Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 865
Filtrar
1.
Mol Biol Rep ; 51(1): 606, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704498

RESUMEN

BACKGROUND: Recent in vitro studies using RB1+/- fibroblasts and MSCs have shown molecular and functional disruptions without the need for biallelic loss of RB1. However, this was not reflected in the recent in vitro studies employing RB1+/- retinal organoids. To gain further insights into the molecular disruptions in the RB1+/- retinal organoids, we performed a high throughput RNA sequencing analysis. METHODS AND RESULTS: iPSCs were generated from RB1+/+ and RB1+/- OAMSCs derived from retinoblastoma patients. RB1+/+ and RB1+/- iPSCs were subjected to a step-wise retinal differentiation protocol. Retinal differentiation was evaluated by Real-time PCR and flow cytometry analysis of the retinal markers. To gain further insights into the molecular differences in RB1+/- retinal organoids, a high throughput RNA sequencing followed by differential gene expression analysis and gene set enrichment analysis (GSEA) was performed. The analysis revealed a shift from the regular metabolic process of glycolysis to oxidative phosphorylation in the RB1+/- retinal organoids. To investigate further, we performed assays to determine the levels of pyruvate, lactate and ATP in the retinal organoids. The results revealed significant increase in ATP and pyruvate levels in RB1+/- retinal organoids of day 120 compared to that of the RB1+/+. The results thus revealed enhanced ATP production in the RB1+/- retinal organoids. CONCLUSION: The study provides novel insights into the metabolic phenotype of heterozygous RB1 mutant suggesting dysregulation of energy metabolism and glycolytic pathways to be first step even before the changes in cellular proliferation or other phenotypic consequences ensue.


Asunto(s)
Adenosina Trifosfato , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Mutación , Organoides , Retina , Retinoblastoma , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Organoides/metabolismo , Retina/metabolismo , Retina/citología , Retinoblastoma/genética , Retinoblastoma/metabolismo , Adenosina Trifosfato/metabolismo , Diferenciación Celular/genética , Mutación/genética , Heterocigoto , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Glucólisis/genética , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo
2.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674157

RESUMEN

Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the "classical" protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different human cancer cells, but its role in retinoblastoma (RB), the most common malignant eye cancer in children, remains to be elucidated. Etoposide-resistant RB cell lines and RB patients display significant higher PTPRE expression levels compared to chemosensitive counterparts and the healthy human retina, respectively. PTPRE promotor methylation analyses revealed that PTPRE expression in RB is not regulated via this mechanism. Lentiviral PTPRE knockdown (KD) induced a significant decrease in growth kinetics, cell viability, and anchorage-independent growth of etoposide-resistant Y79 and WERI RB cells. Caspase-dependent apoptosis rates were significantly increased and a re-sensitization for etoposide could be observed after PTPRE depletion. In vivo chicken chorioallantoic membrane (CAM) assays revealed decreased tumor formation capacity as well as reduced tumor size and weight following PTPRE KD. Expression levels of miR631 were significantly downregulated in etoposide-resistant RB cells and patients. Transient miR631 overexpression resulted in significantly decreased PTPRE levels and concomitantly decreased proliferation and increased apoptosis levels in etoposide-resistant RB cells. These impacts mirror PTPRE KD effects, indicating a regulation of PTPRE via this miR. Additionally, PTPRE KD led to altered phosphorylation of protein kinase SGK3 and-dependent on the cell line-AKT and ERK1/2, suggesting potential PTPRE downstream signaling pathways. In summary, these results indicate an oncogenic role of PTPRE in chemoresistant retinoblastoma.


