Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
1.
Stem Cell Res ; 77: 103432, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703668

RESUMEN

Rett syndrome is characterized by severe global developmental impairments with autistic features and loss of purposeful hand skills. Here we show that human induced pluripotent stem cell (hiPSC) lines derived from four Japanese female patients with Rett syndrome are generated from peripheral blood mononuclear cells using Sendai virus vectors. The generated hiPSC lines showed self-renewal and pluripotency and carried heterozygous frameshift, missense, or nonsense mutations in the MECP2 gene. Since the molecular pathogenesis caused by MECP2 dysfunction remains unclear, these cell resources are useful tools to establish disease models and develop new therapies for Rett syndrome.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Síndrome de Rett/genética , Síndrome de Rett/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Femenino , Mutación , Línea Celular , Diferenciación Celular
2.
Genes (Basel) ; 15(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790223

RESUMEN

Rett Syndrome (RTT) is a severe neurodevelopmental disorder predominately diagnosed in females and primarily caused by pathogenic variants in the X-linked gene Methyl-CpG Binding Protein 2 (MECP2). Most often, the disease causing the MECP2 allele resides on the paternal X chromosome while a healthy copy is maintained on the maternal X chromosome with inactivation (XCI), resulting in mosaic expression of one allele in each cell. Preferential inactivation of the paternal X chromosome is theorized to result in reduced disease severity; however, establishing such a correlation is complicated by known MECP2 genotype effects and an age-dependent increase in severity. To mitigate these confounding factors, we developed an age- and genotype-normalized measure of RTT severity by modeling longitudinal data collected in the US Rett Syndrome Natural History Study. This model accurately reflected individual increase in severity with age and preserved group-level genotype specific differences in severity, allowing for the creation of a normalized clinical severity score. Applying this normalized score to a RTT XCI dataset revealed that XCI influence on disease severity depends on MECP2 genotype with a correlation between XCI and severity observed only in individuals with MECP2 variants associated with increased clinical severity. This normalized measure of RTT severity provides the opportunity for future discovery of additional factors contributing to disease severity that may be masked by age and genotype effects.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Índice de Severidad de la Enfermedad , Inactivación del Cromosoma X , Síndrome de Rett/genética , Síndrome de Rett/patología , Inactivación del Cromosoma X/genética , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Femenino , Niño , Cromosomas Humanos X/genética , Genotipo , Preescolar , Adolescente , Adulto , Masculino , Alelos , Adulto Joven
3.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785269

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.


Asunto(s)
Conducta Animal , Espinas Dendríticas , Proteína 2 de Unión a Metil-CpG , Fenotipo , Receptor trkB , Síndrome de Rett , Animales , Síndrome de Rett/patología , Síndrome de Rett/tratamiento farmacológico , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Femenino , Receptor trkB/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Conducta Animal/efectos de los fármacos , Ligandos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Heterocigoto , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Benzamidas
4.
Stem Cells Dev ; 33(5-6): 128-142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164119

RESUMEN

Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked methyl-CpG-binding protein gene (MECP2), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes. In this study, we use a direct reprogramming method for the generation of neuronal cells from MeCP2-deficient and wild-type human dermal fibroblasts using two episomal plasmids encoding the transcription factors SOX2 and PAX6. We demonstrated that the obtained neurons exhibit a typical neuronal morphology and express the appropriate marker proteins. RNA-sequencing confirmed neuronal identity of the obtained MeCP2-deficient and wild-type neurons. Furthermore, these MeCP2-deficient neurons reflect the pathophysiology of RTT in vitro, with diminished dendritic arborization and hyperacetylation of histone H3 and H4. Treatment with MeCP2, tethered to the cell penetrating peptide TAT, ameliorated hyperacetylation of H4K16 in MeCP2-deficient neurons, which strengthens the RTT relevance of this cell model. We generated a neuronal model based on direct reprogramming derived from patient fibroblasts, providing a powerful tool to study disease mechanisms and investigating novel treatment options for RTT.


