Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 35(1): 488-509, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36250886

RESUMEN

Chloroplast ATP synthases consist of a membrane-spanning coupling factor (CFO) and a soluble coupling factor (CF1). It was previously demonstrated that CONSERVED ONLY IN THE GREEN LINEAGE160 (CGL160) promotes the formation of plant CFO and performs a similar function in the assembly of its c-ring to that of the distantly related bacterial Atp1/UncI protein. Here, we show that in Arabidopsis (Arabidopsis thaliana) the N-terminal portion of CGL160 (AtCGL160N) is required for late steps in CF1-CFO assembly. In plants that lacked AtCGL160N, CF1-CFO content, photosynthesis, and chloroplast development were impaired. Loss of AtCGL160N did not perturb c-ring formation, but led to a 10-fold increase in the numbers of stromal CF1 subcomplexes relative to that in the wild type. Co-immunoprecipitation and protein crosslinking assays revealed an association of AtCGL160 with CF1 subunits. Yeast two-hybrid assays localized the interaction to a stretch of AtCGL160N that binds to the DELSEED-containing CF1-ß subdomain. Since Atp1 of Synechocystis (Synechocystis sp. PCC 6803) could functionally replace the membrane domain of AtCGL160 in Arabidopsis, we propose that CGL160 evolved from a cyanobacterial ancestor and acquired an additional function in the recruitment of a soluble CF1 subcomplex, which is critical for the modulation of CF1-CFO activity and photosynthesis.


Asunto(s)
Arabidopsis , ATPasas de Translocación de Protón de Cloroplastos , Proteínas de las Membranas de los Tilacoides , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fotosíntesis/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/metabolismo
2.
Plant J ; 107(3): 876-892, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34028907

RESUMEN

High-light (HL) stress enhances the production of H2 O2 from the photosynthetic electron transport chain in chloroplasts, potentially causing photo-oxidative damage. Although stromal and thylakoid membrane-bound ascorbate peroxidases (sAPX and tAPX, respectively) are major H2 O2 -scavenging enzymes in chloroplasts, their knockout mutants do not exhibit a visible phenotype under HL stress. Trans-thylakoid proton gradient (∆pH)-dependent mechanisms exist for controlling H2 O2 production from photosynthesis, such as thermal dissipation of light energy and downregulation of electron transfer between photosystems II and I, and these may compensate for the lack of APXs. To test this hypothesis, we focused on a proton gradient regulation 5 (pgr5) mutant, wherein both ∆pH-dependent mechanisms are impaired, and an Arabidopsis sapx tapx double mutant was crossed with the pgr5 single mutant. The sapx tapx pgr5 triple mutant exhibited extreme sensitivity to HL compared with its parental lines. This phenotype was consistent with cellular redox perturbations and enhanced expression of many oxidative stress-responsive genes. These findings demonstrate that the PGR5-dependent mechanisms compensate for chloroplast APXs, and vice versa. An intriguing finding was that the failure of induction of non-photochemical quenching in pgr5 (because of the limitation in ∆pH formation) was partially recovered in sapx tapx pgr5. Further genetic studies suggested that this recovery was dependent on the NADH dehydrogenase-like complex-dependent pathway for cyclic electron flow around photosystem I. Together with data from the sapx tapx npq4 mutant, we discuss the interrelationship between APXs and ∆pH-dependent mechanisms under HL stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ascorbato Peroxidasas/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimología , Complejos de Proteína Captadores de Luz/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Antioxidantes , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Ascorbato Peroxidasas/genética , Proteínas de Cloroplastos/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Complejos de Proteína Captadores de Luz/genética , Mutación , Oxidación-Reducción , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Complejo de Proteína del Fotosistema II/genética , Estrés Fisiológico/efectos de la radiación , Proteínas de las Membranas de los Tilacoides/genética
3.
Plant Commun ; 1(5): 100094, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33367259

