Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 12(5): 1487-1496, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37042633

RESUMEN

3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is the bioactive form of sulfate and is involved in all biological sulfation reactions. The enzymatic transformation method for PAPS is promising, but the low efficiency and high cost of enzyme purification and storage restrict its practical applications. Here, we reported PAPS biosynthesis with a protein crystalline inclusion (PCI)-based enzyme immobilization system. First, the in vivo crystalline inclusion protein CipA was identified as an efficient auto-assembly tag for immobilizing the bifunctional PAPS synthase (ASAK). After characterizing the pyrophosphokinase activity of a polyphosphate exonuclease PaPPX from Pseudomonas aeruginosa, and optimizing the linker fragment, auto-assembled enzymes ASAK-PT-CipA and PaPPX-PT-CipA were constructed. Then, the auto-assembled enzymes ASAK-PT-CipA and PaPPX-PT-CipA with high stability were co-expressed and immobilized for constructing a transformation system. The highest transformation rate of PAPS from ATP and sulfate reached 90%, and the immobilized enzyme can be reused 10 times. The present work provided a convenient, efficient, and easy to be enlarged auto-immobilization system for PAPS biosynthesis from ATP and sulfate. The immobilization system also represented a new approach to reduce the production cost of PAPS by facilitating the purification, storage, and reuse of related enzymes, and it would boost the studies on biotechnological production of glycosaminoglycans and sulfur-containing natural compounds.


Asunto(s)
Enzimas Inmovilizadas , Sulfato Adenililtransferasa , Sulfato Adenililtransferasa/genética , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/metabolismo , Sulfatos/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Adenosina Trifosfato/metabolismo
2.
Biochem Biophys Res Commun ; 643: 105-110, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36592583

RESUMEN

The 3'-phosphoadenosine-5'-phosphosulfate (PAPS) molecule is essential during enzyme-catalyzed sulfation reactions as a sulfate donor and is an intermediate in the reduction of sulfate to sulfite in the sulfur assimilation pathway. PAPS is produced through a two-step reaction involving ATP sulfurylase and adenosine 5'-phosphosulfate (APS) kinase enzymes/domains. However, archaeal APS kinases have not yet been characterized and their mechanism of action remains unclear. Here, we first structurally characterized APS kinase from the hyperthermophilic archaeon Archaeoglobus fulgidus, (AfAPSK). We demonstrated the PAPS production activity of AfAPSK at the optimal growth temperature (83 °C). Furthermore, we determined the two crystal structures of AfAPSK: ADP complex and ATP analog adenylyl-imidodiphosphate (AMP-PNP)/Mg2+/APS complex. Structural and complementary mutational analyses revealed the catalytic and substrate recognition mechanisms of AfAPSK. This study also hints at the molecular basis behind the thermal stability of AfAPSK.


Asunto(s)
Archaeoglobus fulgidus , Fosfotransferasas (Aceptor de Grupo Alcohol) , Archaeoglobus fulgidus/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sulfato Adenililtransferasa/química , Adenosina Fosfosulfato/química , Adenosina Fosfosulfato/metabolismo , Fosfoadenosina Fosfosulfato , Sulfatos/metabolismo , Adenosina Trifosfato/metabolismo
3.
BMC Plant Biol ; 22(1): 491, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36253724

RESUMEN

BACKGROUND: ATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants. RESULTS: In this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were commonly present. CONCLUSION: Our study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic pathway in higher plants.