Asunto(s)
Apoptosis , Resistencia a Antineoplásicos , Etopósido , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Retinoblastoma/genética , Retinoblastoma/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Animales , Apoptosis/efectos de los fármacos , Etopósido/farmacología , Etopósido/uso terapéutico , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Neoplasias de la Retina/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino
3.
Stem Cell Res ; 76: 103373, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452707

RESUMEN

Complete loss of RB1 causes retinoblastoma. Here, we report the generation of three RB1-/- iPSC lines using CRISPR/Cas9 based editing at exon 18 of RB1 in a healthy control hiPSC line. The edited cells were clonally expanded, genotyped and characterized to establish the mutant lines. Two of the mutant lines are compound heterozygous, with different in-del mutations in each of their alleles, while the third mutant line is homozygous, with identical edits in both alleles. All lines maintained their stemness, pluripotency, formed embryoid bodies with cell types of all three lineages, displayed a normal karyotype and lost RB1 expression.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Retinoblastoma/genética
4.
Biomed Pharmacother ; 174: 116437, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522240

RESUMEN

Retinoblastoma (RB) is a type of pediatric solid tumor in the fundus. The lack of precision therapies combined with the difficulty of delivering small interfering RNA (siRNA) into the eyes means that there is currently no nucleic acid-based therapy for RB in clinical practice. Here, we reported on anti-GD2 and glutathione-responsive spherical nucleic acids (SNAs), loaded with siRNA and the inhibitor NVP-CGM097, which jointly blocked the oncogenic factor n in RB cells (Y79 and WERI-RB-1). The SNAs were formed through the self-assembly of bifunctional cholesterol amphiphiles containing aptamers that specifically targeted GD2-positive RB cells, allowing for the formation of an SNA with a dense DNA shell. The aptamer/siRNA component functioned both as a carrier and a payload, enhancing the specific recognition and delivery of both components and constituting an active agent for MDM2 regulation. Following SNA endocytosis by RB cells, siRNA and NVP-CGM097 were released from the SNA particles by glutathione, which synergistically blocked the MDM2-p53 pathway, increasing p53 protein content and inducing cell apoptosis. This study showed a potent antitumor effect following intravitreal injection of SNAs in Y79 tumor-bearing mice through clinical manifestation and tumor pathological analysis. In hematological analysis and hepatotoxicity assays, SNAs were safer for mice than melphalan, the favored drug for treating RB in clinical practice. Our results illustrated the potential of intravitreally injected SNAs as a precision medicine for treating RB.


Asunto(s)
Aptámeros de Nucleótidos , Proteínas Proto-Oncogénicas c-mdm2 , ARN Interferente Pequeño , Retinoblastoma , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Aptámeros de Nucleótidos/farmacología , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/patología , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/patología , Retinoblastoma/metabolismo , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos ICR , Femenino
5.
Stem Cell Res ; 76: 103329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335663

RESUMEN

Retinoblastoma is a pediatric intraocular cancer caused by biallelic inactivation of RB1 gene in retinal progenitor cells. Here, we report the generation of a patient-specific induced pluripotent stem cell (iPSC) line (LVPEIi002-A) from a patient diagnosed with retinoblastoma and showing familial inheritance of a nonsense mutation (c.1735C > T) within exon 18 of one of the two alleles. This RB1+/- iPSC line, LVPEIi002-A was generated by reprogramming the peri-orbital fat tissue derived mesenchymal cells and was stably expanded and characterized. It maintains the stemness, pluripotency, normal karyotype, and forms embryoid bodies comprising of all three lineage committed progenitor cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Retina/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Retinoblastoma/genética
6.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339011

