suc administration induces a more severe hyperammonemic state in double-KO mice that Orn + Asp or Orn + Ala both effectively suppress. Aspartate-to-alanine conversion in the small intestine allows for effective oral administration of either, demonstrating a pivotal role of inter-organ aspartate metabolism for the treatment of citrin deficiency.


Asunto(s)
Ácido Aspártico/metabolismo , Citrulinemia/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Especificidad de Órganos , Aminoácidos/sangre , Aminoácidos/farmacología , Amoníaco/sangre , Cloruro de Amonio/metabolismo , Animales , Citrulina/farmacología , Modelos Animales de Enfermedad , Glicerolfosfato Deshidrogenasa/metabolismo , Hiperamonemia/sangre , Intestino Delgado/metabolismo , Lactatos/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ornitina/farmacología , Perfusión , Vena Porta/metabolismo , Ácido Pirúvico/metabolismo , Urea/metabolismo
12.
Cell Death Dis ; 10(3): 148, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770798

RESUMEN

Mitochondrial pyruvate carrier 1 (MPC1), a key factor that controls pyruvate transportation in the mitochondria, is known to be frequently dysregulated in tumor initiation and progression. However, the clinical relevance and potential molecular mechanisms of MPC1 in lung adenocarcinoma (LAC) progression remain to be illustrated. Herein, MPC1 was lowly expressed in LAC tissues and significantly associated with favorable survival of patients with LAC. Functionally, MPC1 markedly suppressed stemness, invasion, and migration in vitro and spreading growth of LAC cells in vivo. Further study revealed that MPC1 could interact with mitochondrial signal transducer and activator of transcription 3 (mito-STAT3), disrupting the distribution of STAT3 and reducing cytoplasmic signal transducer and activator of transcription 3 (cyto-STAT3) as well as its phosphorylation, while the activation of cyto-STAT3 by IL-6 reversed the attenuated malignant progression in MPC1-overexpression LAC cells. Collectively, we reveal that MPC1/STAT3 axis plays an important role in the progression of LAC, and our work may promote the development of new therapeutic strategies for LAC.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Progresión de la Enfermedad , Neoplasias Pulmonares/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos/deficiencia , Factor de Transcripción STAT3/metabolismo , Células A549 , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/patología , Animales , Movimiento Celular/genética , Estudios de Cohortes , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Invasividad Neoplásica/genética , Tasa de Supervivencia , Transfección , Carga Tumoral/genética
13.
Cell Death Dis ; 9(11): 1122, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405116

RESUMEN

Mitochondria are the prime energy source in most eukaryotic cells, but these highly dynamic organelles are also involved in a multitude of cellular events. Disruption of mitochondrial homeostasis and the subsequent mitochondrial dysfunction plays a key role in the pathophysiology of Parkinson's disease (PD). Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for neuronal survival. Here, we have studied the mitochondrial protein import system in in vitro and in vivo models of PD. Complex I inhibition, a characteristic pathological hallmark in PD, impaired mitochondrial protein import, which was associated with a downregulation of two key components of the system: translocase of the outer membrane 20 (TOM20) and translocase of the inner membrane 23 (TIM23), both in vitro and in vivo. In vitro, those changes were associated with OXPHOS protein downregulation, accumulation of aggregated proteins inside mitochondria and downregulation of mitochondrial chaperones. Most of these pathogenic changes, including mitochondrial dysfunction and dopaminergic cell death, were abrogated by TOM20 or TIM23 overexpression, in vitro. However, in vivo, while TOM20 overexpression exacerbated neurodegeneration in both substantia nigra (SN) pars compacta (pc) and striatum, overexpression of TIM23 partially protected dopaminergic neurons in the SNpc. These results highlight mitochondrial protein import dysfunction and the distinct role of two of their components in the pathogenesis of PD and suggest the need for future studies to further characterize mitochondrial protein import deficit in the context of PD.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Proteínas de Transporte de Membrana/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Enfermedad de Parkinson/genética , Trastornos Parkinsonianos/genética , Receptores de Superficie Celular/genética , Animales , Línea Celular Tumoral , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Complejo I de Transporte de Electrón/deficiencia , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas de Transporte de Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Neuronas/metabolismo , Neuronas/patología , Fosforilación Oxidativa , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Agregado de Proteínas , Transporte de Proteínas , Receptores de Superficie Celular/deficiencia , Transducción de Señal
15.
J Biol Chem ; 293(5): 1666-1675, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29180450