Asunto(s)
Arabidopsis , Cardamine , Selenio , Adenosina Trifosfato , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Simulación del Acoplamiento Molecular , Ácido Selénico , Ácido Selenioso/metabolismo , Selenio/metabolismo , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/genética , Sulfato Adenililtransferasa/metabolismo , Sulfatos/metabolismo , Sulfitos/metabolismo
4.
Biochem Biophys Res Commun ; 586: 1-7, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818583

RESUMEN

Sulfation is an essential modification on biomolecules in living cells, and 3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is its unique and universal sulfate donor. Human PAPS synthases (PAPSS1 and 2) are the only enzymes that catalyze PAPS production from inorganic sulfate. Unexpectedly, PAPSS1 and PAPSS2 do not functional complement with each other, and abnormal function of PAPSS2 but not PAPSS1 leads to numerous human diseases including bone development diseases, hormone disorder and cancers. Here, we reported the crystal structures of ATP-sulfurylase domain of human PAPSS2 (ATPS2) and ATPS2 in complex with is product 5'-phosphosulfate (APS). We demonstrated that ATPS2 recognizes the substrates by using family conserved residues located on the HXXH and PP motifs, and achieves substrate binding and releasing by employing a non-conserved phenylalanine (Phe550) through a never observed flipping mechanism. Our discovery provides additional information to better understand the biological function of PAPSS2 especially in tumorigenesis, and may facilitate the drug discovery against this enzyme.


Asunto(s)
Adenosina Trifosfato/química , Complejos Multienzimáticos/química , Proteínas de Neoplasias/química , Fosfoadenosina Fosfosulfato/química , Sulfato Adenililtransferasa/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Sulfato Adenililtransferasa/genética , Sulfato Adenililtransferasa/metabolismo , Termodinámica
5.
J Biol Chem ; 293(25): 9724-9735, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29743239

RESUMEN

The high-energy sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), generated by human PAPS synthase isoforms PAPSS1 and PAPSS2, is required for all human sulfation pathways. Sulfotransferase SULT2A1 uses PAPS for sulfation of the androgen precursor dehydroepiandrosterone (DHEA), thereby reducing downstream activation of DHEA to active androgens. Human PAPSS2 mutations manifest with undetectable DHEA sulfate, androgen excess, and metabolic disease, suggesting that ubiquitous PAPSS1 cannot compensate for deficient PAPSS2 in supporting DHEA sulfation. In knockdown studies in human adrenocortical NCI-H295R1 cells, we found that PAPSS2, but not PAPSS1, is required for efficient DHEA sulfation. Specific APS kinase activity, the rate-limiting step in PAPS biosynthesis, did not differ between PAPSS1 and PAPSS2. Co-expression of cytoplasmic SULT2A1 with a cytoplasmic PAPSS2 variant supported DHEA sulfation more efficiently than co-expression with nuclear PAPSS2 or nuclear/cytosolic PAPSS1. Proximity ligation assays revealed protein-protein interactions between SULT2A1 and PAPSS2 and, to a lesser extent, PAPSS1. Molecular docking studies showed a putative binding site for SULT2A1 within the PAPSS2 APS kinase domain. Energy-dependent scoring of docking solutions identified the interaction as specific for the PAPSS2 and SULT2A1 isoforms. These findings elucidate the mechanistic basis for the selective requirement for PAPSS2 in human DHEA sulfation.


Asunto(s)
Carcinoma Corticosuprarrenal/metabolismo , Sulfato de Deshidroepiandrosterona/metabolismo , Complejos Multienzimáticos/metabolismo , Sulfato Adenililtransferasa/metabolismo , Sulfotransferasas/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Sulfato de Deshidroepiandrosterona/química , Humanos , Simulación del Acoplamiento Molecular , Complejos Multienzimáticos/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Sulfato Adenililtransferasa/química , Sulfotransferasas/química , Células Tumorales Cultivadas
6.
Biosens Bioelectron ; 102: 518-524, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29202437

