Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Comput Math Methods Med ; 2022: 6534126, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35317194

RESUMEN

Objectives: Myocardial infarction (MI) is a common cardiovascular disease. Histopathology is a main molecular characteristic of MI, but often, differences between various cell subsets have been neglected. Under this premise, MI-related molecular biomarkers were screened using single-cell sequencing. Methods: This work examined immune cell abundance in normal and MI samples from GSE109048 and determined differences in the activated mast cells and activated CD4 memory T cells, resting mast cells. Weighted gene coexpression network analysis (WGCNA) demonstrated that activated CD4 memory T cells were the most closely related to the turquoise module, and 10 hub genes were screened. Single-cell sequencing data (scRNA-seq) of MI were examined. We used t-distributed stochastic neighbor embedding (t-SNE) for cell clustering. Results: We obtained 8 cell subpopulations, each of which had different marker genes. 7 out of the 10 hub genes were detected by single-cell sequencing analysis. The expression quantity and proportion of the 7 genes were different in 8 cell clusters. Conclusion: In general, our study revealed the immune characteristics and determined 7 prognostic markers for MI at the single-cell level, providing a new understanding of the molecular characteristics and mechanism of MI.


Asunto(s)
Redes Reguladoras de Genes , Marcadores Genéticos , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Análisis de la Célula Individual/métodos , Linfocitos T CD4-Positivos/inmunología , Quimiocinas/genética , Biología Computacional , Perfilación de la Expresión Génica , Ontología de Genes , Marcadores Genéticos/inmunología , Humanos , Memoria Inmunológica/genética , Mastocitos/inmunología , Pronóstico , RNA-Seq/métodos , RNA-Seq/estadística & datos numéricos , Análisis de la Célula Individual/estadística & datos numéricos , Procesos Estocásticos
2.
J Comput Biol ; 29(1): 27-44, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050715

RESUMEN

We propose GRNUlar, a novel deep learning framework for supervised learning of gene regulatory networks (GRNs) from single-cell RNA-Sequencing (scRNA-Seq) data. Our framework incorporates two intertwined models. First, we leverage the expressive ability of neural networks to capture complex dependencies between transcription factors and the corresponding genes they regulate, by developing a multitask learning framework. Second, to capture sparsity of GRNs observed in the real world, we design an unrolled algorithm technique for our framework. Our deep architecture requires supervision for training, for which we repurpose existing synthetic data simulators that generate scRNA-Seq data guided by an underlying GRN. Experimental results demonstrate that GRNUlar outperforms state-of-the-art methods on both synthetic and real data sets. Our study also demonstrates the novel and successful use of expression data simulators for supervised learning of GRN inference.


Asunto(s)
Aprendizaje Profundo , Redes Reguladoras de Genes , Análisis de la Célula Individual/estadística & datos numéricos , Algoritmos , Animales , Sesgo , Biología Computacional , Simulación por Computador , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Escherichia coli/genética , Humanos , Ratones , Redes Neurales de la Computación , RNA-Seq/estadística & datos numéricos , Saccharomyces cerevisiae/genética , Aprendizaje Automático Supervisado
3.
J Comput Biol ; 29(1): 23-26, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020490

RESUMEN

scDesign2 is a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured. This article shows how to download and install the scDesign2 R package, how to fit probabilistic models (one per cell type) to real data and simulate synthetic data from the fitted models, and how to use scDesign2 to guide experimental design and benchmark computational methods. Finally, a note is given about cell clustering as a preprocessing step before model fitting and data simulation.