RESUMEN

In childhood, retinoblastoma (RB) is the most common primary tumor in the eye. Long term therapeutic management with etoposide of this life-threatening condition may have diminishing effectiveness since RB cells can develop cytostatic resistance to this drug. To determine whether changes in receptor-mediated control of Ca2+ signaling are associated with resistance development, fluorescence calcium imaging, semi-quantitative RT-qPCR analyses, and trypan blue dye exclusion staining patterns are compared in WERI-ETOR (etoposide-insensitive) and WERI-Rb1 (etoposide-sensitive) cells. The cannabinoid receptor agonist 1 (CNR1) WIN55,212-2 (40 µM), or the transient receptor potential melastatin 8 (TRPM8) agonist icilin (40 µM) elicit similar large Ca2+ transients in both cell line types. On the other hand, NGF (100 ng/mL) induces larger rises in WERI-ETOR cells than in WERI-Rb1 cells, and its lethality is larger in WERI-Rb1 cells than in WERI-ETOR cells. NGF and WIN55,212-2 induced additive Ca2+ transients in both cell types. However, following pretreatment with both NGF and WIN55,212-2, TRPM8 gene expression declines and icilin-induced Ca2+ transients are completely blocked only in WERI-ETOR cells. Furthermore, CNR1 gene expression levels are larger in WERI-ETOR cells than those in WERI-Rb1 cells. Therefore, the development of etoposide insensitivity may be associated with rises in CNR1 gene expression, which in turn suppress TRPM8 gene expression through crosstalk.


Asunto(s)
Receptor de Factor de Crecimiento Nervioso , Neoplasias de la Retina , Retinoblastoma , Canales Catiónicos TRPM , Humanos , Línea Celular , Etopósido/farmacología , Etopósido/uso terapéutico , Proteínas de la Membrana/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Neoplasias de la Retina/tratamiento farmacológico , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Receptor Cannabinoide CB1/metabolismo
7.
Glia ; 72(5): 872-884, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38258347

RESUMEN

RB1 deficiency leads to retinoblastoma (Rb), the most prevalent intraocular malignancy. Tumor-associated macrophages (TAMs) are related to local inflammation disorder, particularly by increasing cytokines and immune escape. Microglia, the unique resident macrophages for retinal homeostasis, are the most important immune cells of Rb. However, whether RB1 deficiency affects microglial function remain unknown. In this study, microglia were successfully differentiated from Rb patient- derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), and then we investigated the function of RB1 in microglia by live imaging phagocytosis assay, immunofluorescence, RNA-seq, qRT-PCR, ELISA and retina organoids/microglia co-culturing. RB1 was abundantly expressed in microglia and predominantly located in the nucleus. We then examined the phagocytosis ability and secretion function of iMGs in vitro. We found that RB1 deficiency did not affect the expression of microglia-specific markers or the phagocytic abilities of these cells by live-imaging. Upon LPS stimulation, RB1-deficient microglia displayed enhanced innate immune responses, as evidenced by activated MAPK signaling pathway and elevated expression of IL-6 and TNF-α at both mRNA and protein levels, compared to wildtype microglia. Furthermore, retinal structure disruption was observed when retinal organoids were co-cultured with RB1-deficient microglia, highlighting the potential contribution of microglia to Rb development and potential therapeutic strategies for retinoblastoma.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Retina , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología
8.
Curr Med Sci ; 44(1): 223-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277016

RESUMEN

OBJECTIVE: Retinoblastoma (RB) is a prevalent type of eye cancer in youngsters. Prospero homeobox 1 (Prox1) is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic, hepatocyte, pancreatic, heart, lens, retinal, and cancer cells. The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance, as well as to explore the underlying Notch1 mechanism. METHODS: Human RB cell lines (SO-RB50 and Y79) and a primary human retinal microvascular endothelial cell line (ACBRI-181) were used in this study. The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction (RT-qPCR) and Western blotting. Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay. Drug-resistant cell lines (SO-RB50/vincristine) were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance. We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1. Finally, a xenograft model was constructed to assess the effect of Prox1 on RB in vivo. RESULTS: Prox1 was significantly downregulated in RB cells. Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine. Notch1 was involved in Prox1's regulatory effects. Notch1 was identified as a target gene of Prox1, which was found to be upregulated in RB cells and repressed by increased Prox1 expression. When pcDNA-Notch1 was transfected, the effect of Prox1 overexpression on RB was removed. Furthermore, by downregulating Notch1, Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo. CONCLUSION: These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1, implying that Prox1 could be a potential therapeutic target for RB.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Medicamentos , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Vincristina/farmacología
9.
Commun Biol ; 7(1): 11, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172218