RESUMEN

Traditionally, genomic DNA detection is relay on a rigorous DNA amplification process, which always accompanied with complicated gel electrophoresis or expensive fluorescence detection methods. In this work, we have translated genomic DNA detection into adenosine triphosphate (ATP) test based on a split aptamer-based electrochemical sandwich assay. The key characteristic of our method are list as follows: first, nucleic acid amplification of the target gene was performed by the use of a loop mediated isothermal amplification (LAMP) process. The pyrophosphate (PPi), which released as the byproduct during the LAMP reaction, were further converted into ATP in the presence of adenosine 5'-phosphosulfate (APS) and ATP sulfurylase. Thereafter, the converted ATP was detected by constructing an electrochemical sandwich aptasensor. With such design, the conversion from the difficult detecting target (genomic DNA) into a convenient measured object (ATP) has been achieved. This proposed strategy was highly sensitive for Nosema bombycis genomic DNA PTP1 detection with a detection limit as low as 0.47 fg/µL and a linear range from 0.001pg/µL to 50ng/µL. And we supposed that this novel target conversion electroanalytical strategy established a universal approach for quantitative analysis of any other kinds of nucleic acid in assistance of nucleic acid polymerization reaction.


Asunto(s)
Técnicas Biosensibles , ADN/aislamiento & purificación , Nosema/aislamiento & purificación , Adenosina Trifosfato/química , Aptámeros de Nucleótidos/química , ADN/genética , Difosfatos/química , Técnicas Electroquímicas , Fluorescencia , Genómica , Límite de Detección , Nosema/genética , Sulfato Adenililtransferasa/química
7.
Biochem Biophys Res Commun ; 478(4): 1555-62, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27613093

RESUMEN

ATP sulfurylase (ATPS) catalyzes the first step of sulfur assimilation in photosynthetic organisms. An ATPS type A is mostly present in freshwater cyanobacteria, with four conserved cysteine residues. Oceanic cyanobacteria and most eukaryotic algae instead, possess an ATPS-B containing seven to ten cysteines; five of them are conserved, but only one in the same position as ATPS-A. We investigated the role of cysteines on the regulation of the different algal enzymes. We found that the activity of ATPS-B from four different microorganisms was enhanced when reduced and decreased when oxidized. The LC-MS/MS analysis of the ATPS-B from the marine diatom Thalassiosira pseudonana showed that the residue Cys-247 was presumably involved in the redox regulation. The absence of this residue in the ATPS-A of the freshwater cyanobacterium Synechocystis sp. instead, was consistent with its lack of regulation. Some other conserved cysteine residues in the ATPS from T. pseduonana and not in Synechocystis sp.were accessible to redox agents and possibly play a role in the enzyme regulation. Furthermore, the fact that oceanic cyanobacteria have ATPS-B structurally and functionally closer to that from most of eukaryotic algae than to the ATPS-A from other cyanobacteria suggests that life in the sea or freshwater may have driven the evolution of ATPS.


Asunto(s)
Microalgas/enzimología , Sulfato Adenililtransferasa/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida , Cisteína/metabolismo , Ditiotreitol/farmacología , Modelos Moleculares , Oxidación-Reducción/efectos de los fármacos , Péptidos/química , Péptidos/metabolismo , Alineación de Secuencia , Sulfato Adenililtransferasa/química , Espectrometría de Masas en Tándem
8.
PLoS One ; 10(3): e0121494, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25807013

RESUMEN

In Mycobacterium tuberculosis the sulfate activating complex provides a key branching point in sulfate assimilation. The complex consists of two polypeptide chains, CysD and CysN. CysD is an ATP sulfurylase that, with the energy provided by the GTPase activity of CysN, forms adenosine-5'-phosphosulfate (APS) which can then enter the reductive branch of sulfate assimilation leading to the biosynthesis of cysteine. The CysN polypeptide chain also contains an APS kinase domain (CysC) that phosphorylates APS leading to 3'-phosphoadenosine-5'-phosphosulfate, the sulfate donor in the synthesis of sulfolipids. We have determined the crystal structures of CysC from M. tuberculosis as a binary complex with ADP, and as ternary complexes with ADP and APS and the ATP mimic AMP-PNP and APS, respectively, to resolutions of 1.5 Å, 2.1 Å and 1.7 Å, respectively. CysC shows the typical APS kinase fold, and the structures provide comprehensive views of the catalytic machinery, conserved in this enzyme family. Comparison to the structure of the human homolog show highly conserved APS and ATP binding sites, questioning the feasibility of the design of specific inhibitors of mycobacterial CysC. Residue Cys556 is part of the flexible lid region that closes off the active site upon substrate binding. Mutational analysis revealed this residue as one of the determinants controlling lid closure and hence binding of the nucleotide substrate.