RESUMEN

Chlorophyll (Chl) is essential for photosynthetic reactions and chloroplast development. While the enzymatic pathway for Chl biosynthesis is well established, the regulatory mechanism underlying the homeostasis of Chl levels remains largely unknown. In this study, we identified CBD1 (Chlorophyll Biosynthetic Defect1), which functions in the regulation of chlorophyll biosynthesis. The CBD1 gene was expressed specifically in green tissues and its protein product was embedded in the thylakoid membrane. Furthermore, CBD1 was precisely co-expressed and functionally correlated with GUN5 (Genome Uncoupled 5). Analysis of chlorophyll metabolic intermediates indicated that cbd1 and cbd1gun5 mutants over-accumulated magnesium protoporphyrin IX (Mg-Proto IX). In addition, the cbd1 mutant thylakoid contained less Mg than the wild type not only as a result of lower Chl content, but also implicating CBD1 in Mg transport. This was supported by the finding that CBD1 complemented a Mg2+ uptake-deficient Salmonella strain under low Mg conditions. Taken together, these results indicate that CBD1 functions synergistically with CHLH/GUN5 in Mg-Proto IX processing, and may serve as a Mg-transport protein to maintain Mg homeostasis in the chloroplast.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/biosíntesis , Liasas/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Edición Génica , Técnicas de Silenciamiento del Gen , Homeostasis , Magnesio/metabolismo , Microscopía Electrónica de Transmisión , Tilacoides/metabolismo
4.
Plant Cell ; 32(12): 3884-3901, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33093145

RESUMEN

Posttranslational protein targeting requires chaperone assistance to direct insertion-competent proteins to integration pathways. Chloroplasts integrate nearly all thylakoid transmembrane proteins posttranslationally, but mechanisms in the stroma that assist their insertion remain largely undefined. Here, we investigated how the chloroplast chaperonin (Cpn60) facilitated the thylakoid integration of Plastidic type I signal peptidase 1 (Plsp1) using in vitro targeting assays. Cpn60 bound Plsp1 in the stroma. In isolated chloroplasts, the membrane integration of imported Plsp1 correlated with its dissociation from Cpn60. When the Plsp1 residues that interacted with Cpn60 were removed, Plsp1 did not integrate into the membrane. These results suggested Cpn60 was an intermediate in thylakoid targeting of Plsp1. In isolated thylakoids, the integration of Plsp1 decreased when Cpn60 was present in excess of cpSecA1, the stromal motor of the cpSec1 translocon that inserts unfolded Plsp1 into the thylakoid. An excess of cpSecA1 favored integration. Introducing Cpn60's obligate substrate RbcL displaced Cpn60-bound Plsp1; then, the released Plsp1 exhibited increased accessibility to cpSec1. These in vitro targeting experiments support a model in which Cpn60 captures and then releases insertion-competent Plsp1, whereas cpSecA1 recognizes free Plsp1 for integration. Thylakoid transmembrane proteins in the stroma can interact with Cpn60 to shield themselves from the aqueous environment.


Asunto(s)
Chaperoninas/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Pisum sativum/metabolismo , Serina Endopeptidasas/metabolismo , Chaperoninas/genética , Cloroplastos/metabolismo , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Pisum sativum/genética , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Transporte de Proteínas , Serina Endopeptidasas/genética , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(30): 17499-17509, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32690715

RESUMEN

Coping of evergreen conifers in boreal forests with freezing temperatures on bright winter days puts the photosynthetic machinery in great risk of oxidative damage. To survive harsh winter conditions, conifers have evolved a unique but poorly characterized photoprotection mechanism, a sustained form of nonphotochemical quenching (sustained NPQ). Here we focused on functional properties and underlying molecular mechanisms related to the development of sustained NPQ in Norway spruce (Picea abies). Data were collected during 4 consecutive years (2016 to 2019) from trees growing in sun and shade habitats. When day temperatures dropped below -4 °C, the specific N-terminally triply phosphorylated LHCB1 isoform (3p-LHCII) and phosphorylated PSBS (p-PSBS) could be detected in the thylakoid membrane. Development of sustained NPQ coincided with the highest level of 3p-LHCII and p-PSBS, occurring after prolonged coincidence of bright winter days and temperatures close to -10 °C. Artificial induction of both the sustained NPQ and recovery from naturally induced sustained NPQ provided information on differential dynamics and light-dependence of 3p-LHCII and p-PSBS accumulation as prerequisites for sustained NPQ. Data obtained collectively suggest three components related to sustained NPQ in spruce: 1) Freezing temperatures induce 3p-LHCII accumulation independently of light, which is suggested to initiate destacking of appressed thylakoid membranes due to increased electrostatic repulsion of adjacent membranes; 2) p-PSBS accumulation is both light- and temperature-dependent and closely linked to the initiation of sustained NPQ, which 3) in concert with PSII photoinhibition, is suggested to trigger sustained NPQ in spruce.