RESUMEN

Retinoblastoma (RB) is the most prevalent ocular tumor of childhood, and its extraocular invasion significantly increases the risk of metastasis. Nevertheless, a single-cell characterization of RB local extension has been lacking. Here, we perform single-cell RNA sequencing on four RB samples (two from intraocular and two from extraocular RB patients), and integrate public datasets of five normal retina samples, four intraocular samples, and three extraocular RB samples to characterize RB local extension at the single-cell level. A total of 128,454 qualified cells are obtained in nine major cell types. Copy number variation inference reveals chromosome 6p amplification in cells derived from extraocular RB samples. In cellular heterogeneity analysis, we identified 10, 8, and 7 cell subpopulations in cone precursor like cells, retinoma like cells, and MKI67+ photoreceptorness decreased (MKI67+ PhrD) cells, respectively. A high expression level of SOX4 was detected in cells from extraocular samples, especially in MKI67+ PhrD cells, which was verified in additional clinical RB samples. These results suggest that SOX4 might drive RB local extension. Our study presents a single-cell transcriptomic landscape of intraocular and extraocular RB samples, improving our understanding of RB local extension at the single-cell resolution and providing potential therapeutic targets for RB patients.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Variaciones en el Número de Copia de ADN , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Perfilación de la Expresión Génica , Factores de Transcripción SOXC/genética
10.
Mol Biotechnol ; 66(1): 102-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37041423

RESUMEN

Retinoblastoma (RB) is a malignant ocular cancer that affects children. Several microRNAs (miRNAs) have been implicated in RB regulation. The present study aimed to investigate the role of miR-4529-3p in RB pathogenesis. Scratch, Transwell, and Cell Counting Kit (CCK)-8 assays were conducted to assess the migratory, invasive, and proliferative abilities of RB cells. The expression levels of miR-4529-3p, RB1, and ERK pathway-related proteins were analyzed using western blotting and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Target relationships were verified using dual-luciferase reporter experiments. A murine RB model was developed to analyze the effects of miR-4529-3p on RB tumor growth in vivo. Our experiments revealed high levels of miR-4529-3p and low levels of RB1 in RB tissues. Functional analyses revealed that the migratory, invasive, and proliferative abilities of RB cells were repressed by miR-4529-3p inhibition. Similarly, p-ERK 1/2 protein levels were suppressed by miR-4529-3p inhibition. Furthermore, downregulation of miR-4529-3p limited tumor growth in vivo. Mechanistically, miR-4259-3p targets RB1. Interestingly, RB1 silencing abrogated the alleviative effects of miR-4529-3p downregulation in RB cells. MiR-4529-3p promotes RB progression by inhibiting RB1 and activating the ERK pathway. This evidence suggests that the miR-4529-3p/RB1 regulatory axis may be a prospective target for RB treatment in clinical settings.


Asunto(s)
MicroARNs , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Animales , Ratones , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Sistema de Señalización de MAP Quinasas/genética , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1003-1013, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37555853