Asunto(s)
Síndrome de Rett , Humanos , Femenino , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Neuronas/metabolismo , Histonas/metabolismo , Encéfalo/patología , Mutación
5.
Exp Biol Med (Maywood) ; 248(22): 2095-2108, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38057990

RESUMEN

Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.


Asunto(s)
Síndrome de Rett , Espasmos Infantiles , Simportadores , Humanos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Mutación , Homólogo 4 de la Proteína Discs Large/genética , Simportadores/genética
6.
BMC Med Genomics ; 16(1): 181, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537631

RESUMEN

BACKGROUND: Pathogenic variation of the MECP2 gene presents mostly as Rett syndrome in females and is extremely rare in males. Most male patients with MECP2 gene mutation show MECP2 duplication syndrome. CASE PRESENTATION: Here we report a rare case in a 10-month-old boy with a hemizygous insertion mutation in MECP2 as NM_001110792, c.799_c.800insAGGAAGC, which results in a frameshift mutation (p.R267fs*6). The patient presented with severe encephalopathy in the neonatal period, accompanied by severe development backwardness, hypotonia, and ocular and oropharyngeal dyskinesia. This is the first report of this mutation, which highlights the phenotype variability associated with MECP2 variants. CONCLUSIONS: This case helps to expand the clinical spectrum associated with MECP2 variants. Close attention should be paid to the growth and development of patients carrying a MECP2 variant or Xq28 duplication. Early interventions may help improve symptoms to some certain extent.


Asunto(s)
Encefalopatías , Discinesias , Discapacidad Intelectual Ligada al Cromosoma X , Síndrome de Rett , Humanos , Masculino , Encefalopatías/genética , Discinesias/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/genética , Mutagénesis Insercional , Mutación , Fenotipo , Síndrome de Rett/genética , Síndrome de Rett/diagnóstico , Síndrome de Rett/patología
7.
Animal Model Exp Med ; 5(6): 532-541, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35785421

RESUMEN

Rett syndrome (RTT) is a progressive neurodevelopmental disorder that occurs mainly in girls with a range of typical symptoms of autism spectrum disorders. MeCP2 protein loss-of-function in neural lineage cells is the main cause of RTT pathogenicity. As it is still hard to understand the mechanism of RTT on the basis of only clinical patients or animal models, cell models cultured in vitro play indispensable roles. Here we reviewed the research progress in the pathogenesis of RTT at the cellular level, summarized the preclinical-research-related applications, and prospected potential future development.


Asunto(s)
Trastorno del Espectro Autista , Síndrome de Rett , Animales , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Neuronas/patología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Modelos Animales de Enfermedad
8.
Medicine (Baltimore) ; 100(47): e27949, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34964776

RESUMEN

ABSTRACT: FOXG1, located at chromosome 14q12, is critical for brain development, and patients with FOXG1 mutation exhibit developmental encephalopathy with high phenotypic variability, known as FOXG1 syndrome. Here, we report 3 cases of FOXG1 syndrome that presented with infantile hypotonia and microcephaly.A total of 145 children with developmental delay and/or hypotonia were evaluated by whole-exome sequencing (WES) in the pediatric neurology clinic and medical genetics center at Asan Medical Center Children's Hospital, from 2017 to 2019. Each FOXG1 mutation was confirmed by Sanger sequencing. The clinical findings of each patient with FOXG1 mutation were reviewed.WES identified de-novo, pathogenic, and heterozygous FOXG1 mutations in 3 of 145 patients in our patient cohort with developmental delay and/or hypotonia. The characteristics of brain magnetic resonance imaging (MRI) were reported as callosal anomaly, decrease in frontal volume, fornix thickening, and hypoplastic olfactory bulbs. A phenotype-genotype correlation was demonstrated as a patient with a novel missense mutation, c.761A > C (p.Tyr254Ser), in the forkhead domain had better outcome and milder brain abnormalities than the other 2 patients with truncating mutation in the Groucho binding domain site, c.958delC (p.Arg320Alafs), or N-terminal domain, c.506dup (p.Lys170GlnfsThe). Importantly, all 3 patients had hypoplastic olfactory bulbs on their brain MRI, which is a distinct and previously unrecognized feature of FOXG1 syndrome.This is the first report of FOXG1 syndrome in a Korean population; this condition accounts for 2% (3 of 145 patients) of our patient cohort with developmental delays and/or hypotonia. Our report contributes to understanding this extremely rare genetic condition in the clinical and genetic perspectives.