Asunto(s)
Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Péptidos/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sulfatos/metabolismo , Adenosina Fosfosulfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Péptidos/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/metabolismo
9.
Talanta ; 137: 156-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25770619

RESUMEN

An anthracene-armed tetraaza macrocyclic fluorescent probe 3-(9-anthrylmethyl)-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene(l) for detecting Zn(2+) in aqueous medium was synthesized. L-Zn(2+) complex, showed selectivity toward pyrophosphate ion (PPi) by quenching the fluorescence in aqueous HEPES buffer (pH 7.4). Furthermore, L-Zn(2+) was also used to set up a real-time fluorescence assay for monitoring enzyme activities of alkaline phosphatase (ALP) and adenosine triphosphate sulfurylase (ATPS). In the presence of ALP inhibitor Na3VO4 and ATPS inhibitor chlorate, two enzymes activities decreased obviously, respectively.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Pruebas de Enzimas/métodos , Colorantes Fluorescentes/química , Sulfato Adenililtransferasa/metabolismo , Fosfatasa Alcalina/antagonistas & inhibidores , Fosfatasa Alcalina/química , Antracenos/química , Inhibidores Enzimáticos/farmacología , Espectrometría de Fluorescencia , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/química , Factores de Tiempo , Zinc/análisis , Zinc/química
10.
Methods Mol Biol ; 1231: 49-75, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25343858

RESUMEN

The pyrosequencing methodology was applied in 2005 by 454 Lifesciences to the emerging field of next generation sequencing (NGS), revolutionizing the way of DNA sequencing. In the last years the same strategy grew up and was technologically updated, reaching a high throughput in terms of amount of generated sequences (reads) per run and in terms of length of sequence up to values of 800-1,000 bases. These features of pyrosequencing perfectly fit to bacterial genome sequencing for the de novo assemblies and resequencing as well. The approaches of shotgun and paired ends sequencing allow the bacterial genome finishing providing a high-quality data in few days with unprecedented results.


Asunto(s)
Bacterias/genética , ADN Bacteriano/genética , Genoma Bacteriano , Biblioteca Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Apirasa/química , Mapeo Cromosómico , ADN Bacteriano/química , ADN Polimerasa Dirigida por ADN/química , Didesoxinucleótidos/química , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Luciferasas/química , Anotación de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/estadística & datos numéricos , Sulfato Adenililtransferasa/química
11.
J Biomol Struct Dyn ; 33(6): 1176-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24956239

RESUMEN

We have used docking techniques in order to propose potential inhibitors to the enzymes adenosine phosphosulfate reductase and adenosine triphosphate sulfurylase that are responsible, among other deleterious effects, for causing souring of oil and gas reservoirs. Three candidates selected through molecular docking revealed new and improved polar and hydrophobic interactions with the above-mentioned enzymes. Microbiological laboratory assays performed subsequently corroborated the results of computer modelling that the three compounds can efficiently control the biogenic sulfide production.