RESUMEN

It has been suggested that voltage-dependent anion channels (VDACs) control the release of superoxide from mitochondria. We have previously shown that reactive oxygen species (ROS) such as superoxide (O2̇̄) and hydrogen peroxide (H2O2) stimulate epithelial sodium channels (ENaCs) in sodium-transporting epithelial tissue, including cortical collecting duct (CCD) principal cells. Therefore, we hypothesized that VDACs could regulate ENaC by modulating cytosolic ROS levels. Herein, we find that VDAC3-knockout(KO) mice can maintain normal salt and water balance on low-salt and high-salt diets. However, on a high-salt diet for 2 weeks, VDAC3-KO mice had significantly higher systolic blood pressure than wildtype mice. Consistent with this observation, after a high-salt diet for 2 weeks, ENaC activity in VDAC3-KO mice was significantly higher than wildtype mice. EM analysis disclosed a significant morphological change of mitochondria in the CCD cells of VDAC3-KO mice compared with wildtype mice, which may have been caused by mitochondrial superoxide overload. Of note, compared with wildtype animals, ROS levels in VDAC3-KO animals fed a normal or high-salt diet were consistently and significantly increased in renal tubules. Both the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL) and the mitochondrial ROS scavenger (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mito-TEMPO) could reverse the effect of high-salt on ENaC activity and systolic blood pressure in the VDAC3-KO mice. Mito-TEMPO partially correct the morphological changes in VDAC3-KO mice. Our results suggest that knocking out mitochondrial VDAC3 increases ROS, alters renal sodium transport, and leads to hypertension.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Peróxido de Hidrógeno/metabolismo , Riñón/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Sodio/metabolismo , Superóxidos/metabolismo , Canales Aniónicos Dependientes del Voltaje/deficiencia , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Óxidos N-Cíclicos/farmacología , Canales Epiteliales de Sodio/genética , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/patología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Riñón/patología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Marcadores de Spin , Canales Aniónicos Dependientes del Voltaje/metabolismo
16.
Clin Chim Acta ; 475: 28-35, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28987776

RESUMEN

BACKGROUND: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is characterized by conjugated hyperbilirubinemia and increased plasma bile acid concentrations. However, the underlying mechanisms remain unclear. We established a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneously quantifying plasma bile acids and examined bile acid profiles in NICCD infants. METHODS: We measured 15 bile acids within 15min and found a wide linear range for individual bile acids. RESULTS: The within-run and run-to-run CV of all bile acids was 1.2-10.9% and 3.1-10.8%, respectively, with a mean recovery of 90.5-112.6%. Compared to infants with citrullinemia without mutations in SLC25A13 (non-NICCD), NICCD infants showed increased plasma total bile acid concentrations (mean: 201 vs. 42µM, p<0.001), with a distinct bile acid profile characterized by increased conjugated primary bile acid concentrations. The calculated ratios, including primary/secondary bile acid (714 vs. 235, p<0.05) and conjugated/free bile acid (371 vs. 125, p<0.05) ratios, were higher in NICCD infants. The area under receiver operating characteristic curve for conjugated/free bile acid ratio to identify infants with NICCD was 0.871 (95% confidence interval, 0.713-1.0). CONCLUSIONS: Together, our findings indicated plasma bile acid profile as a potential noninvasive diagnostic biomarker for NICCD.