Asunto(s)
Factores de Transcripción Forkhead/genética , Microcefalia , Hipotonía Muscular/diagnóstico , Proteínas del Tejido Nervioso/genética , Bulbo Olfatorio/patología , Electroencefalografía , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Microcefalia/diagnóstico por imagen , Microcefalia/genética , Enfermedad de la Neurona Motora , Hipotonía Muscular/genética , Mutación/genética , Bulbo Olfatorio/diagnóstico por imagen , Síndrome de Rett/patología , Secuenciación del Exoma
9.
J Clin Invest ; 131(16)2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34228646

RESUMEN

Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.


Asunto(s)
Región CA2 Hipocampal/fisiopatología , Proteína 2 de Unión a Metil-CpG/deficiencia , Síndrome de Rett/fisiopatología , Animales , Región CA2 Hipocampal/patología , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Matriz Extracelular/fisiología , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/fisiología , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas , Síndrome de Rett/genética , Síndrome de Rett/patología
10.
Sci Rep ; 11(1): 14690, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282222

RESUMEN

Motor skill deficit is a common and invalidating symptom of Rett syndrome (RTT), a rare disease almost exclusively affecting girls during the first/second year of life. Loss-of-function mutations of the methyl-CpG-binding protein2 (MECP2; Mecp2 in rodents) gene is the cause in most patients. We recently found that fluoxetine, a selective serotonin (5-HT) reuptake inhibitor and antidepressant drug, fully rescued motor coordination deficits in Mecp2 heterozygous (Mecp2 HET) mice acting through brain 5-HT. Here, we asked whether fluoxetine could increase MeCP2 expression in the brain of Mecp2 HET mice, under the same schedule of treatment improving motor coordination. Fluoxetine increased the number of MeCP2 immuno-positive (MeCP2+) cells in the prefrontal cortex, M1 and M2 motor cortices, and in dorsal, ventral and lateral striatum. Fluoxetine had no effect in the CA3 region of the hippocampus or in any of the brain regions of WT mice. Inhibition of 5-HT synthesis abolished the fluoxetine-induced rise of MeCP2+ cells. These findings suggest that boosting 5-HT transmission is sufficient to enhance the expression of MeCP2 in several brain regions of Mecp2 HET mice. Fluoxetine-induced rise of MeCP2 could potentially rescue motor coordination and other deficits of RTT.


Asunto(s)
Encéfalo/metabolismo , Fluoxetina/farmacología , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett , Serotonina/metabolismo , Animales , Antidepresivos/farmacología , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Serotonina/fisiología
11.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916879