Asunto(s)
Fotosíntesis , Picea/fisiología , Estaciones del Año , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Secuencia de Aminoácidos , Ambiente , Complejos de Proteína Captadores de Luz/metabolismo , Noruega , Fosforilación , Espectrometría de Masas en Tándem , Proteínas de las Membranas de los Tilacoides/química , Árboles
6.
Plant Physiol ; 182(4): 2126-2142, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32041909

RESUMEN

The composition of the thylakoid proton motive force (pmf) is regulated by thylakoid ion transport. Passive ion channels in the thylakoid membrane dissipate the membrane potential (Δψ) component to allow for a higher fraction of pmf stored as a proton concentration gradient (ΔpH). K+/H+ antiport across the thylakoid membrane via K+ EXCHANGE ANTIPORTER3 (KEA3) instead reduces the ΔpH fraction of the pmf. Thereby, KEA3 decreases nonphotochemical quenching (NPQ), thus allowing for higher light use efficiency, which is particularly important during transitions from high to low light. Here, we show that in the background of the Arabidopsis (Arabidopsis thaliana) chloroplast (cp)ATP synthase assembly mutant cgl160, with decreased cpATP synthase activity and increased pmf amplitude, KEA3 plays an important role for photosynthesis and plant growth under steady-state conditions. By comparing cgl160 single with cgl160 kea3 double mutants, we demonstrate that in the cgl160 background loss of KEA3 causes a strong growth penalty. This is due to a reduced photosynthetic capacity of cgl160 kea3 mutants, as these plants have a lower lumenal pH than cgl160 mutants, and thus show substantially increased pH-dependent NPQ and decreased electron transport through the cytochrome b 6 f complex. Overexpression of KEA3 in the cgl160 background reduces pH-dependent NPQ and increases photosystem II efficiency. Taken together, our data provide evidence that under conditions where cpATP synthase activity is low, a KEA3-dependent reduction of ΔpH benefits photosynthesis and growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ATPasas de Translocación de Protón de Cloroplastos/genética , Concentración de Iones de Hidrógeno , Fotosíntesis/genética , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo
7.
Physiol Plant ; 166(1): 264-277, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30817002

RESUMEN

A proper spatial distribution of photosynthetic pigment-protein complexes - PPCs (photosystems, light-harvesting antennas) is crucial for photosynthesis. In plants, photosystems I and II (PSI and PSII) are heterogeneously distributed between granal and stromal thylakoids. Here we have described similar heterogeneity in the PSI, PSII and phycobilisomes (PBSs) distribution in cyanobacteria thylakoids into microdomains by applying a new image processing method suitable for the Synechocystis sp. PCC6803 strain with yellow fluorescent protein-tagged PSI. The new image processing method is able to analyze the fluorescence ratios of PPCs on a single-cell level, pixel per pixel. Each cell pixel is plotted in CIE1931 color space by forming a pixel-color distribution of the cell. The most common position in CIE1931 is then defined as protein arrangement (PA) factor with xy coordinates. The PA-factor represents the most abundant fluorescence ratio of PSI/PSII/PBS, the 'mode color' of studied cell. We proved that a shift of the PA-factor from the center of the cell-pixel distribution (the 'median' cell color) is an indicator of the presence of special subcellular microdomain(s) with a unique PSI/PSII/PBS fluorescence ratio in comparison to other parts of the cell. Furthermore, during a 6-h high-light (HL) treatment, 'median' and 'mode' color (PA-factor) of the cell changed similarly on the population level, indicating that such microdomains with unique PSI/PSII/PBS fluorescence were not formed during HL (i.e. fluorescence changed equally in the whole cell). However, the PA-factor was very sensitive in characterizing the fluorescence ratios of PSI/PSII/PBS in cyanobacterial cells during HL by depicting a 4-phase acclimation to HL, and their physiological interpretation has been discussed.