Asunto(s)
Ligandos , Simulación del Acoplamiento Molecular , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Unión Proteica , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/química
12.
J Biol Chem ; 289(15): 10919-10929, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24584934

RESUMEN

Enzymes of the sulfur assimilation pathway are potential targets for improving nutrient content and environmental stress responses in plants. The committed step in this pathway is catalyzed by ATP sulfurylase, which synthesizes adenosine 5'-phosphosulfate (APS) from sulfate and ATP. To better understand the molecular basis of this energetically unfavorable reaction, the x-ray crystal structure of ATP sulfurylase isoform 1 from soybean (Glycine max ATP sulfurylase) in complex with APS was determined. This structure revealed several highly conserved substrate-binding motifs in the active site and a distinct dimerization interface compared with other ATP sulfurylases but was similar to mammalian 3'-phosphoadenosine 5'-phosphosulfate synthetase. Steady-state kinetic analysis of 20 G. max ATP sulfurylase point mutants suggests a reaction mechanism in which nucleophilic attack by sulfate on the α-phosphate of ATP involves transition state stabilization by Arg-248, Asn-249, His-255, and Arg-349. The structure and kinetic analysis suggest that ATP sulfurylase overcomes the energetic barrier of APS synthesis by distorting nucleotide structure and identifies critical residues for catalysis. Mutations that alter sulfate assimilation in Arabidopsis were mapped to the structure, which provides a molecular basis for understanding their effects on the sulfur assimilation pathway.


Asunto(s)
Adenosina Fosfosulfato/química , Glycine max/enzimología , Sulfato Adenililtransferasa/química , Azufre/química , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Haplotipos , Enlace de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
13.
PLoS One ; 8(9): e74707, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24073218

RESUMEN

ATP sulfurylase (ATPS) catalyzes a key reaction in the global sulfur cycle by reversibly converting inorganic sulfate (SO4 (2-)) with ATP to adenosine 5'-phosphosulfate (APS) and pyrophosphate (PPi). In this work we report on the sat encoded dissimilatory ATP sulfurylase from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum. In this organism, the sat gene is located in one operon and co-transcribed with the aprMBA genes for membrane-bound APS reductase. Like APS reductase, Sat is dispensible for growth on reduced sulfur compounds due to the presence of an alternate, so far unidentified sulfite-oxidizing pathway in A. vinosum. Sulfate assimilation also proceeds independently of Sat by a separate pathway involving a cysDN-encoded assimilatory ATP sulfurylase. We produced the purple bacterial sat-encoded ATP sulfurylase as a recombinant protein in E. coli, determined crucial kinetic parameters and obtained a crystal structure in an open state with a ligand-free active site. By comparison with several known structures of the ATPS-APS complex in the closed state a scenario about substrate-induced conformational changes was worked out. Despite different kinetic properties ATPS involved in sulfur-oxidizing and sulfate-reducing processes are not distinguishable on a structural level presumably due to the interference between functional and evolutionary processes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Chromatiaceae/enzimología , Escherichia coli/enzimología , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/genética , Sulfatos/metabolismo , Adenosina Fosfosulfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Difosfatos/metabolismo , Escherichia coli/genética , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Sulfato Adenililtransferasa/metabolismo
14.
J Vis Exp ; (78): e50405, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23995536

RESUMEN

Pyrosequencing is a versatile technique that facilitates microbial genome sequencing that can be used to identify bacterial species, discriminate bacterial strains and detect genetic mutations that confer resistance to anti-microbial agents. The advantages of pyrosequencing for microbiology applications include rapid and reliable high-throughput screening and accurate identification of microbes and microbial genome mutations. Pyrosequencing involves sequencing of DNA by synthesizing the complementary strand a single base at a time, while determining the specific nucleotide being incorporated during the synthesis reaction. The reaction occurs on immobilized single stranded template DNA where the four deoxyribonucleotides (dNTP) are added sequentially and the unincorporated dNTPs are enzymatically degraded before addition of the next dNTP to the synthesis reaction. Detection of the specific base incorporated into the template is monitored by generation of chemiluminescent signals. The order of dNTPs that produce the chemiluminescent signals determines the DNA sequence of the template. The real-time sequencing capability of pyrosequencing technology enables rapid microbial identification in a single assay. In addition, the pyrosequencing instrument, can analyze the full genetic diversity of anti-microbial drug resistance, including typing of SNPs, point mutations, insertions, and deletions, as well as quantification of multiple gene copies that may occur in some anti-microbial resistance patterns.