RESUMEN

Retinoblastoma is a prevalent pediatric intraocular tumor. The suppressive effect of gentiopicroside (GPS) has been reported on various tumors. This study sought to determine the effect of GPS on retinoblastoma cell proliferation, apoptosis, invasion, and epithelial-mesenchymal transition (EMT), and tumorigenesis in nude mice. The effect and mechanism of GPS on growth, apoptosis, invasion, and EMT were determined by cell counting kit-8 (CCK-8), western blot, flow cytometry, and transwell assays in retinoblastoma cells. Y79 cells were injected into the vitreous cavity of BALB/c­nude mice to construct a retinoblastoma mouse model. Tumor growth and mouse weight were monitored for sequential 5 weeks. The effect of GPS in vivo was assessed by immunohistochemistry (IHC), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), and western blot assays. GPS decreased the cell viability of both Y79 and Weri-Rb1 cells with the IC50 of 18.85 µM and 27.57 µM, respectively. Besides, GPS reduced the relative expression of proteins involved in proliferation and EMT, and the number of invading cells, while increased the apoptosis rate and the relative expressions of apoptosis proteins in retinoblastoma cells. Mechanically, GPS decreased the relative protein level of PI3K/AKT pathway, which was then recovered after 740 Y-P was applied. Correspondingly, 740 Y-P reversed the inhibitory effect of GPS on growth, invasion, and EMT, and the increased effect of GPS on apoptosis. Additionally, GPS decreased tumor volume and weight as well as the relative level of Ki-67, VEGF, p-PI3K/PI3K, and p-AKT/AKT, while increased the apoptosis rate in vivo. GPS inhibited retinoblastoma cell proliferation and invasion via deactivating the PI3K/AKT pathway in both cell and animal models.


Asunto(s)
Glucósidos Iridoides , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Animales , Ratones , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Retinoblastoma/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Carcinogénesis , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Movimiento Celular
12.
Cutan Ocul Toxicol ; 43(1): 69-74, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37908111

RESUMEN

PURPOSE: Retinoblastoma (RB) is one of the most important cancers in children with a higher rate of prevalence in developing countries. Despite different approaches to the treatment of RB, it seems necessary to discover a new approach to its treatment. Today, mitochondria are recognised as an important target in the treatment of cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) have been studied by researchers due to their important biological effects. METHODS: In this study, the effects of SPIONs on mitochondria isolated from Y79 retinoblastoma cells were investigated. RESULTS: The results showed that SPIONs were able to increase the reactive oxygen species (ROS) level and subsequently damage the mitochondrial membrane and release cytochrome c a as one of the important pro-apoptotic proteins of RB mitochondria. Furthermore, the results indicated a decrease in cell viability and an increase in caspase-3 activity in Y79 retinoblastoma cells. CONCLUSIONS: These events can lead to the killing of cancerous mitochondria. Our results suggest that SPIONs can cause mitochondrial dysfunction and death in RB mitochondria.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Mitocondrias , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/metabolismo
13.
Chin Clin Oncol ; 12(5): 52, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37964544

RESUMEN

BACKGROUND: Retinoblastoma (RB) is a retinal cancer most commonly occurred in young children. Cisplatin and etoposide had been confirmed as chemotherapy drugs in the treatment of RB, even though the phenomenon of chemotherapeutic resistance has been occurring in clinical treatment frequently. RB has been reported to be a tumor with reduced expression of yes-associated protein (YAP). However, the role of YAP protein and its correlation with the chemotherapy effect in RB still remains unknown. METHODS: Here we used human RB cell lines Y79 and RB3823 to construct YAP over-expression cell lines for exploring the specific role of YAP. In vitro, a series of techniques and methods were used to identify the biological role of YAP in RB, such as Agilent Seahorse assay, lipid peroxidation assay, intracellular reactive oxygen species (ROS) measurement, flow cytometry apoptosis assay, and other basic experimental techniques, among others. RESULTS: The cell growth and cytology experimental results found YAP can inhibit the proliferation of RB cells and promote their apoptosis (Y79 32.71% vs. 3.75%; RB3823 40.32% vs. 6.73%). The mitochondrial fuel flex test, lipid peroxide and ROS measurement confirmed that YAP over-expression could promote mitochondrial fatty-acids ß-oxidation and lipid peroxidation in RB cells. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis for the expression of lipid peroxidation related factors imply that YAP over-expression caused ferroptosis in RB cell lines. In addition, YAP transcription specific activator PY-60 (10 µM) further improved the sensitivity of cisplatin/etoposide. CONCLUSIONS: Our research results found the expression of YAP inhibits cell proliferation and promoted lipid peroxidation induced ferroptosis in RB. Interestingly, the mitochondrial oxidative phosphorylation shows an increased fatty acid dependency and decreased glucose dependency. As a result, this phenomenon improved the sensitivity of RB to cisplatin/etoposide chemotherapy in vitro. Our finding provides a potential therapeutic target for RB chemotherapy.