Asunto(s)
Fotosíntesis/fisiología , Proteínas de las Membranas de los Tilacoides/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Ficobilisomas/metabolismo
8.
World J Microbiol Biotechnol ; 35(1): 8, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30569232

RESUMEN

The responses of Synechocystis sp. PCC 6803 exposed to UVA, UVB and UVC for at least 3 h were investigated with the emphasis on the changes of polyamines (PAs) levels in whole cells, thylakoid membrane fraction, and thylakoid membrane-associated proteins fraction. All UV radiations caused a slight decrease on cell growth but a drastic reduction of photosynthetic efficiency of Synechocystis cells. UV radiations, especially UVB and UVC, severely decreased the levels of PAs associated with thylakoid membrane proteins. The decreased PAs levels as affected by UV radiation correlated well with the decrease of photosynthetic efficiency, suggesting the role of PAs for the maintenance of photosynthetic activity of Synechocystis. PAs, especially spermidine (Spd) and putrescine (Put), were found abundantly in the thylakoid membrane fraction, and these PAs were associated mainly with the PSI trimer complex. Importantly, the exposure of Synechocystis cells to all UV radiations for 3 h resulted in the increase of Spd associated with the PSII monomer and dimer complex, suggesting its protective role against UV radiations despite the overall decrease of PAs.


Asunto(s)
Poliaminas/metabolismo , Synechocystis/metabolismo , Synechocystis/efectos de la radiación , Proteínas de las Membranas de los Tilacoides/metabolismo , Rayos Ultravioleta/efectos adversos , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Fotosíntesis/efectos de la radiación , Putrescina/metabolismo , Espermidina/metabolismo , Estrés Fisiológico , Synechocystis/crecimiento & desarrollo
9.
Proc Natl Acad Sci U S A ; 115(38): 9634-9639, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30181278

RESUMEN

The plastid terminal oxidase (PTOX) has been shown to be an important sink for photosynthetic electron transport in stress-tolerant plants. However, overexpression studies in stress-sensitive species have previously failed to induce significant activity of this protein. Here we show that overexpression of PTOX from the salt-tolerant brassica species Eutrema salsugineum does not, alone, result in activity, but that overexpressing plants show faster induction and a greater final level of PTOX activity once exposed to salt stress. This implies that an additional activation step is required before activity is induced. We show that that activation involves the translocation of the protein from the unstacked stromal lamellae to the thylakoid grana and a protection of the protein from trypsin digestion. This represents an important activation step and opens up possibilities in the search for stress-tolerant crops.


Asunto(s)
Brassica/fisiología , Transporte de Electrón/fisiología , Oxidorreductasas/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente , Tolerancia a la Sal/fisiología
10.
Plant Physiol ; 176(3): 2277-2291, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29438089

RESUMEN

The cellular functions of two Arabidopsis (Arabidopsis thaliana) one-helix proteins, OHP1 and OHP2 (also named LIGHT-HARVESTING-LIKE2 [LIL2] and LIL6, respectively, because they have sequence similarity to light-harvesting chlorophyll a/b-binding proteins), remain unclear. Tagged null mutants of OHP1 and OHP2 (ohp1 and ohp2) showed stunted growth with pale-green leaves on agar plates, and these mutants were unable to grow on soil. Leaf chlorophyll fluorescence and the composition of thylakoid membrane proteins revealed that ohp1 deletion substantially affected photosystem II (PSII) core protein function and led to reduced levels of photosystem I core proteins; however, it did not affect LHC accumulation. Transgenic ohp1 plants rescued with OHP1-HA or OHP1-Myc proteins developed a normal phenotype. Using these tagged OHP1 proteins in transgenic plants, we localized OHP1 to thylakoid membranes, where it formed protein complexes with both OHP2 and High Chlorophyll Fluorescence244 (HCF244). We also found PSII core proteins D1/D2, HCF136, and HCF173 and a few other plant-specific proteins associated with the OHP1/OHP2-HCF244 complex, suggesting that these complexes are early intermediates in PSII assembly. OHP1 interacted directly with HCF244 in the complex. Therefore, OHP1 and HCF244 play important roles in the stable accumulation of PSII.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Unión a Clorofila/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Complejo de Proteína del Fotosistema II/genética , Plantas Modificadas Genéticamente , Proteínas de las Membranas de los Tilacoides/genética
11.
Mol Plant ; 10(1): 115-130, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27742488

