Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Food Res Int ; 188: 114326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823825

RESUMEN

Tormentilla erecta (L.) Raeusch is a widespread plant in Europe and Western Asia. Its rhizomes (Tormentilae rhizoma) are the main ingredient of herbal alcoholic beverages and can be used as a natural preservative in beer production. Apart from its unique taste qualities, therapeutic properties in gastrointestinal tract ailments are attributed to the tincture obtained from Tormentillae rhizoma. The presented research aimed to determine the mutual relationship between the components of Tormentillae tincture, present in popular alcoholic beverages, and intestinal epithelium (Caco-2 cell monolayers). A comprehensive qualitative and quantitative analysis of the tincture was performed, including the determination of condensed and hydrolyzable tannins as well as triterpenoids (UHPLC-DAD-MS/MS). Incubation of the tincture with Caco-2 monolayers has shown that only triterpenes pass through the monolayer, while condensed tannins are mainly bound to the monolayer surface. Ellagic acid derivatives were the only components of the Tormentillae tinctura being metabolized by cell monolayers to the compounds not previously described in the literature, which may be crucial in the treatment of intestinal diseases with inflammatory background.


Asunto(s)
Mucosa Intestinal , Rizoma , Humanos , Células CACO-2 , Rizoma/química , Mucosa Intestinal/metabolismo , Triterpenos/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , Transporte Biológico , Cromatografía Líquida de Alta Presión , Bebidas Alcohólicas/análisis , Proantocianidinas/metabolismo , Taninos Hidrolizables/metabolismo , Ácido Elágico/metabolismo
2.
New Phytol ; 242(6): 2702-2718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38515244

RESUMEN

Hydrolyzable tannins (HTs), predominant polyphenols in oaks, are widely used in grape wine aging, feed additives, and human healthcare. However, the limited availability of a high-quality reference genome of oaks greatly hampered the recognition of the mechanism of HT biosynthesis. Here, high-quality reference genomes of three Asian oak species (Quercus variabilis, Quercus aliena, and Quercus dentata) that have different HT contents were generated. Multi-omics studies were carried out to identify key genes regulating HT biosynthesis. In vitro enzyme activity assay was also conducted. Dual-luciferase and yeast one-hybrid assays were used to reveal the transcriptional regulation. Our results revealed that ß-glucogallin was a biochemical marker for HT production in the cupules of the three Asian oaks. UGT84A13 was confirmed as the key enzyme for ß-glucogallin biosynthesis. The differential expression of UGT84A13, rather than enzyme activity, was the main reason for different ß-glucogallin and HT accumulation. Notably, sequence variations in UGT84A13 promoters led to different trans-activating activities of WRKY32/59, explaining the different expression patterns of UGT84A13 among the three species. Our findings provide three high-quality new reference genomes for oak trees and give new insights into different transcriptional regulation for understanding ß-glucogallin and HT biosynthesis in closely related oak species.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica , Taninos Hidrolizables , Quercus , Quercus/genética , Quercus/metabolismo , Taninos Hidrolizables/metabolismo , Genómica/métodos , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Biomarcadores/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
3.
Yakugaku Zasshi ; 144(2): 183-195, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38296496

RESUMEN

Tannins are a group of polyphenols that possess the ability to precipitate proteins, causing an undesirable astringent taste by interacting with salivary peptides. This interaction deactivates the digestive enzymes; therefore, tannins are considered as plant defense substances. The health benefits of tannins and related polyphenols in foods and beverages have been demonstrated by biological and epidemiological studies; however, their metabolism in living plants and the chemical changes observed during processing of foods and medicinal herbs raises some questions. This review summarizes our studies concerning dynamic changes observed in tannins. Ellagitannins present in the young leaves of Camellia japonica and Quercus glauca undergo oxidative degradation as the leaves mature. Similar oxidative degradation is also observed in whiskey when it is kept for aging in oak barrels, and in decaying wood caused by fungi in natural forests. In contrast, ellagitannins have been observed to undergo reduction in the leaves of Carpinus, Castanopsis, and Triadica species as the leaves mature. This phenomenon of reductive metabolism in leaves enabled us to propose a new biosynthetic pathway for the most fundamental ellagitannin acyl groups, which was also supported by biomimetic synthetic studies. Polyphenols undergo dynamic changes during the process of food processing. Catechin in tea leaves undergo oxidation upon mechanical crushing to generate black tea polyphenols. Though detailed production mechanisms of catechin dimers have been elucidated, structures of thearubigins (TRs), which are complex mixtures of oligomers, remain ambiguous. Our recent studies suggested that catechin B-ring quinones couple with catechin A-rings during the process of oligomerization.