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Among many different roles, MeCP2 has a high phenotypic impact during the different stages of brain development. Thus, it is essential to intensively investigate the function of MeCP2, and its regulated targets, to better understand the mechanisms of the disease and inspire the development of possible therapeutic strategies. Several animal models have greatly contributed to these studies, but more recently human pluripotent stem cells (hPSCs) have been providing a promising alternative for the study of RTT. The rapid evolution in the field of hPSC culture allowed first the development of 2D-based neuronal differentiation protocols, and more recently the generation of 3D human brain organoid models, a more complex approach that better recapitulates human neurodevelopment in vitro. Modeling RTT using these culture platforms, either with patient-specific human induced pluripotent stem cells (hiPSCs) or genetically-modified hPSCs, has certainly contributed to a better understanding of the onset of RTT and the disease phenotype, ultimately allowing the development of high throughput drugs screening tests for potential clinical translation. In this review, we first provide a brief summary of the main neurological features of RTT and the impact of MeCP2 mutations in the neuropathophysiology of this disease. Then, we provide a thorough revision of the more recent advances and future prospects of RTT modeling with human neural cells derived from hPSCs, obtained using both 2D and organoids culture systems, and its contribution for the current and future clinical trials for RTT.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteína 2 de Unión a Metil-CpG , Modelos Neurológicos , Mutación , Organoides , Síndrome de Rett , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Organoides/metabolismo , Organoides/patología , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología
12.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921863

RESUMEN

Neuroprostanes, a family of non-enzymatic metabolites of the docosahexaenoic acid, have been suggested as potential biomarkers for neurological diseases. Objective biological markers are strongly needed in Rett syndrome (RTT), which is a progressive X-linked neurodevelopmental disorder that is mainly caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene with a predominant multisystemic phenotype. The aim of the study is to assess a possible association between MECP2 mutations or RTT disease progression and plasma levels of 4(RS)-4-F4t-neuroprostane (4-F4t-NeuroP) and 10(RS)-10-F4t-neuroprostane (10-F4t-NeuroP) in typical RTT patients with proven MECP2 gene mutation. Clinical severity and disease progression were assessed using the Rett clinical severity scale (RCSS) in n = 77 RTT patients. The 4-F4t-NeuroP and 10-F4t-NeuroP molecules were totally synthesized and used to identify the contents of the plasma of the patients. Neuroprostane levels were related to MECP2 mutation category (i.e., early truncating, gene deletion, late truncating, and missense), specific hotspot mutations (i.e., R106W, R133C, R168X, R255X, R270X, R294X, R306C, and T158M), and disease stage (II through IV). Circulating 4-F4t-NeuroP and 10-F4t-NeuroP were significantly related to (i) the type of MECP2 mutations where higher levels were associated to gene deletions (p ≤ 0.001); (ii) severity of common hotspot MECP2 mutation (large deletions, R168X, R255X, and R270X); (iii) disease stage, where higher concentrations were observed at stage II (p ≤ 0.002); and (iv) deficiency in walking (p ≤ 0.0003). This study indicates the biological significance of 4-F4t-NeuroP and 10-F4t-NeuroP as promising molecules to mark the disease progression and potentially gauge genotype-phenotype associations in RTT.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Neuroprostanos/sangre , Síndrome de Rett/sangre , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Enfermedades del Sistema Nervioso/sangre , Enfermedades del Sistema Nervioso/genética , Síndrome de Rett/genética , Síndrome de Rett/patología , Adulto Joven
13.
Mol Cell ; 81(6): 1260-1275.e12, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561390

RESUMEN

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.


Asunto(s)
Metilación de ADN , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Animales , Islas de CpG , Técnicas de Sustitución del Gen , Células HeLa , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Transgénicos , Mutación , Células 3T3 NIH , Neuronas/patología , Dominios Proteicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología
14.
Arch Biochem Biophys ; 700: 108790, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33549528