RESUMEN

The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Unión a Clorofila/metabolismo , Clorofila/fisiología , Alelos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Clorofila/biosíntesis , Clorofila/genética , Proteínas de Unión a Clorofila/genética , Luz , Oxigenasas/metabolismo , Mutación Puntual , Proteínas de las Membranas de los Tilacoides/metabolismo
12.
Mol Plant ; 10(1): 99-114, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27702692

RESUMEN

In Chlamydomonas reinhardtii, the major protease involved in the maintenance of photosynthetic machinery in thylakoid membranes, the FtsH protease, mostly forms large hetero-oligomers (∼1 MDa) comprising FtsH1 and FtsH2 subunits, whatever the light intensity for growth. Upon high light exposure, the FtsH subunits display a shorter half-life, which is counterbalanced by an increase in FTSH1/2 mRNA levels, resulting in the modest upregulation of FtsH1/2 proteins. Furthermore, we found that high light increases the protease activity through a hitherto unnoticed redox-controlled reduction of intermolecular disulfide bridges. We isolated a Chlamydomonas FTSH1 promoter-deficient mutant, ftsh1-3, resulting from the insertion of a TOC1 transposon, in which the high light-induced upregulation of FTSH1 gene expression is largely lost. In ftsh1-3, the abundance of FtsH1 and FtsH2 proteins are loosely coupled (decreased by 70% and 30%, respectively) with no formation of large and stable homo-oligomers. Using strains exhibiting different accumulation levels of the FtsH1 subunit after complementation of ftsh1-3, we demonstrate that high light tolerance is tightly correlated with the abundance of the FtsH protease. Thus, the response of Chlamydomonas to light stress involves higher levels of FtsH1/2 subunits associated into large complexes with increased proteolytic activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Luz , Metaloproteasas/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Proteínas Bacterianas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Metaloproteasas/genética , Oxidación-Reducción , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis , Supresión Genética , Proteínas de las Membranas de los Tilacoides/genética
13.
Mol Microbiol ; 102(4): 738-751, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27555564

RESUMEN

Thylakoid formation1 protein (Thf1) is a multifunctional protein that is conserved in all photosynthetic organisms. In this study, we used the model cyanobacterium Synechococcus sp. PCC7942 (hereafter Synechococcus) to show that the level of Thf1 is altered in response to various stress conditions. Although this protein has been reported to be involved in thylakoid formation, the thylakoid membrane in the thf1 deletion strain (ΔThf1) was not affected. Compared with the WT, ΔThf1 showed reduced PS II activity, with increased levels of D1 under high light (HL) conditions, which was resulted from blocked D1 degradation by the FtsH protease and thus inhibits PS II repair. PS I was found to be more seriously affected than PS II in ΔThf1, even under low light conditions, suggesting that PS I damage could be the primary effect of thf1 deletion in Synechococcus. Further analysis revealed that the ΔThf1 mutant had a lower PS I subunit content and lower PS I stability under HL conditions. Further sucrose gradient fractionation of the membrane protein complexes and crosslinking and immunoblot analysis indicated that Thf1 interacts with PS I. Together, our results reveal that Thf1 interacts with PS I and thereby stabilizes PS I in Synechococcus.