Asunto(s)
Catequina , Taninos , Taninos/química , Taninos/metabolismo , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Catequina/química , Catequina/metabolismo , Polifenoles , Té/química , Oxidación-Reducción
4.
Plant J ; 118(3): 766-786, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271098

RESUMEN

Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal-level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase-like (SCPL) and their homologs involved in HT production were determined as specific to HT-rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia-lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co-expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant-galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites.


Asunto(s)
Genoma de Planta , Taninos Hidrolizables , Rhus , Taninos Hidrolizables/metabolismo , Animales , Rhus/genética , Genoma de Planta/genética , Áfidos/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos
5.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 111-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37602531

RESUMEN

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.


Asunto(s)
Inoculantes Agrícolas , Lactobacillales , Femenino , Bovinos , Animales , Poaceae/metabolismo , Ensilaje/análisis , Taninos/farmacología , Lactancia , Inoculantes Agrícolas/metabolismo , Fermentación , Ácido Láctico/metabolismo , Digestión , Leche/química , Dieta/veterinaria , Taninos Hidrolizables/análisis , Taninos Hidrolizables/metabolismo , Taninos Hidrolizables/farmacología , Rumen/metabolismo , Extractos Vegetales/farmacología , Rumiantes , Valor Nutritivo , Zea mays/metabolismo
6.
ACS Chem Biol ; 18(12): 2495-2505, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37948120

RESUMEN

The ellagitannins vescalagin and vescalin, known as actin-dependent inhibitors of osteoclastic bone resorption, were mounted onto chemical probes to explore their interactions with bone cell proteins by means of affinity-based chemoproteomics and bioinformatics. The chemical reactivity of the pyrogallol units of these polyphenols toward oxidation into electrophilic ortho-quinones was exploited using NaIO4 to promote the covalent capture of target proteins, notably those expressed at lower abundance and those interacting with polyphenols at low-to-moderate levels of affinity. Different assays revealed the multitarget nature of both ellagitannins, with 100-370 statistically significant proteins captured by their corresponding probes. A much higher number of proteins were captured from osteoclasts than from osteoblasts. Bioinformatic analyses unveiled a preference for the capture of proteins having phosphorylated ligands and GTPase regulators and enabled the identification of 33 potential target proteins with systemic relevance to osteoclast differentiation and activity, as well as to the regulation of actin dynamics.


Asunto(s)
Resorción Ósea , Taninos Hidrolizables , Humanos , Taninos Hidrolizables/metabolismo , Actinas/metabolismo , Polifenoles/metabolismo , Glucósidos/metabolismo , Resorción Ósea/metabolismo , Osteoblastos/metabolismo , Diferenciación Celular
7.
Food Funct ; 14(23): 10375-10386, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37921630

RESUMEN

Urolithin A (Uro-A), an intestinal microbiota metabolite of ellagitannin, has anti-aging properties. Through the direct intake of ellagitannin (or ellagic acid) and strains capable of producing Uro-A, the transformation of Uro-A in vivo is a potential method to develop anti-aging preparations. Therefore, this study aimed to investigate the dose-response relationship between the colonic infusion of Uro-A and its anti-aging effects. Results indicated that Uro-A exhibited a dose-dependent anti-aging effect in the colon, and the minimum effective dose might be 3.0 mg kg-1 day-1. The main manifestations were that, compared with the model group, 3.0 mg kg-1 day-1 and 15.0 mg kg-1 day-1 of Uro-A can increase forelimb grip strength by 11.87% and 16.72%, respectively, and increase the discrimination index by 92.14% and 238.11%, respectively. Both doses effectively inhibited the D-galactose-induced increase in oxidative stress levels in the body, muscle atrophy, and neuronal apoptosis. Additionally, Uro-A released through the colon could alleviate D-galactose-induced aging in mice by inhibiting NF-κB and mTOR targets, providing significant protection for motor and cognitive functions. These findings provide a theoretical basis for future application and development of ellagitannin (or ellagic acid) in combination with strains capable of producing Uro-A.


Asunto(s)
Taninos Hidrolizables , FN-kappa B , Ratones , Animales , FN-kappa B/genética , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/metabolismo , Galactosa , Ácido Elágico/farmacología , Ácido Elágico/metabolismo , Cumarinas/farmacología , Cumarinas/metabolismo , Serina-Treonina Quinasas TOR/genética , Envejecimiento
8.
Nutrients ; 15(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836471

RESUMEN

A complex metabolic disorder, type 2 diabetes, was investigated to explore the impact of ellagitannin, derived from Rosa roxburghii Tratt (RTT), on liver lipid metabolism disorders in db/db mice. The findings demonstrated that both RTT ellagitannin (C1) and RTT ellagic acid (C4) considerably decelerated body mass gain in db/db mice, significantly decreased fasting blood glucose (FBG) levels, and mitigated the aggregation of hepatic lipid droplets. At LDL-C levels, C1 performed substantially better than the C4 group, exhibiting no significant difference compared to the P (positive control) group. An RNA-seq analysis further disclosed that 1245 differentially expressed genes were identified in the livers of experimental mice following the C1 intervention. The GO and KEGG enrichment analysis revealed that, under ellagitannin intervention, numerous differentially expressed genes were significantly enriched in fatty acid metabolic processes, the PPAR signaling pathway, fatty acid degradation, fatty acid synthesis, and other lipid metabolism-related pathways. The qRT-PCR and Western blot analysis results indicated that RTT ellagitannin notably upregulated the gene and protein expression levels of peroxisome proliferator-activated receptor alpha (PPARα) and peroxisome proliferator-activated receptor gamma (PPARγ). In contrast, it downregulated the gene and protein expression levels of sterol regulatory element-binding protein (SREBP), recombinant fatty acid synthase (FASN), and acetyl-CoA carboxylase (ACC). Therefore, RTT ellagitannin can activate the PPAR signaling pathway, inhibit fatty acid uptake and de novo synthesis, and ameliorate hepatic lipid metabolism disorder in db/db mice, thus potentially aiding in maintaining lipid homeostasis in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trastornos del Metabolismo de los Lípidos , Rosa , Ratones , Animales , Metabolismo de los Lípidos/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Transcriptoma , Hígado/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Ratones Endogámicos , Ácidos Grasos/metabolismo , PPAR alfa/metabolismo
9.
J Plant Res ; 136(6): 891-905, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37526750

RESUMEN

Aluminum toxicity is the main factor limiting the elongation of plant roots in acidic soil. The tree species Eucalyptus camaldulensis is considerably more resistant to aluminum than herbaceous model plants and crops. Hydrolyzable tannins (HTs) accumulating in E. camaldulensis roots can bind and detoxify the aluminum taken up by the roots. However, in herbaceous model plants, HTs do not accumulate and the genes involved in the HT biosynthetic pathway are largely unknown. The aim of this study was to establish a method for reconstituting the HT biosynthetic pathway in the HT non-accumulating model plant Nicotiana benthamiana. Four E. camaldulensis enzymes were transiently expressed in N. benthamiana leaves via Agrobacterium tumefaciens-mediated transformation. These enzymes included dehydroquinate dehydratase/shikimate dehydrogenases (EcDQD/SDH2 and EcDQD/SDH3), which catalyze the synthesis of gallic acid, the first intermediate of the HT biosynthetic pathway that branches off from the shikimate pathway. The others were UDP-glycosyltransferases (UGT84A25 and UGT84A26), which catalyze the conversion of gallic acid to ß-glucogallin, the second intermediate. The co-expression of the EcDQD/SDHs in transgenic N. benthamiana leaf regions promoted the synthesis of gallic acid. Moreover, the co-expression of the UGT84As in addition to the EcDQD/SDHs resulted in the biosynthesis of ß-glucogallin, the universal metabolic precursor of HTs. Thus, we successfully reconstituted a portion of the HT biosynthetic pathway in HT non-accumulating N. benthamiana plants. This heterologous gene expression system will be useful for co-expressing candidate genes involved in downstream reactions in the HT biosynthetic pathway and for clarifying their in planta functions.


Asunto(s)
Aluminio , Taninos Hidrolizables , Taninos Hidrolizables/metabolismo , Ácido Gálico/metabolismo , Árboles , Expresión Génica
10.
J Agric Food Chem ; 71(31): 11921-11928, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37494568

RESUMEN

Urolithins are gut microbiota metabolites of ellagic acid. Here, we have identified and chemically characterized a novel urolithin produced from urolithin D (3,4,8,9-tetrahydroxy urolithin) by in vitro incubation with different human gut Enterocloster species under anaerobic conditions. Urolithin G (3,4,8-trihydroxy urolithin) was identified by 1H NMR, 13C NMR, UV, HRMS, and 2D NMR. For the identification, NMR spectra of other known urolithins were also recorded and compared. Urolithin G was present in the feces of 12% of volunteers in an overweight-obese group after consuming an ellagitannin-rich pomegranate extract. The production of urolithin G required a bacterial 9-dehydroxylase activity and was not specific to the known human urolithin metabotypes A and B. The ability to produce urolithin G could be considered an additional metabolic feature for volunteer stratification and bioactivity studies. This is the first urolithin with a catechol group in ring A while having only one hydroxyl in ring B, a unique feature not found in human and animal samples so far.


Asunto(s)
Microbioma Gastrointestinal , Obesidad , Animales , Humanos , Heces/microbiología , Obesidad/metabolismo , Sobrepeso , Cumarinas/química , Taninos Hidrolizables/metabolismo
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123115, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37453379

RESUMEN

Acetylcholinesterase (AChE) is an important therapeutic target for the treatment of Alzheimer's disease (AD), and the development of natural AChE inhibitors as candidates has played a significant role in drug discovery. In this study, the inhibition mechanisms of four ellagitannins, punicalagin, chebulinic acid, geraniin and corilagin, from Terminalia chebula fruits on AChE were investigated systematically by a combination of inhibition kinetics, multi-spectroscopic methods and molecular docking. The kinetic results showed that punicalagin, chebulinic acid and geraniin exhibited strong reversible inhibitory effects on AChE in an uncompetitive manner with the IC50 values of 0.43, 0.50, and 0.51 mM, respectively, while corilagin inhibited AChE activity in a mixed type with the IC50 value of 0.72 mM. The results of fluorescence and UV-vis spectra and fluorescence resonance energy transfer (FRET) revealed that four ellagitannins could significantly quenched the intrinsic fluorescence of AChE though a static quenching along with non-radiative energy transfer. Thermodynamic analyses showed that values of ΔG, ΔH and ΔS were negative, indicating that all binding processes were spontaneous, and the hydrogen bonding and Van der Waals forces might make a great contribution to the formation of inhibitor-AChE complexes. The synchronous fluorescence, three-dimensional (3D) fluorescence, UV-vis, and FT-IR spectra studies suggested that four ellagitannins could lead to alterations in the micro-environment and secondary structure of AChE, and thus the conformational change of AChE. Moreover, molecular docking demonstrated that four ellagitannins could interacted with main amino acid residues of AChE with affinity energies ranging from -9.9 to -8.7 kJ/mol, and further confirmed the above experimental results. This study provided valuable findings for the potential application of four ellagitannins as promising candidates in the exploration of natural AChE inhibitors for the treatment of AD.


Asunto(s)
Taninos Hidrolizables , Terminalia , Simulación del Acoplamiento Molecular , Taninos Hidrolizables/metabolismo , Acetilcolinesterasa/metabolismo , Terminalia/metabolismo , Unión Proteica , Sitios de Unión , Espectroscopía Infrarroja por Transformada de Fourier , Frutas/metabolismo , Cinética
12.
J Pharm Biomed Anal ; 233: 115477, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37267874

RESUMEN

Pomegranate extracts standardized to punicalagins are a rich source of ellagitannins including ellagic acid (EA). Recent evidence suggests that gut microbiota-derived urolithin (Uro) metabolites of ellagitannins are pharmacologically active. Studies have evaluated the pharmacokinetics of EA, however, little is known about the disposition of urolithin metabolites (urolithin A (UA) and B (UB)). To address this gap, we developed and applied a novel ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay for the characterization of EA and Uro oral pharmacokinetics in humans. Subjects (10/cohort) received a single oral dose (250 or 1000 mg) of pomegranate extract (Pomella® extract) standardized to contain not less than 30 % punicalagins, < 5 % EA, and not less than 50 % polyphenols. Plasma samples, collected over 48 h, were treated with ß-glucuronidase and sulfatase to permit comparison between unconjugated and conjugated forms of EA, UA and UB. EA and urolithins were separated by gradient elution (acetonitrile/water, 0.1 % formic acid) using a C18 column connected to a triple quadrupole mass spectrometer operating in the negative mode. Conjugated EA exposure was ∼5-8-fold higher than unconjugated EA for both dose groups. Conjugated UA was readily detectable beginning ∼8 h post-dosing, however, unconjugated UA was detectable in only a few subjects. Neither form of UB was detected. Together these data indicate EA is rapidly absorbed and conjugated following oral administration of Pomella® extract. Moreover, UA's delayed appearance in the blood, primarily in the conjugated form, is consistent with gut microbiota-mediated metabolism of EA to UA, which is then rapidly converted to its conjugated form.


Asunto(s)
Granada (Fruta) , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Taninos Hidrolizables/metabolismo , Cromatografía Líquida de Alta Presión , Ácido Elágico , Extractos Vegetales
13.
Molecules ; 28(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375411

RESUMEN

Pentagalloyl glucose (PGG) is a natural hydrolyzable gallotannin abundant in various plants and herbs. It has a broad range of biological activities, specifically anticancer activities, and numerous molecular targets. Despite multiple studies available on the pharmacological action of PGG, the molecular mechanisms underlying the anticancer effects of PGG are unclear. Here, we have critically reviewed the natural sources of PGG, its anticancer properties, and underlying mechanisms of action. We found that multiple natural sources of PGG are available, and the existing production technology is sufficient to produce large quantities of the required product. Three plants (or their parts) with maximum PGG content were Rhus chinensis Mill, Bouea macrophylla seed, and Mangifera indica kernel. PGG acts on multiple molecular targets and signaling pathways associated with the hallmarks of cancer to inhibit growth, angiogenesis, and metastasis of several cancers. Moreover, PGG can enhance the efficacy of chemotherapy and radiotherapy by modulating various cancer-associated pathways. Therefore, PGG can be used for treating different human cancers; nevertheless, the data on the pharmacokinetics and safety profile of PGG are limited, and further studies are essential to define the clinical use of PGG in cancer therapies.


Asunto(s)
Glucosa , Taninos Hidrolizables , Humanos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/metabolismo
14.
J Agric Food Chem ; 71(18): 7046-7057, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37113100

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a worldwide prevalent chronic liver disease characterized by hepatic steatosis. Water caltrop, the fruit of Trapa natan, is widely cultivated as an edible vegetable in Asian countries. In China, water caltrop pericarp has long been used as a functional food to treat metabolic syndrome, yet the bioactive substances and their pharmacological mechanisms remain unclear. In this study, a natural gallotannin, 1,2,3,6-tetra-O-galloyl-ß-D-glucopyranoside (GA), was isolated from water caltrop pericarp and evaluated for its therapeutic effect on NAFLD. Treatment of GA (15 and 30 mg/kg/day) suppressed the body weight gain (p < 0.001) and ameliorated lipid deposition (p < 0.001) in high-fat diet (HFD)-induced NAFLD mice. GA was able to alleviate HFD-induced insulin resistance (p < 0.001), oxidative stress (p < 0.001), and inflammation (p < 0.001), thereby restoring the liver function in HFD-induced NAFLD mice. Mechanistically, GA diminished the aberrant signaling pathways including AMPK/SREBP/ACC, IRs-1/Akt, IKK/IκB/NF-κB in HFD-induced NAFLD mice and modified gut microbiota dysbiosis in these mice as well. The current findings suggest that GA is a promising novel agent for NAFLD therapy.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Taninos Hidrolizables/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Taninos/metabolismo , Ratones Endogámicos C57BL
15.
J Agric Food Chem ; 71(16): 6348-6357, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040550

RESUMEN

Urolithin, intestinal microbiota metabolites of ellagitannin-rich foods, exhibit anti-aging activities. However, urolithin A is significantly superior to other types of urolithin with regard to this anti-aging function. This study aimed to screen edible urolithin A-producing strains of bacteria and explore the corresponding anti-aging efficacy of fermented products produced by these strains using Caenorhabditis elegans as a model. Our results showed that the Lactobacillus plantarum strains CCFM1286, CCFM1290, and CCFM1291 converted ellagitannin to produce urolithin A; the corresponding yields of urolithin A from these strains were 15.90 ± 1.46, 24.70 ± 0.82, and 32.01 ± 0.97 µM, respectively. Furthermore, it was found that the pomegranate juice extracts fermented by the CCFM1286, CCFM1290, and CCFM1291 strains of L. plantarum could extend lifespan by 26.04 ± 0.12, 32.05 ± 0.14, and 46.33 ± 0.12%, respectively, by improving mitochondrial function and/or reducing reactive oxygen species levels. These findings highlight the potential application of this fermentation in the subsequent development of anti-aging products.


Asunto(s)
Taninos Hidrolizables , Mitofagia , Animales , Taninos Hidrolizables/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Caenorhabditis elegans/metabolismo , Fermentación , Envejecimiento
16.
Food Funct ; 14(6): 2657-2667, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36866688

RESUMEN

Urolithin (Uro) production capacity and, consequently, at least partly, the health effects attributed to ellagitannin and ellagic acid consumption vary among individuals. The reason is that not all individuals have the gut bacterial ecology needed to produce the different Uro metabolites. Three human urolithin metabotypes (UM-A, UM-B, and UM-0) based on dissimilar Uro production profiles have been described in populations worldwide. Recently, the gut bacterial consortia involved in ellagic acid metabolism to yield the urolithin-producing metabotypes (UM-A and UM-B) in vitro have been identified. However, the ability of these bacterial consortia to customize urolithin production to mimic UM-A and UM-B in vivo is still unknown. In the present study, two bacterial consortia were assessed for their capacity to colonize the intestine of rats and convert UM-0 (Uro non-producers) animals into Uro-producers that mimic UM-A and UM-B, respectively. Two consortia of Uro-producing bacteria were orally administered to non-urolithin-producing Wistar rats for 4 weeks. Uro-producing bacterial strains effectively colonized the rats' gut, and the ability to produce Uros was also effectively transferred. Bacterial strains were well tolerated. No changes in other gut bacteria, except Streptococcus reduction, or adverse effects on haematological and biochemical parameters were observed. Besides, two novel qPCR procedures were designed and successfully optimized to detect and quantify Ellagibacter and Enterocloster genera in faecal samples. These results suggest that the bacterial consortia are safe and could be potential probiotics for human trials, which is especially relevant for UM-0 individuals, who cannot produce bioactive Uros.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ratas , Ácido Elágico/metabolismo , Ratas Wistar , Heces/microbiología , Bacterias/genética , Bacterias/metabolismo , Cumarinas/metabolismo , Taninos Hidrolizables/metabolismo
17.
Nutrients ; 15(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986236

RESUMEN

Helicobacter pylori (H. pylori) is an etiologic factor of peptic ulcer disease and gastric cancer. Virulent strains of H. pylori are correlated with the severity of gastritis, due to NF-κB activation and IL-8 expression at the epithelial level. Ellagitannins have been documented for antibacterial and anti-inflammatory activities, thus suggesting their potential use in gastritis. Recently, several authors, including our group, demonstrated that tannin-rich extracts from chestnut byproducts, at present considered agricultural waste, display promising biological activities. In this work, we detected high levels of polyphenols in hydroalcoholic extracts from chestnut leaves (Castanea sativa L.). Among polyphenols, the ellagitannin isomers castalagin and vescalagin (about 1% w/w of dry extract) were identified as potential bioactive compounds. In GES-1 cells infected by H. pylori, leaf extract and pure ellagitannins inhibited IL-8 release (IC50 ≈ 28 µg/mL and 11 µM, respectively). Mechanistically, the anti-inflammatory activity was partly due to attenuation of NF-κB signaling. Moreover, the extract and pure ellagitannins reduced bacterial growth and cell adhesion. A simulation of the gastric digestion suggested that the bioactivity might be maintained after oral administration. At the transcriptional level, castalagin downregulated genes involved in inflammatory pathways (NF-κB and AP-1) and cell migration (Rho GTPase). To the best of our knowledge, this is the first investigation in which ellagitannins from plant extracts have demonstrated a potential role in the interaction among H. pylori and human gastric epithelium.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Taninos Hidrolizables/metabolismo , FN-kappa B/metabolismo , Interleucina-8/metabolismo , Mucosa Gástrica/metabolismo , Extractos Vegetales/uso terapéutico , Gastritis/microbiología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células Epiteliales/metabolismo , Antiinflamatorios/uso terapéutico , Infecciones por Helicobacter/microbiología
18.
J Agric Food Chem ; 71(9): 4029-4035, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36840624

RESUMEN

We aimed to elucidate the gut bacteria that characterize the human urolithin metabotypes A and B (UM-A and UM-B). We report here a new bacterium isolated from the feces of a healthy woman, capable of producing the final metabolites urolithins A and B and different intermediates. Besides, we describe two gut bacterial co-cultures that reproduced the urolithin formation pathways upon in vitro fermentation of both UM-A and UM-B. This is the first time that the capacity of pure strains to metabolize ellagic acid cooperatively to yield urolithin profiles associated with UM-A and UM-B has been demonstrated. The urolithin-producing bacteria described herein could have potential as novel probiotics and in the industrial manufacture of bioactive urolithins to develop new ingredients, beverages, nutraceuticals, pharmaceuticals, and (or) functional foods. This is especially relevant in UM-0 individuals since they cannot produce bioactive urolithins.


Asunto(s)
Ácido Elágico , Microbioma Gastrointestinal , Femenino , Humanos , Ácido Elágico/metabolismo , Heces/microbiología , Cumarinas/metabolismo , Bacterias , Taninos Hidrolizables/metabolismo
19.
Exp Biol Med (Maywood) ; 248(4): 317-326, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36680375

RESUMEN

Intestinal ischemia/reperfusion (II/R) injury is a common pathological process with high clinical morbidity and mortality. Autophagy plays an important role in the pathological development of II/R. Corilagin (CA) is a natural ellagitannin with various pharmacological effects such as autophagy regulation, antioxidant, and antiapoptosis. However, whether CA alleviates II/R injury is still unclear. In this study, we had found that CA significantly attenuated II/R induced intestinal tissue pathological damage, oxidative stress, and cell apoptosis in rats. Further studies showed that CA significantly promoted AMPK phosphorylation and sirt1 expression, and thus activated autophagy by upregulating protein expression of autophagy-related proteins Beclin1 and LC3II and promoting SQSTM1/P62 degradation both in vivo and in vitro. Inhibition of AMPK phosphorylation by its inhibitor compound C(CC) significantly abolished CA-mediated autophagy activation and the relievable effects on oxidative stress and apoptosis in vitro, suggesting the excellent protective activity of CA against II/R injury via AMPK/Sirt1-autophagy pathway. These findings confirmed the potent effects of CA against II/R injury, and provided novel insights into the mechanisms of the compound as a potential candidate for the treatment of II/R.


Asunto(s)
Taninos Hidrolizables , Daño por Reperfusión , Ratas , Animales , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/metabolismo , Taninos Hidrolizables/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 1/metabolismo , Transducción de Señal , Estrés Oxidativo , Autofagia , Apoptosis , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia
20.
J Agric Food Chem ; 71(6): 3033-3039, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36719954

RESUMEN

Urolithins are gut microbiota metabolites produced in humans after consuming foods containing ellagitannins and ellagic acid. Three urolithin metabotypes have been reported for different individuals depending on the final urolithins produced. After absorption, they are conjugated with glucuronic acid (phase II metabolism), and these are the main circulating metabolites in plasma and reach different tissues. Different regioisomeric isomers of urolithin glucuronides have been described. Still, their identification and quantification in humans have not been properly reported due to resolution limitations in their analysis by reversed-phase high-performance liquid chromatography. In the present study, we report a novel method for separating these isomers using supercritical fluid chromatography. With this method, urolithin A 3- and 8-glucuronide, isourolithin A 3- and 9- glucuronide, and urolithin B 3-glucuronide (8-hydroxy urolithin 3-glucuronide; 3-hydroxy urolithin 8-glucuronide; 3-hydroxyurolithin 9-glucuronide; 9-hydroxyurolithin 3-glucuronide; and urolithin 3-glucuronide) were separated in less than 15 min. The proposed method was applied to successfully analyze these metabolites in urine samples from different volunteers belonging to different metabotypes.


Asunto(s)
Cromatografía con Fluido Supercrítico , Microbioma Gastrointestinal , Humanos , Glucurónidos/metabolismo , Cumarinas/química , Taninos Hidrolizables/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...