RESUMEN

Rett Syndrome (RTT) is a rare neurodevelopmental disorder caused in the 95% of cases by mutations in the X-linked MECP2 gene, affecting almost exclusively females. While the genetic basis of RTT is known, the exact pathogenic mechanisms that lead to the broad spectrum of symptoms still remain enigmatic. Alterations in the redox homeostasis have been proposed among the contributing factors to the development and progression of the syndrome. Mitochondria appears to play a central role in RTT oxidative damage and a plethora of mitochondrial defects has already been recognized. However, mitochondrial dynamics and mitophagy, which represent critical pathways in regulating mitochondrial quality control (QC), have not yet been investigated in RTT. The present work showed that RTT fibroblasts have networks of hyperfused mitochondria with morphological abnormalities and increased mitochondrial volume. Moreover, analysis of mitophagic flux revealed an impaired PINK1/Parkin-mediated mitochondrial removal associated with an increase of mitochondrial fusion proteins Mitofusins 1 and 2 (MFN1 and 2) and a decrease of fission mediators including Dynamin related protein 1 (DRP1) and Mitochondrial fission 1 protein (FIS1). Finally, challenging RTT fibroblasts with FCCP and 2,4-DNP did not trigger a proper apoptotic cell death due to a defective caspase 3/7 activation. Altogether, our findings shed light on new aspects of mitochondrial dysfunction in RTT that are represented by defective mitochondrial QC pathways, also providing new potential targets for a therapeutic intervention aimed at slowing down clinical course and manifestations in the affected patients.


Asunto(s)
Apoptosis , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Mitofagia , Síndrome de Rett/metabolismo , Adolescente , Adulto , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Niño , Dinaminas/genética , Dinaminas/metabolismo , Femenino , Fibroblastos/patología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Síndrome de Rett/genética , Síndrome de Rett/patología
15.
Biomolecules ; 11(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429932

RESUMEN

Rett Syndrome (RTT) is a severe, rare, and progressive developmental disorder with patients displaying neurological regression and autism spectrum features. The affected individuals are primarily young females, and more than 95% of patients carry de novo mutation(s) in the Methyl-CpG-Binding Protein 2 (MECP2) gene. While the majority of RTT patients have MECP2 mutations (classical RTT), a small fraction of the patients (atypical RTT) may carry genetic mutations in other genes such as the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1. Due to the neurological basis of RTT symptoms, MeCP2 function was originally studied in nerve cells (neurons). However, later research highlighted its importance in other cell types of the brain including glia. In this regard, scientists benefitted from modeling the disease using many different cellular systems and transgenic mice with loss- or gain-of-function mutations. Additionally, limited research in human postmortem brain tissues provided invaluable findings in RTT pathobiology and disease mechanism. MeCP2 expression in the brain is tightly regulated, and its altered expression leads to abnormal brain function, implicating MeCP2 in some cases of autism spectrum disorders. In certain disease conditions, MeCP2 homeostasis control is impaired, the regulation of which in rodents involves a regulatory microRNA (miR132) and brain-derived neurotrophic factor (BDNF). Here, we will provide an overview of recent advances in understanding the underlying mechanism of disease in RTT and the associated genetic mutations in the MECP2 gene along with the pathobiology of the disease, the role of the two most studied protein variants (MeCP2E1 and MeCP2E2 isoforms), and the regulatory mechanisms that control MeCP2 homeostasis network in the brain, including BDNF and miR132.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Epigénesis Genética , Homeostasis/genética , Humanos , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Transducción de Señal
16.
J Cutan Pathol ; 48(7): 908-910, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33345376

RESUMEN

Rett syndrome (RTT) is a progressive neurological disorder, affecting females with mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). While MECP2 has been implicated in cancers of the breast, colon, and prostrate, cancer in patients with RTT is rare. We present a case of malignant melanoma in a patient with RTT, which additionally, displayed hitherto undescribed nuclear features, resembling herpes simplex virus cytopathic effects.


Asunto(s)
Efecto Citopatogénico Viral/genética , Melanoma/patología , Síndrome de Rett/patología , Simplexvirus/metabolismo , Neoplasias Cutáneas/patología , Adulto , Progresión de la Enfermedad , Femenino , Humanos , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/cirugía , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Síndrome de Rett/complicaciones , Síndrome de Rett/genética , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/cirugía , Melanoma Cutáneo Maligno
17.
Clin Genet ; 99(1): 157-165, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33047306

