Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34702736

RESUMEN

We describe an unvaccinated child at risk for life-threatening COVID-19 due to an inherited deficiency of IRF9, which governs ISGF-3-dependent responses to type I and III interferons (IFN). She was admitted, with a high nasal SARS-CoV-2 load on day 1 of upper respiratory tract infection. She was viremic on day 2 and received casirivimab and imdevimab. Her clinical manifestations and viremia disappeared on days 3 and 4, respectively. Circulating SARS-CoV-2 virus induced the expression of IFN-stimulated genes in leukocytes on day 1, whereas the secretion of blood type I IFNs, which peaked on day 4, did not. Antibody-mediated SARS-CoV-2 neutralization is, therefore, sufficient to overcome a deficiency of antiviral IFNs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , COVID-19/terapia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Preescolar , Femenino , Humanos , Huésped Inmunocomprometido , Mutación , Carga Viral
2.
Eur J Immunol ; 51(5): 1039-1061, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33729549

RESUMEN

Type I IFNs are so-named because they interfere with viral infection in vertebrate cells. The study of cellular responses to type I IFNs led to the discovery of the JAK-STAT signaling pathway, which also governs the response to other cytokine families. We review here the outcome of viral infections in mice and humans with engineered and inborn deficiencies, respectively, of (i) IFNAR1 or IFNAR2, selectively disrupting responses to type I IFNs, (ii) STAT1, STAT2, and IRF9, also impairing cellular responses to type II (for STAT1) and/or III (for STAT1, STAT2, IRF9) IFNs, and (iii) JAK1 and TYK2, also impairing cellular responses to cytokines other than IFNs. A picture is emerging of greater redundancy of human type I IFNs for protective immunity to viruses in natural conditions than was initially anticipated. Mouse type I IFNs are essential for protection against a broad range of viruses in experimental conditions. These findings suggest that various type I IFN-independent mechanisms of human cell-intrinsic immunity to viruses have yet to be discovered.


Asunto(s)
Predisposición Genética a la Enfermedad , Interferón Tipo I/metabolismo , Transducción de Señal , Virosis/etiología , Virosis/metabolismo , Alelos , Animales , Modelos Animales de Enfermedad , Genotipo , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Interferones/metabolismo , Janus Quinasa 1/deficiencia , Síndrome de Job/genética , Ratones , Ratones Noqueados , Mutación , Fenotipo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT2/deficiencia , TYK2 Quinasa/deficiencia , TYK2 Quinasa/genética
4.
J Exp Med ; 215(10): 2567-2585, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143481

RESUMEN

Life-threatening pulmonary influenza can be caused by inborn errors of type I and III IFN immunity. We report a 5-yr-old child with severe pulmonary influenza at 2 yr. She is homozygous for a loss-of-function IRF9 allele. Her cells activate gamma-activated factor (GAF) STAT1 homodimers but not IFN-stimulated gene factor 3 (ISGF3) trimers (STAT1/STAT2/IRF9) in response to IFN-α2b. The transcriptome induced by IFN-α2b in the patient's cells is much narrower than that of control cells; however, induction of a subset of IFN-stimulated gene transcripts remains detectable. In vitro, the patient's cells do not control three respiratory viruses, influenza A virus (IAV), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). These phenotypes are rescued by wild-type IRF9, whereas silencing IRF9 expression in control cells increases viral replication. However, the child has controlled various common viruses in vivo, including respiratory viruses other than IAV. Our findings show that human IRF9- and ISGF3-dependent type I and III IFN responsive pathways are essential for controlling IAV.


Asunto(s)
Alelos , Homocigoto , Gripe Humana , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Orthomyxoviridae/inmunología , Neumonía Viral , Femenino , Humanos , Lactante , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/patología , Interferón alfa-2/genética , Interferón alfa-2/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Neumonía Viral/genética , Neumonía Viral/inmunología , Neumonía Viral/patología
5.
PLoS One ; 8(6): e65801, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762429