Asunto(s)
Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis de la Célula Individual/estadística & datos numéricos , Programas Informáticos , Algoritmos , Animales , Análisis por Conglomerados , Biología Computacional , Simulación por Computador , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Expresión Génica , Ratones , Modelos Estadísticos , RNA-Seq/estadística & datos numéricos
4.
J Comput Biol ; 29(2): 121-139, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35041494

RESUMEN

Current expression quantification methods suffer from a fundamental but undercharacterized type of error: the most likely estimates for transcript abundances are not unique. This means multiple estimates of transcript abundances generate the observed RNA-seq reads with equal likelihood, and the underlying true expression cannot be determined. This is called nonidentifiability in probabilistic modeling. It is further exacerbated by incomplete reference transcriptomes where reads may be sequenced from unannotated transcripts. Graph quantification is a generalization to transcript quantification, accounting for the reference incompleteness by allowing exponentially many unannotated transcripts to express reads. We propose methods to calculate a "confidence range of expression" for each transcript, representing its possible abundance across equally optimal estimates for both quantification models. This range informs both whether a transcript has potential estimation error due to nonidentifiability and the extent of the error. Applying our methods to the Human Body Map data, we observe that 35%-50% of transcripts potentially suffer from inaccurate quantification caused by nonidentifiability. When comparing the expression between isoforms in one sample, we find that the degree of inaccuracy of 20%-47% transcripts can be so large that the ranking of expression between the transcript and other isoforms from the same gene cannot be determined. When comparing the expression of a transcript between two groups of RNA-seq samples in differential expression analysis, we observe that the majority of detected differentially expressed transcripts are reliable with a few exceptions after considering the ranges of the optimal expression estimates.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/estadística & datos numéricos , Transcriptoma , Empalme Alternativo , Biología Computacional , Intervalos de Confianza , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Humanos , Modelos Estadísticos , RNA-Seq/estadística & datos numéricos
5.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768960

RESUMEN

Deep learning has proven advantageous in solving cancer diagnostic or classification problems. However, it cannot explain the rationale behind human decisions. Biological pathway databases provide well-studied relationships between genes and their pathways. As pathways comprise knowledge frameworks widely used by human researchers, representing gene-to-pathway relationships in deep learning structures may aid in their comprehension. Here, we propose a deep neural network (PathDeep), which implements gene-to-pathway relationships in its structure. We also provide an application framework measuring the contribution of pathways and genes in deep neural networks in a classification problem. We applied PathDeep to classify cancer and normal tissues based on the publicly available, large gene expression dataset. PathDeep showed higher accuracy than fully connected neural networks in distinguishing cancer from normal tissues (accuracy = 0.994) in 32 tissue samples. We identified 42 pathways related to 32 cancer tissues and 57 associated genes contributing highly to the biological functions of cancer. The most significant pathway was G-protein-coupled receptor signaling, and the most enriched function was the G1/S transition of the mitotic cell cycle, suggesting that these biological functions were the most common cancer characteristics in the 32 tissues.


Asunto(s)
Aprendizaje Profundo , Neoplasias/clasificación , Neoplasias/genética , RNA-Seq/estadística & datos numéricos , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Diagnóstico por Computador , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias/diagnóstico , Redes Neurales de la Computación
6.
Nat Commun ; 12(1): 5692, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584091

RESUMEN

Differential expression analysis in single-cell transcriptomics enables the dissection of cell-type-specific responses to perturbations such as disease, trauma, or experimental manipulations. While many statistical methods are available to identify differentially expressed genes, the principles that distinguish these methods and their performance remain unclear. Here, we show that the relative performance of these methods is contingent on their ability to account for variation between biological replicates. Methods that ignore this inevitable variation are biased and prone to false discoveries. Indeed, the most widely used methods can discover hundreds of differentially expressed genes in the absence of biological differences. To exemplify these principles, we exposed true and false discoveries of differentially expressed genes in the injured mouse spinal cord.