Asunto(s)
Ácidos y Sales Biliares/sangre , Colestasis Intrahepática/diagnóstico , Citrulinemia/diagnóstico , Enfermedades del Recién Nacido/diagnóstico , Proteínas de Transporte de Membrana Mitocondrial/genética , Ácidos y Sales Biliares/química , Biomarcadores/sangre , Biomarcadores/química , Estudios de Casos y Controles , Colestasis Intrahepática/sangre , Citrulinemia/sangre , Femenino , Expresión Génica , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/sangre , Masculino , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Mutación
17.
Zhonghua Bing Li Xue Za Zhi ; 46(6): 406-410, 2017 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-28591988

RESUMEN

Objective: To investigate the role of Mic60 in cardiac aging. Methods: Wild-type and Mic60(+ /-) male mice at age of 4-6 months (young group, n=6) and 18-20 months (aged group, n=9) were used. H&E and Masson staining of frozen and paraffin sections were subjected to morphologic evaluation of the cardiac tissue samples. SA-ß-Gal staining was utilized to detect the activity of senescence-associated ß-galactosidase. Western blot was performed to detect the expression of Mic60 and p21 in cardiac tissues. Results: Expression of Mic60 in mouse cardiac tissue increased in an age-dependent manner. Haploid insufficiency of Mic60 resulted in an increased left ventricular wall thickness [(1.32±0.09) mm vs.(1.12±0.09) mm, P<0.05], cardiomyocyte hypertrophy[(474.9±27.6) µm(2) vs.(358.8±48.7) µm(2), P<0.05] and interstitial fibrosis [ (38.24±7.58) ×10(3)µm(2) vs.(25.81±4.12)×10(3)µm(2,) P<0.05], increased activity of SA-ß-Gal (2.26±0.24 vs.0.25±0.05, P<0.01) and higher expression of p21 (P<0.01) in aged mouse cardiac tissue, but not in young mice. Conclusion: Haploid insufficiency of Mic60 leads to cardiac hypertrophy, interstitial fibrosis, increased activity of SA-ß-Gal and higher expression of p21 in aged cardiac tissue in mice, suggesting that Mic60 may prevent cardiac aging.


Asunto(s)
Envejecimiento/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Haploidia , Corazón/fisiología , Proteínas de Transporte de Membrana Mitocondrial/genética , Factores de Edad , Envejecimiento/metabolismo , Animales , Cardiomegalia/etiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/análisis , Hipertrofia/etiología , Masculino , Ratones , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Miocitos Cardíacos/patología , beta-Galactosidasa/análisis
18.
Sci Rep ; 7: 44401, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28276496

RESUMEN

Mitochondrial Carrier Homolog 2 (MTCH2) is a novel regulator of mitochondria metabolism, which was recently associated with Alzheimer's disease. Here we demonstrate that deletion of forebrain MTCH2 increases mitochondria and whole-body energy metabolism, increases locomotor activity, but impairs motor coordination and balance. Importantly, mice deficient in forebrain MTCH2 display a deficit in hippocampus-dependent cognitive functions, including spatial memory, long term potentiation (LTP) and rates of spontaneous excitatory synaptic currents. Moreover, MTCH2-deficient hippocampal neurons display a deficit in mitochondria motility and calcium handling. Thus, MTCH2 is a critical player in neuronal cell biology, controlling mitochondria metabolism, motility and calcium buffering to regulate hippocampal-dependent cognitive functions.