Asunto(s)
Bacterias/clasificación , Análisis de Secuencia de ADN/métodos , Bacterias/genética , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Datos de Secuencia Molecular , Nucleótidos/química , Nucleótidos/genética , Nucleótidos/metabolismo , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/metabolismo , Moldes Genéticos
15.
Biosci Rep ; 33(4)2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23789618

RESUMEN

In plants, sulfur must be obtained from the environment and assimilated into usable forms for metabolism. ATP sulfurylase catalyses the thermodynamically unfavourable formation of a mixed phosphosulfate anhydride in APS (adenosine 5'-phosphosulfate) from ATP and sulfate as the first committed step of sulfur assimilation in plants. In contrast to the multi-functional, allosterically regulated ATP sulfurylases from bacteria, fungi and mammals, the plant enzyme functions as a mono-functional, non-allosteric homodimer. Owing to these differences, here we examine the kinetic mechanism of soybean ATP sulfurylase [GmATPS1 (Glycine max (soybean) ATP sulfurylase isoform 1)]. For the forward reaction (APS synthesis), initial velocity methods indicate a single-displacement mechanism. Dead-end inhibition studies with chlorate showed competitive inhibition versus sulfate and non-competitive inhibition versus APS. Initial velocity studies of the reverse reaction (ATP synthesis) demonstrate a sequential mechanism with global fitting analysis suggesting an ordered binding of substrates. ITC (isothermal titration calorimetry) showed tight binding of APS to GmATPS1. In contrast, binding of PPi (pyrophosphate) to GmATPS1 was not detected, although titration of the E•APS complex with PPi in the absence of magnesium displayed ternary complex formation. These results suggest a kinetic mechanism in which ATP and APS are the first substrates bound in the forward and reverse reactions, respectively.


Asunto(s)
Glycine max/enzimología , Proteínas de Plantas/química , Sulfato Adenililtransferasa/química , Adenosina Fosfosulfato/química , Adenosina Trifosfato/química , Biocatálisis , Cloratos/química , Cinética , Proteínas de Plantas/antagonistas & inhibidores , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfatos/química
16.
FEBS J ; 280(13): 3050-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23517310

RESUMEN

All sulfation reactions rely on active sulfate in the form of 3'-phospho-adenosine-5'-phosphosulfate (PAPS). In fungi, bacteria, and plants, the enzymes responsible for PAPS synthesis, ATP sulfurylase and adenosine-5'-phosphosulfate (APS) kinase, reside on separate polypeptide chains. In metazoans, however, bifunctional PAPS synthases catalyze the consecutive steps of sulfate activation by converting sulfate to PAPS via the intermediate APS. This intricate molecule and the related nucleotides PAPS and 3'-phospho-adenosine-5'-phosphate modulate the function of various enzymes from sulfation pathways, and these effects are summarized in this review. On the ATP sulfurylase domain that initially produces APS from sulfate and ATP, APS acts as a potent product inhibitor, being competitive with both ATP and sulfate. For the APS kinase domain that phosphorylates APS to PAPS, APS is an uncompetitive substrate inhibitor that can bind both at the ATP/ADP-binding site and the PAPS/APS-binding site. For human PAPS synthase 1, the steady-state concentration of APS has been modelled to be 1.6 µM, but this may increase up to 60 µM under conditions of sulfate excess. It is noteworthy that the APS concentration for maximal APS kinase activity is 15 µM. Finally, we recognized APS as a highly specific stabilizer of bifunctional PAPS synthases. APS most likely stabilizes the APS kinase part of these proteins by forming a dead-end enzyme-ADP-APS complex at APS concentrations between 0.5 and 5 µM; at higher concentrations, APS may bind to the catalytic centers of ATP sulfurylase. Based on the assumption that cellular concentrations of APS fluctuate within this range, APS can therefore be regarded as a key modulator of PAPS synthase functions.