Asunto(s)
Exactitud de los Datos , Modelos Estadísticos , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Animales , Variación Biológica Individual , Variación Biológica Poblacional , Conjuntos de Datos como Asunto , Regulación de la Expresión Génica , Humanos , Ratones , RNA-Seq/estadística & datos numéricos , Conejos , Ratas , Análisis de la Célula Individual/estadística & datos numéricos , Porcinos
7.
PLoS Comput Biol ; 17(6): e1009086, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34191792

RESUMEN

Clustering high-dimensional data, such as images or biological measurements, is a long-standing problem and has been studied extensively. Recently, Deep Clustering has gained popularity due to its flexibility in fitting the specific peculiarities of complex data. Here we introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-VAE), a novel generative clustering model. The model can learn multi-modal distributions of high-dimensional data and use these to generate realistic data with high efficacy and efficiency. MoE-Sim-VAE is based on a Variational Autoencoder (VAE), where the decoder consists of a Mixture-of-Experts (MoE) architecture. This specific architecture allows for various modes of the data to be automatically learned by means of the experts. Additionally, we encourage the lower dimensional latent representation of our model to follow a Gaussian mixture distribution and to accurately represent the similarities between the data points. We assess the performance of our model on the MNIST benchmark data set and challenging real-world tasks of clustering mouse organs from single-cell RNA-sequencing measurements and defining cell subpopulations from mass cytometry (CyTOF) measurements on hundreds of different datasets. MoE-Sim-VAE exhibits superior clustering performance on all these tasks in comparison to the baselines as well as competitor methods.


Asunto(s)
Análisis de la Célula Individual/estadística & datos numéricos , Animales , Análisis por Conglomerados , Biología Computacional , Aprendizaje Profundo , Perfilación de la Expresión Génica/estadística & datos numéricos , Leucocitos Mononucleares/clasificación , Ratones , Modelos Biológicos , Distribución Normal , Especificidad de Órganos , Fenotipo , RNA-Seq/estadística & datos numéricos
8.
PLoS Comput Biol ; 17(6): e1009118, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138847

RESUMEN

The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downstream analysis of the scRNA-seq data. We propose a statistical method, SDImpute (Single-cell RNA-seq Dropout Imputation), to implement block imputation for dropout events in scRNA-seq data. SDImpute automatically identifies the dropout events based on the gene expression levels and the variations of gene expression across similar cells and similar genes, and it implements block imputation for dropouts by utilizing gene expression unaffected by dropouts from similar cells. In the experiments, the results of the simulated datasets and real datasets suggest that SDImpute is an effective tool to recover the data and preserve the heterogeneity of gene expression across cells. Compared with the state-of-the-art imputation methods, SDImpute improves the accuracy of the downstream analysis including clustering, visualization, and differential expression analysis.


Asunto(s)
RNA-Seq/estadística & datos numéricos , Análisis de la Célula Individual/estadística & datos numéricos , Programas Informáticos , Animales , Análisis por Conglomerados , Biología Computacional , Simulación por Computador , Interpretación Estadística de Datos , Visualización de Datos , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Perfilación de la Expresión Génica/estadística & datos numéricos , Técnicas Genéticas/estadística & datos numéricos , Humanos , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación
9.
Commun Biol ; 4(1): 660, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079055

RESUMEN

The female mammary epithelium undergoes reorganization during development, pregnancy, and menopause, linking higher risk with breast cancer development. To characterize these periods of complex remodeling, here we report integrated 50 K mouse and 24 K human mammary epithelial cell atlases obtained by single-cell RNA sequencing, which covers most lifetime stages. Our results indicate a putative trajectory that originates from embryonic mammary stem cells which differentiates into three epithelial lineages (basal, luminal hormone-sensing, and luminal alveolar), presumably arising from unipotent progenitors in postnatal glands. The lineage-specific genes infer cells of origin of breast cancer using The Cancer Genome Atlas data and single-cell RNA sequencing of human breast cancer, as well as the association of gland reorganization to different breast cancer subtypes. This comprehensive mammary cell gene expression atlas ( https://mouse-mammary-epithelium-integrated.cells.ucsc.edu ) presents insights into the impact of the internal and external stimuli on the mammary epithelium at an advanced resolution.