Asunto(s)
Ferroptosis , MicroARNs , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Preescolar , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Etopósido/farmacología , Etopósido/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Peroxidación de Lípido , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Especies Reactivas de Oxígeno/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Proliferación Celular , Lípidos/farmacología , Lípidos/uso terapéutico , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica
14.
Stem Cell Res ; 72: 103200, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37708614

RESUMEN

Retinoblastoma (RB) is a common intraocular malignancy mostly caused by variation of the tumour suppressor gene RB1. In this study, we successfully generated two induced pluripotent stem cell (iPSC) lines from an infant with non-heritable RB. Both cell clones exhibited typical iPSC characteristics with normal karyotypes, consistent pluripotency markers expression and the capability of trilineage differentiation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias de la Retina , Retinoblastoma , Lactante , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Retinoblastoma/genética , Retinoblastoma/metabolismo , Diferenciación Celular/genética , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Conjuntiva/metabolismo , Conjuntiva/patología
15.
Transl Res ; 261: 41-56, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37419277

RESUMEN

Lack of retinoblastoma (Rb) protein causes aggressive intraocular retinal tumors in children. Recently, Rb tumors have been shown to have a distinctly altered metabolic phenotype, such as reduced expression of glycolytic pathway proteins alongside altered pyruvate and fatty acid levels. In this study, we demonstrate that loss of hexokinase 1(HK1) in tumor cells rewires their metabolism allowing enhanced oxidative phosphorylation-dependent energy production. We show that rescuing HK1 or retinoblastoma protein 1 (RB1) in these Rb cells reduced cancer hallmarks such as proliferation, invasion, and spheroid formation and increased their sensitivity to chemotherapy drugs. Induction of HK1 was accompanied by a metabolic shift of the cells to glycolysis and a reduction in mitochondrial mass. Cytoplasmic HK1 bound Liver Kinase B1 and phosphorylated AMP-activated kinase-α (AMPKα Thr172), thereby reducing mitochondria-dependent energy production. We validated these findings in tumor samples from Rb patients compared to age-matched healthy retinae. HK1 or RB1 expression in Rb-/- cells led to a reduction in their respiratory capacity and glycolytic proton flux. HK1 overexpression reduced tumor burden in an intraocular tumor xenograft model. AMPKα activation by AICAR also enhanced the tumoricidal effects of the chemotherapeutic drug topotecan in vivo. Therefore, enhancing HK1 or AMPKα activity can reprogram cancer metabolism and sensitize Rb tumors to lower doses of existing treatments, a potential therapeutic modality for Rb.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Niño , Animales , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Proteínas Quinasas Activadas por AMP , Fenotipo , Modelos Animales de Enfermedad , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología
16.
Exp Eye Res ; 233: 109542, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37331647

RESUMEN

Retinoblastoma (Rb) is a rare malignant disorder affecting the developing retina of children under the age of five. Chemotherapeutic agents used for treating Rb have been associated with defects of the retinal pigment epithelium (RPE), such as hyperplasia, gliosis, and mottling. Herein, we have developed two pluripotent stem cell (PSC)-RPE models to assess the cytotoxicity of known Rb chemotherapeutics such as Melphalan, Topotecan and TW-37. Our findings demonstrate that these drugs alter the RPE by decreasing the monolayer barrier's trans-epithelial resistance and affecting the cells' phagocytic activity. Transcriptional analyses demonstrate an altered expression of genes involved in melanin and retinol processing, tight junction and apical-basal polarity pathways in both models. When applied within the clinical range, none of the drug treatments caused significant cytotoxic effects, changes to the apical-basal polarity, tight junction network or cell cycle. Together, our results demonstrate that although the most commonly used Rb chemotherapeutic drugs do not cause cytotoxicity in RPE, their application in vitro leads to compromised phagocytosis and strength of the barrier function, in addition to changes in gene expression that could alter the visual cycle in vivo. Our data demonstrate that widely used Rb chemotherapeutic drugs can have a deleterious impact on RPE cells and thus great care has to be exercised with regard to their delivery so the adjacent healthy RPE is not damaged during the course of tumor eradication.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retina , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Expresión Génica , Diferenciación Celular
17.
Adv Biol Regul ; 88: 100964, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37004354