RESUMEN

Despite promising preclinical studies, oncolytic viral therapy for malignant gliomas has resulted in variable, but underwhelming results in clinical evaluations. Of concern are the low levels of tumour infection and viral replication within the tumour. This discrepancy between the laboratory and the clinic could result from the disparity of xenograft versus syngeneic models in determining in vivo viral infection, replication and treatment efficacy. Here we describe a panel of primary mouse glioma lines derived from Nf1 (+/-) Trp53 (+/-) mice in the C57Bl/6J background for use in the preclinical testing of the oncolytic virus Myxoma (MYXV). These lines show a range of susceptibility to MYXV replication in vitro, but all succumb to viral-mediated cell death. Two of these lines orthotopically grafted produced aggressive gliomas. Intracranial injection of MYXV failed to result in sustained viral replication or treatment efficacy, with minimal tumour infection that was completely resolved by 7 days post-infection. We hypothesized that the stromal production of Type-I interferons (IFNα/ß) could explain the resistance seen in these models; however, we found that neither the cell lines in vitro nor the tumours in vivo produce any IFNα/ß in response to MYXV infection. To confirm IFNα/ß did not play a role in this resistance, we ablated the ability of tumours to respond to IFNα/ß via IRF9 knockdown, and generated identical results. Our studies demonstrate that these syngeneic cell lines are relevant preclinical models for testing experimental glioma treatments, and show that IFNα/ß is not responsible for the MYXV treatment resistance seen in syngeneic glioma models.


Asunto(s)
Neoplasias Encefálicas/terapia , Resistencia a la Enfermedad/inmunología , Glioma/terapia , Myxoma virus/crecimiento & desarrollo , Proteínas de Neurofilamentos/inmunología , Viroterapia Oncolítica , Proteína p53 Supresora de Tumor/inmunología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a la Enfermedad/genética , Femenino , Glioma/genética , Glioma/inmunología , Glioma/patología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Interferón-alfa/inmunología , Interferón beta/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Myxoma virus/inmunología , Proteínas de Neurofilamentos/deficiencia , Proteínas de Neurofilamentos/genética , Trasplante Isogénico , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Replicación Viral , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Hepatology ; 58(2): 603-16, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23471885

RESUMEN

UNLABELLED: Obesity is a calorie-excessive state associated with high risk of diabetes, atherosclerosis, and certain types of tumors. Obesity may induce inflammation and insulin resistance (IR). We found that the expression of interferon (IFN) regulatory factor 9 (IRF9), a major transcription factor mediating IFN responses, was lower in livers of obese mice than in those of their lean counterparts. Furthermore, whole-body IRF9 knockout (KO) mice were more obese and had aggravated IR, hepatic steatosis, and inflammation after chronic high-fat diet feeding. In contrast, adenoviral-mediated hepatic IRF9 overexpression in both diet-induced and genetically (ob/ob) obese mice showed markedly improved hepatic insulin sensitivity and attenuated hepatic steatosis and inflammation. We further employed a yeast two-hybrid screening system to investigate the interactions between IRF9 and its cofactors. Importantly, we identified that IRF9 interacts with peroxisome proliferator-activated receptor alpha (PPAR-α), an important metabolism-associated nuclear receptor, to activate PPAR-α target genes. In addition, liver-specific PPAR-α overexpression rescued insulin sensitivity and ameliorated hepatic steatosis and inflammation in IRF9 KO mice. CONCLUSION: IRF9 attenuates hepatic IR, steatosis, and inflammation through interaction with PPAR-α.


Asunto(s)
Hígado Graso/fisiopatología , Resistencia a la Insulina/fisiología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/fisiología , Hígado/fisiopatología , Obesidad/fisiopatología , Adenoviridae/genética , Animales , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Femenino , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/inducido químicamente , Obesidad/genética , PPAR gamma/fisiología , Factores Sexuales
7.
J Virol ; 86(12): 6932-46, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22496215

RESUMEN

Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT2/inmunología , Animales , Linfocitos T CD4-Positivos/virología , Femenino , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Interferones/genética , Interferones/inmunología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/deficiencia , Factor de Transcripción STAT2/genética
8.
PLoS One ; 7(2): e31688, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363706