Asunto(s)
Neoplasias de la Mama/etiología , Mama/citología , Mama/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/etiología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Linaje de la Célula/genética , Transformación Celular Neoplásica/genética , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Embarazo , RNA-Seq/estadística & datos numéricos
10.
PLoS Comput Biol ; 17(5): e1008094, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33939691

RESUMEN

Single cell RNA sequencing (scRNAseq) can be used to infer a temporal ordering of cellular states. Current methods for the inference of cellular trajectories rely on unbiased dimensionality reduction techniques. However, such biologically agnostic ordering can prove difficult for modeling complex developmental or differentiation processes. The cellular heterogeneity of dynamic biological compartments can result in sparse sampling of key intermediate cell states. To overcome these limitations, we develop a supervised machine learning framework, called Pseudocell Tracer, which infers trajectories in pseudospace rather than in pseudotime. The method uses a supervised encoder, trained with adjacent biological information, to project scRNAseq data into a low-dimensional manifold that maps the transcriptional states a cell can occupy. Then a generative adversarial network (GAN) is used to simulate pesudocells at regular intervals along a virtual cell-state axis. We demonstrate the utility of Pseudocell Tracer by modeling B cells undergoing immunoglobulin class switch recombination (CSR) during a prototypic antigen-induced antibody response. Our results revealed an ordering of key transcription factors regulating CSR to the IgG1 isotype, including the concomitant expression of Nfkb1 and Stat6 prior to the upregulation of Bach2 expression. Furthermore, the expression dynamics of genes encoding cytokine receptors suggest a poised IL-4 signaling state that preceeds CSR to the IgG1 isotype.


Asunto(s)
Linfocitos B/inmunología , Cambio de Clase de Inmunoglobulina/genética , Aprendizaje Automático Supervisado , Animales , Linfocitos B/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Biología Computacional , Simulación por Computador , Bases de Datos de Ácidos Nucleicos , Expresión Génica , Inmunoglobulina G/genética , Interleucina-4/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Inmunológicos , Subunidad p50 de NF-kappa B/genética , Redes Neurales de la Computación , RNA-Seq/métodos , RNA-Seq/estadística & datos numéricos , Receptores de Citocinas/genética , Recombinación Genética , Factor de Transcripción STAT6/genética , Transducción de Señal , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/estadística & datos numéricos
11.
Methods Mol Biol ; 2284: 97-134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835440

RESUMEN

Statistical modeling of count data from RNA sequencing (RNA-seq) experiments is important for proper interpretation of results. Here I will describe how count data can be modeled using count distributions, or alternatively analyzed using nonparametric methods. I will focus on basic routines for performing data input, scaling/normalization, visualization, and statistical testing to determine sets of features where the counts reflect differences in gene expression across samples. Finally, I discuss limitations and possible extensions to the models presented here.


Asunto(s)
Modelos Estadísticos , RNA-Seq/métodos , RNA-Seq/estadística & datos numéricos , Secuencia de Bases , Biología Computacional/métodos , Expresión Génica , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Imagenología Tridimensional/métodos , Imagenología Tridimensional/estadística & datos numéricos , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/estadística & datos numéricos , Programas Informáticos
12.
Methods Mol Biol ; 2284: 147-179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835442

RESUMEN

The main purpose of pathway or gene set analysis methods is to provide mechanistic insight into the large amount of data produced in high-throughput studies. These tools were developed for gene expression analyses, but they have been rapidly adopted by other high-throughput techniques, becoming one of the foremost tools of omics research.Currently, according to different biological questions and data, we can choose among a vast plethora of methods and databases. Here we use two published examples of RNAseq datasets to approach multiple analyses of gene sets, networks and pathways using freely available and frequently updated software. Finally, we conclude this chapter by presenting a survival pathway analysis of a multiomics dataset. During this overview of different methods, we focus on visualization, which is a fundamental but challenging step in this computational field.