RESUMEN

Small cell lung cancer (SCLC) often exhibits Rb deficiency, TRß and p130 deletion, and SKP2 amplification, suggesting TRß inactivation and SKP2 activation. It is reported that SKP2 targeted therapy is effective in some cancers in vitro and in vivo, but it is not reported for the treatment of SCLC and retinoblastoma. SKP2 is the synthetic lethal gene in SCLC and retinoblastoma, so SKP2 can be used for targeted therapy in SCLC and retinoblastoma. RB1 knockout mice develop several kinds of tumors, but Rb1 and SKP2 double knockout mice are healthy, suggesting that SKP2 targeted therapy may have significant effects on Rb deficient cancers with less side effects, and if successful in SCLC and retinoblastoma in vitro and in animal model, such compounds may be promising for the clinical treatment of SCLC, retinoblastoma, and variety of Rb deficient cancers. Previously our studies showed that retinoblastomas exhibit retinal cone precursor properties and depend on cone-specific thyroid hormone receptor ß2 (TRß2) and SKP2 signaling. In this study, we sought to suppress SCLC and retinoblastoma cell growth by SKP2 inhibitors as a prelude to targeted therapy in vitro and in vivo. We knocked down TRß2 and SKP2 or over-expressed p27 in SCLC and retinoblastoma cell lines to investigate SKP2 and p27 signaling alterations. The SCLC cell lines H209 as well as retinoblastoma cell lines Y79, WERI, and RB177 were treated with SKP2 inhibitor C1 at different concentrations, following which Western blotting, Immunostaining, and cell cycle kinetics studies were performed to study SKP2 and p27 expression ubiquitination, to determine impact on cell cycle regulation and growth inhibition. TRß2 knockdown in Y79, RB177 and H209 caused SKP2 downregulation and degradation, p27 up-regulation, and S phase arrest, whereas, SKP2 knockdown or p27 over-expression caused p27 accumulation and G1-S phase arrest. In the cell lines Y79, WERI, RB177, and H209 treatment with C1 caused SKP2 ubiquitination and degradation, p27 de-ubiquitination and accumulation, and cell growth arrest. SKP2 inhibitor C1 significantly suppressed retinoblastoma as well as SCLC cell growth by SKP2 degradation and p27 accumulation. In vivo study also showed inhibition of tumor growth with C1 treatment. Potential limitations of the success of such a therapeutic approach and its translational application in human primary tumors, and alternative approaches to overcome such limitations are briefly discussed for the treatment of retinoblastoma, SCLC and other RB-related cancers.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Ratones , Animales , Humanos , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Línea Celular Tumoral , Ciclo Celular , Ratones Noqueados , Pulmón/patología
18.
Sci China Life Sci ; 66(9): 2138-2151, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36949231