Asunto(s)
Adenosina Fosfosulfato/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Sulfato Adenililtransferasa/metabolismo , Adenosina Fosfosulfato/química , Adenosina Fosfosulfato/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Biocatálisis/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Ligandos , Conformación Molecular/efectos de los fármacos , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Nucleótidos/química , Nucleótidos/metabolismo , Nucleótidos/farmacología , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/química
17.
J Biol Chem ; 287(21): 17645-17655, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22451673

RESUMEN

Activated sulfate in the form of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is needed for all sulfation reactions in eukaryotes with implications for the build-up of extracellular matrices, retroviral infection, protein modification, and steroid metabolism. In metazoans, PAPS is produced by bifunctional PAPS synthases (PAPSS). A major question in the field is why two human protein isoforms, PAPSS1 and -S2, are required that cannot complement for each other. We provide evidence that these two proteins differ markedly in their stability as observed by unfolding monitored by intrinsic tryptophan fluorescence as well as circular dichroism spectroscopy. At 37 °C, the half-life for unfolding of PAPSS2 is in the range of minutes, whereas PAPSS1 remains structurally intact. In the presence of their natural ligand, the nucleotide adenosine 5'-phosphosulfate (APS), PAPS synthase proteins are stabilized. Invertebrates only possess one PAPS synthase enzyme that we classified as PAPSS2-type by sequence-based machine learning techniques. To test this prediction, we cloned and expressed the PPS-1 protein from the roundworm Caenorhabditis elegans and also subjected this protein to thermal unfolding. With respect to thermal unfolding and the stabilization by APS, PPS-1 behaved like the unstable human PAPSS2 protein suggesting that the less stable protein is evolutionarily older. Finally, APS binding more than doubled the half-life for unfolding of PAPSS2 at physiological temperatures and effectively prevented its aggregation on a time scale of days. We propose that protein stability is a major contributing factor for PAPS availability that has not as yet been considered. Moreover, naturally occurring changes in APS concentrations may be sensed by changes in the conformation of PAPSS2.


Asunto(s)
Adenosina Fosfosulfato/química , Proteínas de Caenorhabditis elegans/química , Complejos Multienzimáticos/química , Pliegue de Proteína , Sulfato Adenililtransferasa/química , Adenosina Fosfosulfato/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Estabilidad de Enzimas , Calor , Humanos , Complejos Multienzimáticos/metabolismo , Unión Proteica , Sulfato Adenililtransferasa/metabolismo
18.
PLoS One ; 7(1): e29559, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22242175

RESUMEN

In higher eukaryotes, PAPS synthases are the only enzymes producing the essential sulphate-donor 3'-phospho-adenosine-5'-phosphosulphate (PAPS). Recently, PAPS synthases have been associated with several genetic diseases and retroviral infection. To improve our understanding of their pathobiological functions, we analysed the intracellular localisation of the two human PAPS synthases, PAPSS1 and PAPSS2. For both enzymes, we observed pronounced heterogeneity in their subcellular localisation. PAPSS1 was predominantly nuclear, whereas PAPSS2 localised mainly within the cytoplasm. Treatment with the nuclear export inhibitor leptomycin B had little effect on their localisation. However, a mutagenesis screen revealed an Arg-Arg motif at the kinase interface exhibiting export activity. Notably, both isoforms contain a conserved N-terminal basic Lys-Lys-Xaa-Lys motif indispensable for their nuclear localisation. This nuclear localisation signal was more efficient in PAPSS1 than in PAPSS2. The activities of the identified localisation signals were confirmed by microinjection studies. Collectively, we describe unusual localisation signals of both PAPS synthase isoforms, mobile enzymes capable of executing their function in the cytoplasm as well as in the nucleus.