Asunto(s)
Biología Computacional/métodos , Conjuntos de Datos como Asunto/estadística & datos numéricos , RNA-Seq/estadística & datos numéricos , Animales , Biología Computacional/estadística & datos numéricos , Interpretación Estadística de Datos , Bases de Datos Genéticas/estadística & datos numéricos , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Redes Reguladoras de Genes , Humanos , Redes y Vías Metabólicas/genética , RNA-Seq/métodos , Programas Informáticos , Integración de Sistemas , Transcriptoma , Secuenciación del Exoma/métodos , Secuenciación del Exoma/estadística & datos numéricos
13.
Methods Mol Biol ; 2284: 181-192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835443

RESUMEN

Analysis of circular RNA (circRNA) expression from RNA-Seq data can be performed with different algorithms and analysis pipelines, tools allowing the extraction of heterogeneous information on the expression of this novel class of RNAs. Computational pipelines were developed to facilitate the analysis of circRNA expression by leveraging different public tools in easy-to-use pipelines. This chapter describes the complete workflow for a computationally reproducible analysis of circRNA expression starting for a public RNA-Seq experiment. The main steps of circRNA prediction, annotation, classification, sequence reconstruction, quantification, and differential expression are illustrated.


Asunto(s)
Biología Computacional/métodos , ARN Circular/análisis , RNA-Seq/métodos , Algoritmos , Conjuntos de Datos como Asunto/estadística & datos numéricos , Humanos , ARN Circular/química , ARN Circular/genética , ARN no Traducido/análisis , ARN no Traducido/química , ARN no Traducido/genética , RNA-Seq/estadística & datos numéricos , Análisis de Secuencia de ARN , Programas Informáticos , Transcriptoma
14.
Methods Mol Biol ; 2284: 331-342, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835451

RESUMEN

Dimensionality reduction is a crucial step in essentially every single-cell RNA-sequencing (scRNA-seq) analysis. In this chapter, we describe the typical dimensionality reduction workflow that is used for scRNA-seq datasets, specifically highlighting the roles of principal component analysis, t-distributed stochastic neighborhood embedding, and uniform manifold approximation and projection in this setting. We particularly emphasize efficient computation; the software implementations used in this chapter can scale to datasets with millions of cells.


Asunto(s)
Biología Computacional/métodos , RNA-Seq , Análisis de la Célula Individual , Algoritmos , Animales , Análisis de Datos , Conjuntos de Datos como Asunto/estadística & datos numéricos , Humanos , Análisis de Componente Principal , RNA-Seq/métodos , RNA-Seq/normas , RNA-Seq/estadística & datos numéricos , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/normas , Análisis de la Célula Individual/estadística & datos numéricos , Programas Informáticos
15.
Methods Mol Biol ; 2284: 393-415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33835454

RESUMEN

Since 1950 main studies of RNA regarded its role in the protein synthesis. Later insights showed that only a small portion of RNA codes for proteins where the rest could have different functional roles. With the advent of Next Generation Sequencing (NGS) and in particular with RNA-seq technology the cost of sequencing production dropped down. Among the NGS application areas, the transcriptome analysis, that is, the analysis of transcripts in a cell, their quantification for a specific developmental stage or treatment condition, became more and more adopted in the laboratories. As a consequence in the last decade new insights were gained in the understanding of both transcriptome complexity and involvement of RNA molecules in cellular processes. For what concerns computational advances, bioinformatics research developed new methods for analyzing RNA-seq data. The comparison among transcriptome profiles from several samples is often a difficult task for nonexpert programmers. Here, in this chapter, we introduce RAP (RNA-Seq Analysis Pipeline), a completely automated web tool for transcriptome analysis. It is a user-friendly web tool implementing a detailed transcriptome workflow to detect differential expressed genes and transcript, identify spliced junctions and constitutive or alternative polyadenylation sites and predict gene fusion events. Through the web interface the researchers can get all this information without any knowledge of the underlying High Performance Computing infrastructure.