RESUMEN

Characterized by early-onset seizures, global developmental delay and severe motor deficits, CDKL5 deficiency disorder is caused by pathogenic variants in the cyclin-dependent kinase-like 5 gene. Previous efforts to investigate genotype-phenotype relationships have been limited due to small numbers of recurrent mutations and small cohort sizes. Using data from the International CDKL5 Disorder Database we examined genotype-phenotype relationships for 13 recurrent CDKL5 variants and the previously analyzed historic variant groupings. We have applied the CDKL5 Developmental Score (CDS) and an adapted version of the CDKL5 Clinical Severity Assessment (CCSA), to grade the severity of phenotype and developmental outcomes for 285 individuals with CDKL5 variants. Comparisons of adapted CCSA and CDS between recurrent variants and variant groups were performed using multiple linear regression adjusting for age and sex. Individuals with the missense variant, p.Arg178Trp, had the highest mean adapted CCSA and lowest mean developmental scores. Other variants producing severe phenotypes included p.Arg559* and p.Arg178Gln. Variants producing milder phenotypes included p.Arg134*, p.Arg550*, and p.Glu55Argfs*20. There are observed differences in phenotype severity and developmental outcomes for individuals with different CDKL5 variants. However, the historic variant groupings did not seem to reflect differences in phenotype severity or developmental outcomes as clearly as analyzed by individual variants.


Asunto(s)
Epilepsia/genética , Síndromes Epilépticos/genética , Estudios de Asociación Genética , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Epilepsia/patología , Síndromes Epilépticos/patología , Femenino , Genotipo , Humanos , Masculino , Mutación Missense/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Síndrome de Rett/genética , Síndrome de Rett/patología , Convulsiones/genética , Convulsiones/patología , Espasmos Infantiles/patología
18.
J Cell Physiol ; 236(5): 3615-3628, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33169374

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disease caused mostly by mutations in the MECP2 gene. People with RTT show breathing dysfunction attributable to the high rate of sudden death. Previous studies have shown that insufficient GABA synaptic inhibition contributes to the breathing abnormalities in mouse models of RTT, while it remains elusive how the glycine system is affected. We found that optogenetic stimulation of GAD-expressing neurons in mice produced GABAergic and glycinergic postsynaptic inhibitions of neurons in the hypoglossal nucleus (XII) and the dorsal motor nucleus of vagus (DMNV). By sequential applications of bicuculline and strychnine, such inhibition appeared approximately 44% GABAA ergic and 52% glycinergic in XII neurons, and approximately 49% GABAA ergic and 46% glycinergic in DMNV neurons. Miniature inhibitory postsynaptic potentials (mIPSCs) in these neurons were approximately 47% GABAA ergic and 49% glycinergic in XII neurons, and approximately 48% versus 50% in DMNV neurons, respectively. Consistent with the data, our single-cell polymerase chain reaction studies indicated that transcripts of GABAA receptor γ2 subunit (GABAA Rγ2) and glycine receptor ß subunit (GlyRß) were simultaneously expressed in these cells. In MeCP2R168X mice, proportions of GABAA ergic and glycinergic mIPSCs became approximately 28% versus 69% in XII neurons, and approximately 31% versus 66% in DMNV cells. In comparison with control mice, the GABAA ergic and glycinergic mIPSCs decreased significantly in the XII and DMNV neurons from the MeCP2R168X mice, so did the transcripts of GABAA Rγ2 and GlyRß. These results suggest that XII and DMNV neurons adopt dual GABAA ergic and glycinergic synaptic inhibitions, and with Mecp2 disruption these neurons rely more on glycinergic synaptic inhibition.