RESUMEN

Retinoblastoma, the most prevalent primary intraocular tumor in children, leads to vision impairment, disability and even death. In addition to RB1 inactivation, MYCN activation has been documented as another common oncogenic alteration in retinoblastoma and represents one of the high-risk molecular subtypes of retinoblastoma. However, how MYCN contributes to the progression of retinoblastoma is still incompletely understood. Here, we report that MYCN upregulates YTHDF1, which encodes one of the reader proteins for N6-methyladenosine (m6A) RNA modification, in retinoblastoma. We further found that this MYCN-upregulated m6A reader functions to promote retinoblastoma cell proliferation and tumor growth in an m6A binding-dependent manner. Mechanistically, YTHDF1 promotes the expression of multiple oncogenes by binding to their mRNAs and enhancing mRNA stability and translation in retinoblastoma cells. Taken together, our findings reveal a novel MYCN-YTHDF1 regulatory cascade in controlling retinoblastoma cell proliferation and tumor growth, pinpointing an unprecedented mechanism for MYCN amplification and/or activation to promote retinoblastoma progression.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Oncogenes , Neoplasias de la Retina/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
19.
Biotechnol J ; 18(5): e2200518, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36808896

RESUMEN

BACKGROUND: Retinoblastoma (Rb) is a rare cancer of the retina that occurs during early childhood. The disease is relatively rare but aggressive, accounting for ∼3% of childhood cancers. Treatment modalities encompass the administration of large doses of chemotherapeutic drugs, which result in multiple side-effects. Therefore, it is essential to have safe and effective newer therapies and suitable physiologically relevant, alternative-to-animal, in vitro cell culture-based models to enable rapid and efficient evaluation of potential therapies. METHODOLOGY: This investigation was focused on the development of a triple co-culture model comprising Rb, retinal epithelium, and choroid endothelial cells, using a protein coating cocktail, to recapitulate this ocular cancer under in vitro conditions. This resulting model was used for screening drug toxicity, based on the growth profile of Rb cells, using carboplatin as the model drug. Further, a combination of bevacizumab and carboplatin was evaluated using the developed model, to lower the concentration of carboplatin and thereby reduce its physiological side-effects. MAJOR RESULTS: The effect of drug treatment on the triple co-culture was assessed by increase in the apoptotic profile of Rb cells. Further, the barrier properties were found to be lower with a decrease in the angiogenetic signals that included expression of vimentin. Measurement of cytokine levels signified reduced inflammatory signals due to the combinatorial drug treatment. CONCLUSIONS: These findings validated that the triple co-culture Rb model was suitable for evaluating anti-Rb therapeutics and could thereby decrease the immense load on animal trials, which are the primary screens employed for evaluating retinal therapies.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Animales , Humanos , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Carboplatino/uso terapéutico , Células Endoteliales/metabolismo , Retina/metabolismo , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/metabolismo
20.
Exp Eye Res ; 226: 109340, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476400

RESUMEN

Retinoblastoma (RB) is the most common neoplasm found in the eye of children. There are increasing interests to develop targeted gene therapy for this disease. This study was performed to investigate the impact of long non-coding RNA (lncRNA) MEG3 on the biological features of RB cells. Vector overexpressing MEG3 was constructed and introduced into two RB cell lines. Transfected RB cells were assessed for proliferation, apoptosis, migration ability, expression levels of important genes in the PI3K/Akt/mTOR signaling pathway using qRT-PCR and Western blot analysis. Xenograft mouse models were constructed to determine the tumorigenicity of RB cells overexpressing MEG3. MEG3 mRNA level was significantly lower in RB cells than in non-cancer cells (p < 0.01). Overexpressing MEG3 resulted in significant reduction in cell proliferation (p < 0.05), migration (p < 0.01) and significant increase in apoptosis (p < 0.01). After overexpressing MEG3, p-PI3K, p-Akt and p-mTOR levels were significantly downregulated (p < 0.01). Furthermore, in the xenograft model, RB cells overexpressing MEG3 generated significantly smaller tumors as compared to RB cells that did not overexpress MEG3 (p < 0.05). Our data suggest that MEG3 increases apoptosis and reduces tumorigenicity of RB cells through inactivating the PI3K/Akt/mTOR pathway. Therefore, MEG3 could be further investigated as a potential new therapeutic agent and target for RB therapy.


Asunto(s)
ARN Largo no Codificante , Retinoblastoma , Animales , Humanos , Ratones , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/patología , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...