Asunto(s)
Núcleo Celular/enzimología , Complejos Multienzimáticos/metabolismo , Sulfato Adenililtransferasa/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Núcleo Celular/efectos de los fármacos , Secuencia Conservada/genética , Citosol/enzimología , Ácidos Grasos Insaturados/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Carioferinas/metabolismo , Ratones , Datos de Secuencia Molecular , Peso Molecular , Complejos Multienzimáticos/química , Mutagénesis/efectos de los fármacos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Señales de Exportación Nuclear/efectos de los fármacos , Señales de Localización Nuclear/química , Transporte de Proteínas/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Sulfato Adenililtransferasa/química , Proteína Exportina 1
19.
Anal Biochem ; 418(1): 19-23, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21810404

RESUMEN

Bacteria monitoring is essential for many industrial manufacturing processes, particularly those involving in food, biopharmaceuticals, and semiconductor production. Firefly luciferase ATP luminescence assay is a rapid and simple bacteria detection method. However, the detection limit of this assay for Escherichia coli is approximately 10(4) colony-forming units (CFU), which is insufficient for many applications. This study aims to improve the assay sensitivity by simultaneous conversion of PP(i) and AMP, two products of the luciferase reaction, back to ATP to form two chain-reaction loops. Because each consumed ATP continuously produces two new ATP molecules, this approach can achieve exponential amplification of ATP. Two consecutive enzyme reactions were employed to regenerate AMP into ATP: adenylate kinase converting AMP into ADP using UTP as the energy source, and acetate kinase catalyzing acetyl phosphate and ADP into ATP. The PP(i)-recycling loop was completed using ATP sulfurylase and adenosine 5' phosphosulfate. The modification maintains good quantification linearity in the ATP luminescence assay and greatly increases its bacteria detection sensitivity. This improved method can detect bacteria concentrations of fewer than 10 CFU. This exponential ATP amplification assay will benefit bacteria monitoring in public health and manufacturing processes that require high-quality water.


Asunto(s)
Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias/aislamiento & purificación , Difosfatos/metabolismo , Adenosina Monofosfato/química , Adenosina Fosfosulfato/química , Adenosina Fosfosulfato/metabolismo , Adenosina Trifosfato/química , Bacillus cereus/metabolismo , Recuento de Colonia Microbiana , Difosfatos/química , Luminiscencia , Mediciones Luminiscentes/métodos , Pseudomonas aeruginosa/metabolismo , Sensibilidad y Especificidad , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/metabolismo
20.
Anal Chem ; 83(19): 7560-5, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21854050

RESUMEN

A highly sensitive massively parallel pyrosequencing system employing a gel matrix to immobilize enzymes at high density in microreaction chambers is demonstrated. Reducing the size of microreaction chambers in a DNA analyzer is important to achieve a high throughput utilizing a commercially available detection device or camera. A high-performance system can be attained by detecting signals from one reaction chamber with one photopixel of around several micrometers by utilizing a 1:1 image magnification. However, the use of small beads immobilizing DNA has a disadvantage in detecting luminescence because only small amounts of DNA can be immobilized on the bead surfaces for sequencing. As luminescence intensity could be enhanced by increasing the luciferase density in the chambers, we overcame this difficulty by using a gel matrix to immobilize luciferase at a high concentration in the microreaction chambers. Luminescence 1 order of magnitude higher could be observed with the new method compared to the conventional method. Consequently, the chamber size and bead size immobilizing DNA could be reduced to as small as 6.5 and 4 µm, respectively. This can be successfully applied to achieving small, inexpensive, pyrosequencing systems with high throughput.


Asunto(s)
ADN/análisis , Enzimas Inmovilizadas/química , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Luciferasas/química , Polímeros/química , Sulfato Adenililtransferasa/química , ADN/genética , Enzimas Inmovilizadas/metabolismo , Luciferasas/metabolismo , Luminiscencia , Sulfato Adenililtransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...