Asunto(s)
Tronco Encefálico/fisiopatología , Glicina/farmacología , Inhibición Neural/fisiología , Neuronas/patología , Síndrome de Rett/patología , Síndrome de Rett/fisiopatología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/farmacología , Animales , Bicuculina/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Glutamato Descarboxilasa/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Optogenética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de Glicina/antagonistas & inhibidores , Receptores de Glicina/metabolismo , Sinapsis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Nervio Vago/patología
19.
Protein Cell ; 12(8): 639-652, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32851591

RESUMEN

Rett syndrome (RTT) is a progressive neurodevelopmental disorder, mainly caused by mutations in MeCP2 and currently with no cure. We report here that neurons from R106W MeCP2 RTT human iPSCs as well as human embryonic stem cells after MeCP2 knockdown exhibit consistent and long-lasting impairment in maturation as indicated by impaired action potentials and passive membrane properties as well as reduced soma size and spine density. Moreover, RTT-inherent defects in neuronal maturation could be pan-neuronal and occurred in neurons with both dorsal and ventral forebrain features. Knockdown of MeCP2 led to more severe neuronal deficits as compared to RTT iPSC-derived neurons, which appeared to retain partial function. Strikingly, consistent deficits in nuclear size, dendritic complexity and circuitry-dependent spontaneous postsynaptic currents could only be observed in MeCP2 knockdown neurons but not RTT iPSC-derived neurons. Both neuron-intrinsic and circuitry-dependent deficits of MeCP2-deficient neurons could be fully or partially rescued by re-expression of wild type or T158M MeCP2, strengthening the dosage dependency of MeCP2 on disease phenotypes and also the partial function of the mutant. Our findings thus reveal stable neuronal maturation deficits and unexpectedly, graded sensitivities of neuron-inherent and neural transmission phenotypes towards the extent of MeCP2 deficiency, which is informative for future therapeutic development.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Síndrome de Rett/genética , Potenciales de Acción/genética , Secuencia de Bases , Diferenciación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Dosificación de Gen , Expresión Génica , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Proteína 2 de Unión a Metil-CpG/deficiencia , Células-Madre Neurales/patología , Neuronas/patología , Fenotipo , Cultivo Primario de Células , Prosencéfalo/patología , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Índice de Severidad de la Enfermedad , Transmisión Sináptica
20.
Am J Med Genet A ; 185(2): 579-583, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33251766

RESUMEN

Several patients with beta-propeller protein-associated neurodegeneration (BPAN)/static encephalopathy with neurodegeneration in adulthood have been reported to present Rett syndrome (RTT)-like features. This report presents an individual with BPAN showing clinical features of RTT. Psychomotor delay and epilepsy onset were noted at 1 year, and regression began at 4 years. Screening of the methyl-CpG binding protein 2 (MECP2) did not show variants. At 22 years, basal ganglia iron deposits were found on magnetic resonance imaging (MRI), and the WD-domain repeat 45 gene (WDR45) variant was identified. Review of the literature showed that BPAN with RTT-like features is associated with more epileptic seizures and less deceleration of head growth, breathing irregularities, and cold extremities than classic RTT with MECP2 variants. These clinical presentations may provide clues for differentiating between these two disorders. However, both WDR45 and MECP2 should be screened in patients presenting a clinical picture of RTT without specific MRI findings of BPAN.


Asunto(s)
Encefalopatías/genética , Proteínas Portadoras/genética , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Adolescente , Adulto , Ganglios Basales/metabolismo , Ganglios Basales/patología , Encefalopatías/complicaciones , Encefalopatías/diagnóstico por imagen , Encefalopatías/patología , Niño , Preescolar , Epilepsia Parcial Compleja/complicaciones , Epilepsia Parcial Compleja/diagnóstico por imagen , Epilepsia Parcial Compleja/genética , Epilepsia Parcial Compleja/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Hierro , Trastornos del Metabolismo del Hierro/complicaciones , Trastornos del Metabolismo del Hierro/diagnóstico por imagen , Trastornos del Metabolismo del Hierro/genética , Trastornos del Metabolismo del Hierro/patología , Imagen por Resonancia Magnética , Síndrome de Rett/complicaciones , Síndrome de Rett/diagnóstico por imagen , Síndrome de Rett/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...