Asunto(s)
Calcio/metabolismo , Cognición/fisiología , Hipocampo/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Neuronas/metabolismo , Animales , Metabolismo Energético/fisiología , Femenino , Hipocampo/fisiopatología , Locomoción/fisiología , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Neuronas/patología , Equilibrio Postural/fisiología , Prosencéfalo/metabolismo , Prosencéfalo/fisiopatología , Trastornos Psicomotores/metabolismo , Trastornos Psicomotores/fisiopatología , Prueba de Desempeño de Rotación con Aceleración Constante , Memoria Espacial/fisiología , Transmisión Sináptica/fisiología
19.
Gastroenterology ; 151(5): 945-960.e6, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27451147

RESUMEN

BACKGROUND & AIMS: Many colorectal cancer (CRC) cells contain mutations in KRAS. Analyses of CRC cells with mutations in APC or CTNNB1 and KRAS identified SLC25A22, which encodes mitochondrial glutamate transporter, as a synthetic lethal gene. We investigated the functions of SLC25A22 in CRC cells with mutations in KRAS. METHODS: We measured levels of SLC25A22 messenger RNA and protein in paired tumor and nontumor colon tissues collected from 130 patients in Hong Kong and 17 patients in China and compared protein levels with patient survival times. Expression of SLC25A22 was knocked down in KRAS mutant CRC cell lines (DLD1, HCT116, LOVO, SW480, SW620, and SW1116) and CRC cell lines without mutations in KRAS (CACO-2, COLO205, HT29, and SW48); cells were analyzed for colony formation, proliferation, glutaminolysis and aspartate synthesis, and apoptosis in Matrigel and polymerase chain reaction array analyses. DLD1 and HCT116 cells with SLC25A22 knockdown were grown as xenograft tumors in nude mice; tumor growth and metastasis were measured. SLC25A22 was expressed ectopically in HCT116 cells, which were analyzed in vitro and grown as xenograft tumors in nude mice. RESULTS: Levels of SLC25A22 messenger RNA and protein were increased in colorectal tumor tissues compared with matched nontumor colon tissues; increased protein levels were associated with shorter survival times of patients (P = .01). Knockdown of SLC25A22 in KRAS mutant CRC cells reduced their proliferation, migration, and invasion in vitro, and tumor formation and metastasis in mice, compared with cells without SLC25A22 knockdown. Knockdown of SLC25A22 reduced aspartate biosynthesis, leading to apoptosis, decreased cell proliferation in KRAS mutant CRC cells. Incubation of KRAS mutant CRC cells with knockdown of SLC25A22 with aspartate increased proliferation and reduced apoptosis, which required GOT1, indicating that oxaloacetate is required for cell survival. Decreased levels of oxaloacetate in cells with knockdown of SLC25A22 reduced regeneration of oxidized nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. Reduced oxidized nicotinamide adenine dinucleotide inhibited glycolysis and decreased levels of adenosine triphosphate, which inactivated mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling via activation of AMP-activated protein kinase. An increased ratio of oxidized nicotinamide adenine dinucleotide phosphate to reduced nicotinamide adenine dinucleotide phosphate induced oxidative stress and glutathione oxidation, which suppressed cell proliferation. Asparagine synthetase mediated synthesis of asparagine from aspartate to promote cell migration. CONCLUSIONS: SLC25A22 promotes proliferation and migration of CRC cells with mutations KRAS, and formation and metastasis of CRC xenograft tumors in mice. Patients with colorectal tumors that express increased levels of SLC25A22 have shorter survival times than patients whose tumors have lower levels. SLC25A22 induces intracellular synthesis of aspartate, activation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling and reduces oxidative stress.


Asunto(s)
Adenoma/metabolismo , Ácido Aspártico/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma/metabolismo , Neoplasias Colorrectales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenoma/mortalidad , Adenoma/patología , Adulto , Anciano , Animales , Biomarcadores de Tumor/genética , Carcinoma/mortalidad , Carcinoma/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Mutación , Trasplante de Neoplasias
20.
PLoS Genet ; 12(5): e1006056, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27176894

RESUMEN

Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival.


Asunto(s)
Proteínas de Transporte de Anión/genética , Ciclo del Ácido Cítrico/genética , Dieta Cetogénica , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Animales , Proteínas de Transporte de Anión/deficiencia , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Genes Letales , Glucosa/metabolismo , Glutamina/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos , Embarazo , Ácido Pirúvico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...