Asunto(s)
Internet , RNA-Seq/métodos , Programas Informáticos , Animales , Biología Computacional/métodos , Análisis de Datos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Poliadenilación , RNA-Seq/estadística & datos numéricos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Secuenciación del Exoma
16.
Front Endocrinol (Lausanne) ; 12: 609308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716967

RESUMEN

Thyroid hormones mediate a remarkable range of functions in many tissues and organ systems through the thyroid hormone receptors-THRA and THRB. Tissues and organs are composed of heterogeneous cells of different cell types. These different cell types have varying receptor expression abilities, which lead to variable responses in thyroid hormone regulation. The tissue-specific Thra and Thrb gene expression patterns help us understand the action of thyroid hormones at the tissue level. However, the situation becomes complicated if we wish to focus on tissues more closely to trace the responsive cells, which is a vital step in the process of understanding the molecular mechanism of diseases related to thyroid hormone regulation. Single-cell RNA sequencing technology is a powerful tool used to profile gene expression programs in individual cells. The Tabula Muris Consortium generates a single-cell transcriptomic atlas across the life span of Mus musculus that includes data from 23 tissues and organs. It provides an unprecedented opportunity to understand thyroid hormone regulation at the cell type resolution. We demonstrated the approaches that allow application of the single-cell RNA-Seq data generated by the Tabula Muris Consortium to trace responsive cells in tissues. First, employing the single-cell RNA-Seq data, we calculated the ability of different cell types to express Thra and Thrb, which direct us to the cell types sensitive to thyroid hormone regulation in tissues and organs. Next, using a cell clustering algorithm, we explored the subtypes with low Thra or Thrb expression within the different cell types and identified the potentially responsive cell subtypes. Finally, in the liver tissue treated with thyroid hormones, using the single-cell RNA-Seq data, we successfully traced the responsive cell types. We acknowledge that the computational predictions reported here need to be further validated using wet-lab experiments. However, we believe our results provide powerful information and will be beneficial for wet lab researchers.


Asunto(s)
Especificidad de Órganos , RNA-Seq/estadística & datos numéricos , Análisis de la Célula Individual/estadística & datos numéricos , Triyodotironina/farmacología , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Biología Computacional , Análisis de Datos , Femenino , Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Organogénesis/efectos de los fármacos , Organogénesis/genética , RNA-Seq/métodos , Receptores de Hormona Tiroidea/genética , Análisis de la Célula Individual/métodos , Hormonas Tiroideas/farmacología
17.
Genes (Basel) ; 12(2)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671799

RESUMEN

Single-cell RNA-seq (scRNA-seq) is a powerful tool to measure the expression patterns of individual cells and discover heterogeneity and functional diversity among cell populations. Due to variability, it is challenging to analyze such data efficiently. Many clustering methods have been developed using at least one free parameter. Different choices for free parameters may lead to substantially different visualizations and clusters. Tuning free parameters is also time consuming. Thus there is need for a simple, robust, and efficient clustering method. In this paper, we propose a new regularized Gaussian graphical clustering (RGGC) method for scRNA-seq data. RGGC is based on high-order (partial) correlations and subspace learning, and is robust over a wide-range of a regularized parameter λ. Therefore, we can simply set λ=2 or λ=log(p) for AIC (Akaike information criterion) or BIC (Bayesian information criterion) without cross-validation. Cell subpopulations are discovered by the Louvain community detection algorithm that determines the number of clusters automatically. There is no free parameter to be tuned with RGGC. When evaluated with simulated and benchmark scRNA-seq data sets against widely used methods, RGGC is computationally efficient and one of the top performers. It can detect inter-sample cell heterogeneity, when applied to glioblastoma scRNA-seq data.


Asunto(s)
Perfilación de la Expresión Génica/estadística & datos numéricos , RNA-Seq/estadística & datos numéricos , Análisis de la Célula Individual/estadística & datos numéricos , Algoritmos , Teorema de Bayes , Análisis por Conglomerados , Humanos , Distribución Normal , Secuenciación del Exoma
18.
J Invest Dermatol ; 141(7): 1745-1753, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33607116