RESUMEN

The innate host response to virus infection is largely dominated by the production of type I interferon and interferon stimulated genes. In particular, fibroblasts respond robustly to viral infection and to recognition of viral signatures such as dsRNA with the rapid production of type I interferon; subsequently, fibroblasts are a key cell type in antiviral protection. We recently found, however, that primary fibroblasts deficient for the production of interferon, interferon stimulated genes, and other cytokines and chemokines mount a robust antiviral response against both DNA and RNA viruses following stimulation with dsRNA. Nitric oxide is a chemical compound with pleiotropic functions; its production by phagocytes in response to interferon-γ is associated with antimicrobial activity. Here we show that in response to dsRNA, nitric oxide is rapidly produced in primary fibroblasts. In the presence of an intact interferon system, nitric oxide plays a minor but significant role in antiviral protection. However, in the absence of an interferon system, nitric oxide is critical for the protection against DNA viruses. In primary fibroblasts, NF-κB and interferon regulatory factor 1 participate in the induction of inducible nitric oxide synthase expression, which subsequently produces nitric oxide. As large DNA viruses encode multiple and diverse immune modulators to disable the interferon system, it appears that the nitric oxide pathway serves as a secondary strategy to protect the host against viral infection in key cell types, such as fibroblasts, that largely rely on the type I interferon system for antiviral protection.


Asunto(s)
Fibroblastos/inmunología , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Óxido Nítrico/metabolismo , Transducción de Señal , Animales , Antivirales , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/virología , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Factor 1 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/deficiencia , Factor 3 Regulador del Interferón/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Ratones , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Poli I-C/farmacología , ARN Bicatenario/metabolismo , Transducción de Señal/efectos de los fármacos , Solubilidad/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Replicación Viral/efectos de los fármacos
9.
J Virol ; 84(18): 9170-80, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20592082

RESUMEN

Hepatitis C virus (HCV) infection causes significant morbidity, and efficient mouse models would greatly facilitate virus studies and the development of effective vaccines and new therapeutic agents. Entry factors, innate immunity, and host factors needed for viral replication represent the initial barriers that restrict HCV infection of mouse cells. Experiments in this paper consider early postentry steps of viral infection and investigate the roles of interferon regulatory factors (IRF-3 and IRF-9) and microRNA (miR-122) in promoting HCV replication in mouse embryo fibroblasts (MEFs) that contain viral subgenomic replicons. While wild-type murine fibroblasts are restricted for HCV RNA replication, deletion of IRF-3 alone can facilitate replicon activity in these cells. This effect is thought to be related to the inactivation of the type I interferon synthesis mediated by IRF-3. Additional deletion of IRF-9 to yield IRF-3(-/-) IRF-9(-/-) MEFs, which have blocked type I interferon signaling, did not increase HCV replication. Expression of liver-specific miR-122 in MEFs further stimulated the synthesis of HCV replicons in the rodent fibroblasts. The combined effects of miR-122 expression and deletion of IRF-3 produced a cooperative stimulation of HCV subgenome replication. miR-122 and IRF-3 are independent host factors that are capable of influencing HCV replication, and our findings could help to establish mouse models and other cell systems that support HCV growth and particle formation.


Asunto(s)
Fibroblastos/virología , Hepacivirus/inmunología , Hepacivirus/fisiología , Factor 3 Regulador del Interferón/deficiencia , MicroARNs/biosíntesis , Replicación Viral , Animales , Factor 3 Regulador del Interferón/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Ratones , Ratones Noqueados , Eliminación de Secuencia
10.
J Immunol ; 184(4): 1784-92, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20083668

RESUMEN

In myeloid dendritic cells, activation of the IL-27p28 gene is selectively induced by ligands of TLR4 or TLR3, both coupled to the Toll/IL-1R-related domain-containing adaptor-inducing IFN/IFN regulatory factor (IRF)3 pathway. In response to both ligands, autocrine type 1 IFN production was required for optimal IL-27p28 expression. Type I IFN signaling was necessary for sustained IRF1 activation and formation of the IRF9-containing IFN-stimulated gene factor 3 complex. Indeed, we demonstrated that IRF1 and IRF9 are sequentially activated and recruited to the IL-27p28 IFN-stimulated regulatory element site. Involvement of IRF1 and IRF9 in the induction of IL-27p28 was confirmed in vitro and upon in vivo exposure to TLR ligands. Thus, in response to TLR4 or TLR3 ligation, the initial induction of the IL-27p28 gene depends on the recruitment of IRF1 and IRF3, whereas transcriptional amplification requires recruitment of the IFN-stimulated gene factor 3 complex. These results highlight the complex molecular interplay between TLRs and type I IFNs for the control of IL-27 synthesis.