Asunto(s)
Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Secuencia de Aminoácidos , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo
14.
J Biol Chem ; 291(38): 20136-48, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27493208

RESUMEN

Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Cobre/química , Proteínas de las Membranas de los Tilacoides/química , Tilacoides/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/genética
15.
BMC Plant Biol ; 16(1): 163, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27439459

RESUMEN

BACKGROUND: Short cold periods comprise a challenge to plant growth and development. Series of cold stresses improve plant performance upon a future cold stress. This effect could be provoked by priming, training or acclimation dependent hardening. Here, we compared the effect of 24 h (short priming stimulus) and of 2 week long cold-pretreatment (long priming stimulus) on the response of Arabidopsis thaliana to a single 24 h cold stimulus (triggering) after a 5 day long lag-phase, to test Arabidopsis for cold primability. RESULTS: Three types of pretreatment dependent responses were observed: (1) The CBF-regulon controlled gene COR15A was stronger activated only after long-term cold pretreatment. (2) The non-chloroplast specific stress markers PAL1 and CHS were more induced by cold after long-term and slightly stronger expressed after short-term cold priming. (3) The chloroplast ROS signaling marker genes ZAT10 and BAP1 were less activated by the triggering stimulus in primed plants. The effects on ZAT10 and BAP1 were more pronounced in 24 h cold-primed plants than in 14 day long cold-primed ones demonstrating independence of priming from induction and persistence of primary cold acclimation responses. Transcript and protein abundance analysis and studies in specific knock-out lines linked the priming-specific regulation of ZAT10 and BAP1 induction to the priming-induced long-term regulation of stromal and thylakoid-bound ascorbate peroxidase (sAPX and tAPX) expression. CONCLUSION: The plastid antioxidant system, especially, plastid ascorbate peroxidase regulation, transmits information on a previous cold stress over time without the requirement of establishing cold-acclimation. We hypothesize that the plastid antioxidant system serves as a priming hub and that priming-dependent regulation of chloroplast-to-nucleus ROS signaling is a strategy to prepare plants under unstable environmental conditions against unpredictable stresses by supporting extra-plastidic stress protection.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ascorbato Peroxidasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plastidios/enzimología , Especies Reactivas de Oxígeno/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascorbato Peroxidasas/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/enzimología , Cloroplastos/genética , Cloroplastos/metabolismo , Frío , Estrés Oxidativo , Plastidios/genética , Plastidios/metabolismo , Proteínas de las Membranas de los Tilacoides/genética , Tilacoides/enzimología , Tilacoides/genética , Tilacoides/metabolismo
16.
J Exp Bot ; 67(13): 3883-96, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27117338

RESUMEN

The regulation of photosynthetic light reactions by reversible protein phosphorylation is well established today, but functional studies have so far mostly been restricted to processes affecting light-harvesting complex II and the core proteins of photosystem II. Virtually no functional data are available on regulatory effects at the other photosynthetic complexes despite the identification of multiple phosphorylation sites. Therefore we summarize the available data from 50 published phospho-proteomics studies covering the main complexes involved in photosynthetic light reactions in the 'green lineage' (i.e. green algae and land plants) as well as its cyanobacterial counterparts. In addition, we performed an extensive orthologue search for the major photosynthetic thylakoid proteins in 41 sequenced genomes and generated sequence alignments to survey the phylogenetic distribution of phosphorylation sites and their evolutionary conservation from green algae to higher plants. We observed a number of uncharacterized phosphorylation hotspots at photosystem I and the ATP synthase with potential functional relevance as well as an unexpected divergence of phosphosites. Although technical limitations might account for a number of those differences, we think that many of these phosphosites have important functions. This is particularly important for mono- and dicot plants, where these sites might be involved in regulatory processes such as stress acclimation.


Asunto(s)
Cianobacterias/metabolismo , Evolución Molecular , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Fosforilación
17.
Int Rev Cell Mol Biol ; 323: 231-63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26944623

RESUMEN

The chloroplast houses various metabolic processes essential for plant viability. This organelle originated from an ancestral cyanobacterium via endosymbiosis and maintains the three membranes of its progenitor. Among them, the outer envelope membrane functions mainly in communication with cytoplasmic components while the inner envelope membrane houses selective transport of various metabolites and the biosynthesis of several compounds, including membrane lipids. These two envelope membranes also play essential roles in import of nuclear-encoded proteins and in organelle division. The third membrane, the internal membrane system known as the thylakoid, houses photosynthetic electron transport and chemiosmotic phosphorylation. The inner envelope and thylakoid membranes share similar lipid composition. Specific targeting pathways determine their defined proteomes and, thus, their distinct functions. Nonetheless, several proteins have been shown to exist in both the envelope and thylakoid membranes. These proteins include those that play roles in protein transport, tetrapyrrole biosynthesis, membrane dynamics, or transport of nucleotides or inorganic phosphate. In this review, we summarize the current knowledge about proteins localized to both the envelope and thylakoid membranes in the chloroplast, discussing their roles in each membrane and potential mechanisms of their dual localization. Addressing the unanswered questions about these dual-localized proteins should help advance our understanding of chloroplast development, protein transport, and metabolic regulation.


Asunto(s)
Membrana Nuclear/metabolismo , Plantas/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Membrana Nuclear/genética , Plantas/genética , Transporte de Proteínas/fisiología , Proteínas de las Membranas de los Tilacoides/genética , Tilacoides/genética
18.
Plant Cell ; 28(4): 892-910, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27020959

RESUMEN

In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn(2+) and Ca(2+) homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn(2+) and Ca(2+) ions were differently sequestered in pam71, with Ca(2+) enriched in pam71 thylakoids relative to the wild type. The changes in Ca(2+) homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn(2+), but not Ca(2+) Furthermore, PAM71 suppressed the Mn(2+)-sensitive phenotype of the yeast mutant Δpmr1 Therefore, PAM71 presumably functions in Mn(2+) uptake into thylakoids to ensure optimal PSII performance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Manganeso/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Calcio/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(12): E1615-24, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951662

RESUMEN

Membrane protein biogenesis poses enormous challenges to cellular protein homeostasis and requires effective molecular chaperones. Compared with chaperones that promote soluble protein folding, membrane protein chaperones require tight spatiotemporal coordination of their substrate binding and release cycles. Here we define the chaperone cycle for cpSRP43, which protects the largest family of membrane proteins, the light harvesting chlorophyll a/b-binding proteins (LHCPs), during their delivery. Biochemical and NMR analyses demonstrate that cpSRP43 samples three distinct conformations. The stromal factor cpSRP54 drives cpSRP43 to the active state, allowing it to tightly bind substrate in the aqueous compartment. Bidentate interactions with the Alb3 translocase drive cpSRP43 to a partially inactive state, triggering selective release of LHCP's transmembrane domains in a productive unloading complex at the membrane. Our work demonstrates how the intrinsic conformational dynamics of a chaperone enables spatially coordinated substrate capture and release, which may be general to other ATP-independent chaperone systems.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Cloroplastos/química , Complejos de Proteína Captadores de Luz/metabolismo , Chaperonas Moleculares/metabolismo , Partícula de Reconocimiento de Señal/química , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Proteínas de Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Partícula de Reconocimiento de Señal/metabolismo , Solubilidad , Relación Estructura-Actividad , Proteínas de las Membranas de los Tilacoides/metabolismo , Tilacoides/metabolismo
20.
Proc Natl Acad Sci U S A ; 113(10): 2774-9, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903622

RESUMEN

A Chlamydomonas reinhardtii mutant lacking CGL71, a thylakoid membrane protein previously shown to be involved in photosystem I (PSI) accumulation, exhibited photosensitivity and highly reduced abundance of PSI under photoheterotrophic conditions. Remarkably, the PSI content of this mutant declined to nearly undetectable levels under dark, oxic conditions, demonstrating that reduced PSI accumulation in the mutant is not strictly the result of photodamage. Furthermore, PSI returns to nearly wild-type levels when the O2 concentration in the medium is lowered. Overall, our results suggest that the accumulation of PSI in the mutant correlates with the redox state of the stroma rather than photodamage and that CGL71 functions under atmospheric O2 conditions to allow stable assembly of PSI. These findings may reflect the history of the Earth's atmosphere as it transitioned from anoxic to highly oxic (1-2 billion years ago), a change that required organisms to evolve mechanisms to assist in the assembly and stability of proteins or complexes with O2-sensitive cofactors.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de las Membranas de los Tilacoides/metabolismo , Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , Transporte de Electrón/genética , Transporte de Electrón/efectos de la radiación , Immunoblotting , Cinética , Luz , Mutación , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/genética , Proteínas de las Membranas de los Tilacoides/genética , Tilacoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...