RESUMEN

Psoriasis is a complex, chronic inflammatory skin disease characterized by keratinocyte hyperproliferation and a disordered immune response; however, its exact etiology remains unknown. To better understand the regulatory network underlying psoriasis, we explored the landscape of chromatin accessibility by using an assay for transposase-accessible chromatin using sequencing analysis of 15 psoriatic, 9 nonpsoriatic, and 19 normal skin tissue samples, and the chromatin accessibility data were integrated with genomic, epigenomic, and transcriptomic datasets. We identified 4,915 genomic regions that displayed differential accessibility in psoriatic samples compared with both nonpsoriatic and normal samples, nearly all of which exhibited an increased accessibility in psoriatic skin tissue. These differentially accessible regions tended to be more hypomethylated and correlated with the expression of their linked genes, which comprised several psoriasis susceptibility loci. Analyses of the differentially accessible region sequences showed that they were most highly enriched with FRA1 and/or activator protein-1 transcription factor DNA-binding motifs. We also found that AIM2, which encodes an important inflammasome component that triggers skin inflammation, is a direct target of FRA1 and/or activator protein-1. Our study provided clear insights and resources for an improved understanding of the pathogenesis of psoriasis. These disease-associated accessible regions might serve as therapeutic targets for psoriasis treatment in the future.


Asunto(s)
Cromatina/metabolismo , Redes Reguladoras de Genes/inmunología , Psoriasis/genética , Transposasas/metabolismo , Estudios de Casos y Controles , Secuenciación de Inmunoprecipitación de Cromatina/estadística & datos numéricos , Metilación de ADN , Conjuntos de Datos como Asunto , Epigenómica , Femenino , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Masculino , Psoriasis/inmunología , Psoriasis/patología , RNA-Seq/estadística & datos numéricos , Piel/inmunología , Piel/patología
19.
Sci Rep ; 11(1): 4243, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608566

RESUMEN

SARS-CoV-2 infection ranges from asymptomatic to severe with lingering symptomatology in some. This prompted investigation of whether or not asymptomatic disease results in measurable immune activation post-infection. Immune activation following asymptomatic SARS-CoV-2 infection was characterized through a comparative investigation of the immune cell transcriptomes from 43 asymptomatic seropositive and 52 highly exposed seronegative individuals from the same community 4-6 weeks following a superspreading event. Few of the 95 individuals had underlying health issues. One seropositive individual reported Cystic Fibrosis and one individual reported Incontinentia pigmenti. No evidence of immune activation was found in asymptomatic seropositive individuals with the exception of the Cystic Fibrosis patient. There were no statistically significant differences in immune transcriptomes between asymptomatic seropositive and highly exposed seronegative individuals. Four positive controls, mildly symptomatic seropositive individuals whose blood was examined 3 weeks following infection, showed immune activation. Negative controls were four seronegative individuals from neighboring communities without COVID-19. All individuals remained in their usual state of health through a five-month follow-up after sample collection. In summary, whole blood transcriptomes identified individual immune profiles within a community population and showed that asymptomatic infection within a super-spreading event was not associated with enduring immunological activation.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Transcriptoma/inmunología , Inmunidad Adaptativa/genética , Adolescente , Adulto , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/aislamiento & purificación , Infecciones Asintomáticas , Austria , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/transmisión , Prueba Serológica para COVID-19/estadística & datos numéricos , Niño , Preescolar , Trazado de Contacto/estadística & datos numéricos , Composición Familiar , Femenino , Estudios de Seguimiento , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Innata/genética , Lactante , Masculino , Persona de Mediana Edad , RNA-Seq/estadística & datos numéricos , SARS-CoV-2/aislamiento & purificación , Adulto Joven
20.
Hum Genomics ; 15(1): 7, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509298

RESUMEN

BACKGROUND: RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome changes. However, the emerging problem that high variation of gene expression levels caused by tumor heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and explored why a great many differentially expressed genes (DEGs) were not reproducible. RESULTS: Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly caused by high variation of gene expression levels for the same gene in different samples. Even though biological variation may account for much of the high variation of gene expression levels, the effect of outlier count data also needs to be treated seriously, as outlier data severely interfere with DE analysis. CONCLUSIONS: High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously unless soundly validated.


Asunto(s)
Proteínas de Neoplasias/genética , Neoplasias/genética , Programas Informáticos , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Heterogeneidad Genética , Humanos , Neoplasias/patología , RNA-Seq/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...