Asunto(s)
Factor 3 Regulador del Interferón/fisiología , Interleucinas/genética , Subunidades de Proteína/genética , Receptores Toll-Like/fisiología , Activación Transcripcional/inmunología , Animales , Línea Celular , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Factor 1 Regulador del Interferón/deficiencia , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/fisiología , Factor 3 Regulador del Interferón/deficiencia , Factor 3 Regulador del Interferón/genética , Interferón Tipo I/fisiología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/fisiología , Interleucinas/biosíntesis , Interleucinas/metabolismo , Ratones , Subunidades de Proteína/metabolismo , Receptor Cross-Talk/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
11.
J Neurosci ; 30(3): 1149-57, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089923

RESUMEN

Type I interferons (IFN) are crucial in host defense but also are implicated as causative factors for neurological disease. Interferon regulatory factor (IRF9) is involved in type I IFN-regulated gene expression where it associates with STAT1:STAT2 heterodimers to form the transcriptional complex ISGF3. The role of IRF9 in cellular responses to type I IFN is poorly defined in vivo and hence was examined here. While transgenic mice (termed GIFN) with chronic production of low levels of IFN-alpha in the CNS were relatively unaffected, the same animals lacking IRF9 [GIFNxIRF9 knock-out (KO)] had cataracts, became moribund, and died prematurely. The brain of GIFNxIRF9 KO mice showed calcification with pronounced inflammation and neurodegeneration whereas inflammation and retinal degeneration affected the eyes. In addition, IFN-gamma-like gene expression in the CNS in association with IFN-gamma mRNA and increased phosphotyrosine-STAT1 suggested a role for IFN-gamma. However, GIFNxIRF9 KO mice deficient for IFN-gamma signaling developed an even more severe and accelerated disease, indicating that IFN-gamma was protective. In IRF9-deficient cultured mixed glial cells, IFN-alpha induced prolonged activation of STAT1 and STAT2 and induced the expression of IFN-gamma-like genes. We conclude that (1) type I IFN signaling and cellular responses can occur in vivo in the absence of IRF9, (2) IRF9 protects against the pathophysiological actions of type I IFN in the CNS, and (3) STAT1 and possibly STAT2 participate in alternative IRF9-independent signaling pathways activated by IFN-alpha in glial cells resulting in enhanced IFN-gamma-like responses.


Asunto(s)
Interferón Tipo I/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Células Cultivadas , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Interferón Tipo I/genética , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología , Neuroglía/metabolismo , Neuroglía/ultraestructura , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/metabolismo , Análisis de Supervivencia
12.
J Clin Invest ; 118(4): 1417-26, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18340381

RESUMEN

A hallmark of SLE is the production of high-titer, high-affinity, isotype-switched IgG autoantibodies directed against nucleic acid-associated antigens. Several studies have established a role for both type I IFN (IFN-I) and the activation of TLRs by nucleic acid-associated autoantigens in the pathogenesis of this disease. Here, we demonstrate that 2 IFN-I signaling molecules, IFN regulatory factor 9 (IRF9) and STAT1, were required for the production of IgG autoantibodies in the pristane-induced mouse model of SLE. In addition, levels of IgM autoantibodies were increased in pristane-treated Irf9 -/- mice, suggesting that IRF9 plays a role in isotype switching in response to self antigens. Upregulation of TLR7 by IFN-alpha was greatly reduced in Irf9 -/- and Stat1 -/- B cells. Irf9 -/- B cells were incapable of being activated through TLR7, and Stat1 -/- B cells were impaired in activation through both TLR7 and TLR9. These data may reveal a novel role for IFN-I signaling molecules in both TLR-specific B cell responses and production of IgG autoantibodies directed against nucleic acid-associated autoantigens. Our results suggest that IFN-I is upstream of TLR signaling in the activation of autoreactive B cells in SLE.


Asunto(s)
Autoanticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Inmunoglobulina G/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Factor de Transcripción STAT1/metabolismo , Receptor Toll-Like 7/metabolismo , Adyuvantes Inmunológicos , Animales , Perfilación de la Expresión Génica , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/clasificación , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Plasmacitoma/genética , Plasmacitoma/metabolismo , Plasmacitoma/patología , Unión Proteica , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/genética , Receptor Toll-Like 9/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA