Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.286
Filtrar
1.
Ghana Med J ; 58(1): 73-77, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38957277

RESUMEN

Objective: The study aimed to detect the presence of Helicobacter pylori infection in children using two investigative methods: the rapid urease test and histological methods. It also examined the relationship between socioeconomic status and Helicobacter pylori infection. Design: This was a cross-sectional study conducted in the paediatric theatre at Korle Bu Teaching Hospital in Accra, Ghana. Participants: Children who were scheduled for upper gastrointestinal endoscopy were recruited into the study. Main outcome measures: The presence of Helicobacter pylori in gastric biopsies was measured using a rapid urease test and histology. Results: Seventy-three children aged 2 years to 16 years were seen during the period. Both tests were positive at the same time in 36 (49.3%) out of the 73 children (p<0.0001). The positivity rates for the rapid urease test and histology were 57.5% and 53.4 %, respectively. Significant predictors of the histology presence of H. pylori were a large household size of at least 6 members (AOR: 4.03; p<0.013) and the presence of pets at home (AOR: 3.23; p<0.044). Conclusions: Substantial agreement was found between the rapid urease test and histology examination of gastric biopsies for the presence of H. pylori. Children from large households and those with pets at home appear to have increased odds of having H. pylori infection of the gastric mucosa. Funding: None declared.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Ureasa , Humanos , Infecciones por Helicobacter/diagnóstico , Helicobacter pylori/aislamiento & purificación , Niño , Estudios Transversales , Masculino , Ureasa/análisis , Femenino , Preescolar , Adolescente , Ghana/epidemiología , Biopsia , Factores Socioeconómicos , Mucosa Gástrica/patología , Mucosa Gástrica/microbiología
2.
Proc Natl Acad Sci U S A ; 121(30): e2403460121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008666

RESUMEN

Autonomous nanorobots represent an advanced tool for precision therapy to improve therapeutic efficacy. However, current nanorobotic designs primarily rely on inorganic materials with compromised biocompatibility and limited biological functions. Here, we introduce enzyme-powered bacterial outer membrane vesicle (OMV) nanorobots. The immobilized urease on the OMV membrane catalyzes the decomposition of bioavailable urea, generating effective propulsion for nanorobots. This OMV nanorobot preserves the unique features of OMVs, including intrinsic biocompatibility, immunogenicity, versatile surface bioengineering for desired biofunctionalities, capability of cargo loading and protection. We present OMV-based nanorobots designed for effective tumor therapy by leveraging the membrane properties of OMVs. These involve surface bioengineering of robotic body with cell-penetrating peptide for tumor targeting and penetration, which is further enhanced by active propulsion of nanorobots. Additionally, OMV nanorobots can effectively safeguard the loaded gene silencing tool, small interfering RNA (siRNA), from enzymatic degradation. Through systematic in vitro and in vivo studies using a rodent model, we demonstrate that these OMV nanorobots substantially enhanced siRNA delivery and immune stimulation, resulting in the utmost effectiveness in tumor suppression when juxtaposed with static groups, particularly evident in the orthotopic bladder tumor model. This OMV nanorobot opens an inspiring avenue to design advanced medical robots with expanded versatility and adaptability, broadening their operation scope in practical biomedical domains.


Asunto(s)
Membrana Externa Bacteriana , Animales , Humanos , Membrana Externa Bacteriana/metabolismo , Ratones , Robótica/métodos , Ureasa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
3.
Molecules ; 29(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999063

RESUMEN

As part of the multifaceted strategies developed to shape the common environmental policy, considerable attention is now being paid to assessing the degree of environmental degradation in soil under xenobiotic pressure. Bisphenol A (BPA) has only been marginally investigated in this ecosystem context. Therefore, research was carried out to determine the biochemical properties of soils contaminated with BPA at two levels of contamination: 500 mg and 1000 mg BPA kg-1 d.m. of soil. Reliable biochemical indicators of soil changes, whose activity was determined in the pot experiment conducted, were used: dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and ß-glucosidase. Using the definition of soil health as the ability to promote plant growth, the influence of BPA on the growth and development of Zea mays, a plant used for energy production, was also tested. As well as the biomass of aerial parts and roots, the leaf greenness index (SPAD) of Zea mays was also assessed. A key aspect of the research was to identify those of the six remediating substances-molecular sieve, zeolite, sepiolite, starch, grass compost, and fermented bark-whose use could become common practice in both environmental protection and agriculture. Exposure to BPA revealed the highest sensitivity of dehydrogenases, urease, and acid phosphatase and the lowest sensitivity of alkaline phosphatase and catalase to this phenolic compound. The enzyme response generated a reduction in the biochemical fertility index (BA21) of 64% (500 mg BPA) and 70% (1000 mg BPA kg-1 d.m. of soil). The toxicity of BPA led to a drastic reduction in root biomass and consequently in the aerial parts of Zea mays. Compost and molecular sieve proved to be the most effective in mitigating the negative effect of the xenobiotic on the parameters discussed. The results obtained are the first research step in the search for further substances with bioremediation potential against both soil and plants under BPA pressure.


Asunto(s)
Fosfatasa Ácida , Compuestos de Bencidrilo , Fenoles , Contaminantes del Suelo , Suelo , Zea mays , Fenoles/química , Compuestos de Bencidrilo/química , Contaminantes del Suelo/química , Zea mays/química , Suelo/química , Fosfatasa Ácida/metabolismo , Arilsulfatasas/metabolismo , Fosfatasa Alcalina/metabolismo , Zeolitas/química , Oxidorreductasas/metabolismo , Ureasa/metabolismo , Catalasa/metabolismo , Biodegradación Ambiental , Silicatos de Magnesio/química , Almidón/química , beta-Glucosidasa/metabolismo , Compostaje/métodos
4.
Microbiol Spectr ; 12(7): e0390223, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38842310

RESUMEN

Cryptococcus neoformans and Cryptococcus gattii are both known urease producers and have the potential to cause hyperammonemia. We hypothesized that the risk of hyperammonemia is increased by renal failure, burden of cryptococcal infection, and fungal strain characteristics. We performed a retrospective review of plasma ammonia levels in patients with cryptococcal infections. Risk factors for hyperammonemia were statistically compared between patients with and without hyperammonemia (>53 µmol/L). Cryptococcal cells from three patients included in the study were recovered from our biorepository. Strain characteristics including urease activity, ammonia production, growth curves, microscopy, melanin production, and M13 molecular typing were analyzed and compared with a wild-type (WT) C. neoformans strain. We included 29 patients, of whom 37.9% had hyperammonemia, 59% had disseminated cryptococcal infection (DCI), and 41% had isolated central nervous system infection. Thirty-eight percent of patients had renal failure and 28% had liver disease. Renal failure was associated with 4.4 times (95% confidence interval [CI] 1.5, 13.0) higher risk of hyperammonemia. This risk was higher in DCIs (RR 6.2, 95% CI 1.0, 40.2) versus isolated cryptococcal meningitis (RR 2.5, 95% CI, 0.40, 16.0). Liver disease and cryptococcal titers were not associated with hyperammonemia. C. neoformans from one patient with extreme hyperammonemia demonstrated a 4- to 5-fold increase in extracellular urease activity, slow growth, enlarged cell size phenotypes, and diminished virulence factors. Hyperammonemia was strongly associated with renal failure in individuals with DCI, surpassing associations with liver failure or cryptococcal titers. However, profound hyperammonemia in one patient was attributable to high levels of urease secretion unique to that cryptococcal strain. Prospective studies are crucial to exploring the significance of this association.IMPORTANCECryptococcus produces and secretes the urease enzyme to facilitate its colonization of the host. Urease breaks down urea into ammonia, overwhelming the liver's detoxification process and leading to hyperammonemia in some hosts. This underrecognized complication exacerbates organ dysfunction alongside the infection. Our study investigated this intricate relationship, uncovering a strong association between the development of hyperammonemia and renal failure in patients with cryptococcal infections, particularly those with disseminated infections. We also explore mechanisms underlying increased urease activity, specifically in strains associated with extreme hyperammonemia. Our discoveries provide a foundation for advancing research into cryptococcal metabolism and identifying therapeutic targets to enhance patient outcomes.


Asunto(s)
Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Hiperamonemia , Ureasa , Humanos , Criptococosis/microbiología , Hiperamonemia/microbiología , Hiperamonemia/etiología , Femenino , Estudios Retrospectivos , Masculino , Persona de Mediana Edad , Ureasa/metabolismo , Adulto , Anciano , Amoníaco/metabolismo , Factores de Riesgo , Insuficiencia Renal/complicaciones , Insuficiencia Renal/microbiología , Anciano de 80 o más Años
5.
Dalton Trans ; 53(27): 11295-11309, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38898716

RESUMEN

A thiophene-derived Schiff base ligand (E)-2-morpholino-N-(thiophen-2-ylmethylene)ethanamine was used for the synthesis of M(II) complexes, [TEM(M)X2] (M = Co, Cu, Zn; X = Cl; M = Cd, X = Br). Structural characterization of the synthesized complexes revealed distorted tetrahedral geometry around the M(II) center. In vitro investigation of the synthesized ligand and its M(II) complexes showed considerable anti-urease and leishmanicidal potential. The synthesized complexes also exhibited a significant inhibitory effect on urease, with IC50 values in the range of 3.50-8.05 µM. In addition, the docking results were consistent with the experimental results. A preliminary study of human colorectal cancer (HCT), hepatic cancer (HepG2), and breast cancer (MCF-7) cell lines showed marked anticancer activities of these complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Simulación del Acoplamiento Molecular , Bases de Schiff , Tiofenos , Ureasa , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo , Tiofenos/química , Tiofenos/farmacología , Tiofenos/síntesis química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Morfolinas/química , Morfolinas/farmacología , Morfolinas/síntesis química , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Estructura Molecular , Leishmania/efectos de los fármacos , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Ensayos de Selección de Medicamentos Antitumorales
6.
J Ethnopharmacol ; 333: 118396, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38823658

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY: This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS: Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS: P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 µg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS: This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.


Asunto(s)
Antibacterianos , Berberina , Helicobacter pylori , Phellodendron , Extractos Vegetales , Helicobacter pylori/efectos de los fármacos , Phellodendron/química , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Berberina/farmacología , Pruebas de Sensibilidad Microbiana , Ureasa/metabolismo , Humanos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología
7.
Dalton Trans ; 53(25): 10553-10562, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38847020

RESUMEN

Bismuth(III) complexes have been reported to act as inhibitors of the enzyme urease, ubiquitously present in soils and implicated in the pathogenesis of several microorganisms. The general insolubility of Bi(III) complexes in water at neutral pH, however, is an obstacle to their utilization. In our quest to improve the solubility of Bi(III) complexes, we selected a compound reported to inhibit urease, namely [Bi(HEDTA)]·2H2O, and co-crystallized it with (i) racemic DL-histidine to obtain the conglomerate [Bi2(HEDTA)2(µ-D-His)2]·6H2O + [Bi2(HEDTA)2(µ-L-His)2]·6H2O, (ii) enantiopure L-histidine to yield [Bi2(HEDTA)2(µ-L-His)2]·6H2O, and (iii) cytosine to obtain [Bi(HEDTA)]·Cyt·2H2O. All compounds, synthesised by mechanochemical methods and by slurry, were characterized in the solid state by calorimetric (DSC and TGA) and spectroscopic (IR) methods, and their structures were determined using powder X-ray diffraction (PXRD) data. All compounds show an appreciable solubility in water, with values ranging from 6.8 mg mL-1 for the starting compound [Bi(HEDTA)]·2H2O to 36 mg mL-1 for [Bi2(HEDTA)2(µ-L-His)2]·6H2O. The three synthesized compounds as well as [Bi(HEDTA)]·2H2O were then tested for inhibition activity against urease. Surprisingly, no enzymatic inhibition was observed during in vitro assays using Canavalia ensiformis urease and in vivo assays using cultures of Helicobacter pylori, raising questions on the efficacy of Bi(III) compounds to counteract the negative effects of urease activity in the agro-environment and in human health.


Asunto(s)
Bismuto , Inhibidores Enzimáticos , Solubilidad , Ureasa , Bismuto/química , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Agroquímicos/farmacología , Agroquímicos/química
8.
Huan Jing Ke Xue ; 45(6): 3523-3532, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897772

RESUMEN

In this study, the effects of four types of amendments on effective Cd and Cd content in different parts of prickly ash soil and soil enzyme activity were studied, which provided scientific basis for acidification improvement of purple soil and heavy metal pollution control. A field experiment was conducted. Six treatments were set up:no fertilizer (CK), only chemical fertilizer (F), lime + chemical fertilizer (SF), organic fertilizer + chemical fertilizer (OM), biochar + chemical fertilizer (BF), and vinasse biomass ash + chemical fertilizer (JZ). Soil pH; available Cd (DTPA-Cd); Cd content in branches, leaves, shells, and seeds of Zanthoxylum; as well as the activities of catalase (S-CAT), acid phosphatase (S-ACP), and urease (S-UE) in different treatments were studied, and their relationships were clarified. The results showed following:① The two treatments of vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer significantly increased soil pH (P < 0.05) to 3.39 and 2.25 units higher than that in the control, respectively. Compared with that in the control treatment, the content of available Cd in soil under vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer treatment decreased by 28.91 % and 20.90 %, respectively. ② The contents of Cd in leaves, shells, and seeds of Zanthoxylum were decreased by 31.33 %, 30.24 %, and 34.01 %, respectively. The Cd enrichment ability of different parts of Zanthoxylum was different, with the specific performances being leaves > branches > seeds > shells. Compared with that of the control, the enrichment coefficient of each part of Zanthoxylum treated with vinasse biomass ash + chemical fertilizer decreased significantly(P < 0.05)by 27.54 %-40.0 %. ③ The changes in catalase and urease activities in soil treated with amendments were similar. Compared with those in the control group, the above two enzyme activities were significantly increased by 191.26 % and 199.50 %, respectively, whereas the acid phosphatase activities were decreased by 16.45 %. Correlation analysis showed that soil available Cd content was significantly negatively correlated with soil pH value(P < 0.01), S-CAT and S-UE enzyme activities were significantly positively correlated with soil pH(P < 0.01), and the soil available Cd content was significantly negatively correlated (P < 0.01); the S-ACP enzyme showed the complete opposite trends. The application of lime and vinasse biomass ash to acidic purple soil had the most significant effect on neutralizing soil acidity. It was an effective measure to improve acidic purple soil and prevent heavy metal pollution by reducing the effective Cd content in soil and improving the soil environment while inhibiting the absorption and transfer of Cd in various parts of Zanthoxylum.


Asunto(s)
Cadmio , Fertilizantes , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/metabolismo , Cadmio/metabolismo , Suelo/química , Ureasa/metabolismo , Zanthoxylum/química , Zanthoxylum/metabolismo , Fosfatasa Ácida/metabolismo , Catalasa/metabolismo , Disponibilidad Biológica , Óxidos/química , Compuestos de Calcio/química , Carbón Orgánico/química
9.
Environ Sci Pollut Res Int ; 31(28): 41290-41300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849617

RESUMEN

As a crucial hydrolytic enzyme, urease plays a vital role in anaerobic biological treatment. It is well-known that manganese ions are abundant in landfill leachate, but their concentration fluctuates significantly. However, few studies have investigated the effect and mechanism of different concentrations of Mn2+ on urease activity during anaerobic biological treatment of landfill leachate. This paper aimed to investigate the effects and mechanisms of different concentrations of Mn2+ on urease activity. The results showed that an appropriate amount of Mn2+ could significantly enhance urease activity, while a high concentration of Mn2+ could inhibit it. Insight into the mechanisms behind this phenomenon, various methods such as Zeta potential, particle size, ultraviolet spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and statistical analysis were employed in our study. Research suggested that, on one hand, Mn2+ may form hydrogen bonds with the side chain amino or carboxyl groups of urease amino acid residues, affecting the structure of urease through hydrogen bonding. Additionally, Mn2+ also binds to urease through hydrophobic interactions. On the other hand, the C-OH and C-N functional groups in urease have a strong affinity for Mn2+, and changes in these functional groups can greatly enhance the activity of urease. Furthermore, under the action of high concentrations of Mn2+, while the structure of urease becomes more stable, there is also a steric hindrance phenomenon that affects the substrate from entering the catalytic center. Therefore, studying the mechanism of Mn2+ affecting urease activity has significant biological significance and provides a new perspective for exploring the impact of metals on anaerobic bioprocessing of landfill leachate.


Asunto(s)
Manganeso , Ureasa , Contaminantes Químicos del Agua , Ureasa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Anaerobiosis
10.
Virulence ; 15(1): 2367783, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38937901

RESUMEN

Helicobacter pylori causes globally prevalent infections that are highly related to chronic gastritis and even development of gastric carcinomas. With the increase of antibiotic resistance, scientists have begun to search for better vaccine design strategies to eradicate H. pylori colonization. However, while current strategies prefer to formulate vaccines with a single H. pylori antigen, their potential has not yet been fully realized. Outer membrane vesicles (OMVs) are a potential platform since they could deliver multiple antigens. In this study, we engineered three crucial H. pylori antigen proteins (UreB, CagA, and VacA) onto the surface of OMVs derived from Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant strains using the hemoglobin protease (Hbp) autotransporter system. In various knockout strategies, we found that OMVs isolated from the ΔrfbP ΔfliC ΔfljB ΔompA mutants could cause distinct increases in immunoglobulin G (IgG) and A (IgA) levels and effectively trigger T helper 1- and 17-biased cellular immune responses, which perform a vital role in protecting against H. pylori. Next, OMVs derived from ΔrfbP ΔfliC ΔfljB ΔompA mutants were used as a vector to deliver different combinations of H. pylori antigens. The antibody and cytokine levels and challenge experiments in mice model indicated that co-delivering UreB and CagA could protect against H. pylori and antigen-specific T cell responses. In summary, OMVs derived from the S. Typhimurium ΔrfbP ΔfliC ΔfljB ΔompA mutant strain as the vector while importing H. pylori UreB and CagA as antigenic proteins using the Hbp autotransporter system would greatly benefit controlling H. pylori infection.


Outer membrane vesicles (OMVs), as a novel antigen delivery platform, has been used in vaccine design for various pathogens and even tumors. Salmonella enterica serovar Typhimurium (S. Typhimurium), as a bacterium that is easy to engineer and has both adjuvant efficacy and immune stimulation capacity, has become the preferred bacterial vector for purifying OMVs after Escherichia coli. This study focuses on the design of Helicobacter pylori ;(H. pylori) vaccines, utilizing genetically modified Salmonella OMVs to present several major antigens of H. pylori, including UreB, VacA and CagA. The optimal Salmonella OMV delivery vector and antigen combinations are screened and identified, providing new ideas for the development of H. pylori vaccines and an integrated antigen delivery platform for other difficult to develop vaccines for bacteria, viruses, and even tumors.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Infecciones por Helicobacter , Helicobacter pylori , Salmonella typhimurium , Animales , Infecciones por Helicobacter/prevención & control , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Helicobacter pylori/inmunología , Helicobacter pylori/genética , Ratones , Salmonella typhimurium/inmunología , Salmonella typhimurium/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Femenino , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Inmunoglobulina G , Ingeniería Genética , Ureasa/inmunología , Ureasa/genética , Modelos Animales de Enfermedad
11.
Int J Biol Macromol ; 271(Pt 1): 132502, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38768915

RESUMEN

A series of sulfonate and sulfamate derivatives bearing benzofuran or benzothiophene scaffold exhibited potent inhibitory effect on urease enzyme. Most of the derivatives exhibited significantly higher potency than thiourea, the standard inhibitor. Compound 1s was identified as the most potent urease inhibitor with an IC50 value of 0.42 ± 0.08 µM, which is 53-fold more potent than thiourea, positive control (IC50 = 22.3 ± 0.031 µM). The docking results further revealed the binding interactions towards the urease active site. Phenotypic screening revealed that compounds 1c, 1d, 1e, 1f, 1j, 1n, and 1t exhibit high potency against H. pylori with MIC values ranging from 0.00625 to 0.05 mM and IC50 values ranging from 0.0031 to 0.0095 mM, much more potent than the positive control, acetohydroxamic acid (MIC and IC50 values were 12.5 and 7.38 mM, respectively). Additional studies were performed to investigate the toxicity of these compounds against the gastric epithelial cell line (AGS) and their selectivity profile against E. coli, and five Lactobacillus species representative of the gut microflora. Permeability characteristics of the most promising derivatives were investigated in Caco-2 cell line. The results indicate that the compounds could be targeted in the GIT only without systemic side effects.


Asunto(s)
Antibacterianos , Benzofuranos , Inhibidores Enzimáticos , Helicobacter pylori , Simulación del Acoplamiento Molecular , Ácidos Sulfónicos , Tiofenos , Ureasa , Ureasa/antagonistas & inhibidores , Ureasa/metabolismo , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , Ácidos Sulfónicos/química , Ácidos Sulfónicos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Benzofuranos/química , Benzofuranos/farmacología , Humanos , Tiofenos/química , Tiofenos/farmacología , Diseño de Fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Descubrimiento de Drogas
12.
IEEE Trans Nanobioscience ; 23(3): 403-409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38722715

RESUMEN

A fiber-optic urea sensor based on surface plasmon resonance (SPR) and Mach-Zehnder interference (MZI) combined principle was designed and implemented. By plating gold film on the single-mode-no-core-thin-core-single-mode fiber structure, we successfully excited both SPR and MZI, and constructed two parallel detection channels for simultaneously measurement of urea concentration and temperature. Urease was immobilized on the gold film by metal-organic zeolite skeleton (ZIF-8), which can not only fix a large number of urease to improve measurement sensitivity of urea, but also protect urease activity to ensure the sensor stability. Experimental results indicate that the designed urea sensor with temperature compensation function can detect urea solution with concentration of 1-9 mM, and the sensitivity is 1.4 nm/mM. The proposed measurement method provides a new choice for monitoring urea concentration in the field of medical diagnosis and human health monitoring.


Asunto(s)
Tecnología de Fibra Óptica , Resonancia por Plasmón de Superficie , Urea , Ureasa , Urea/química , Urea/análisis , Resonancia por Plasmón de Superficie/métodos , Resonancia por Plasmón de Superficie/instrumentación , Ureasa/química , Tecnología de Fibra Óptica/instrumentación , Tecnología de Fibra Óptica/métodos , Diseño de Equipo , Oro/química , Enzimas Inmovilizadas/química , Interferometría/métodos , Interferometría/instrumentación
13.
Colloids Surf B Biointerfaces ; 240: 113986, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795587

RESUMEN

The study examines the immobilization of the urease enzyme on a range of High Internal Phase Emulsion (polyHIPE) materials, assessing characteristics, efficiency, and performance. It also investigates the impact of polyHIPE type, quantity, incubation time, and various parameters on the process and enzyme activity. Surface morphology and functional groups of polyHIPE materials were determined through scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR) analyses, revealing significant alterations after modification with polyglutaraldehyde (PGA). The maximum immobilization efficiency of 95% was achieved by adding PGA to polyHIPE materials with an incubation period of 15 h. The optimized conditions for immobilized enzyme using a Box-Behnken design (BBD) of response surface methodology (RSM) were as follows: temperature (40.8 °C), pH (7.1) and NaCl concentration (0.007 g/L). Furthermore, the immobilized enzyme demonstrated remarkable reusability, retaining 75% of its initial activity after six cycles, and sustained shelf-life stability, retaining over 40% activity after 10 days at room temperature. Kinetic analyses revealed that immobilized urease exhibited higher affinity for the substrate, but lower rate of substrate conversion compared to the free enzyme. These findings offer valuable insights into optimizing urease immobilization processes and enhancing urease stability and activity, with potential applications in various fields, including biotechnology and biocatalysis.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Propiedades de Superficie , Ureasa , Ureasa/química , Ureasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Cinética , Porosidad , Concentración de Iones de Hidrógeno , Polímeros/química , Temperatura , Espectroscopía Infrarroja por Transformada de Fourier , Tamaño de la Partícula
14.
Methods Mol Biol ; 2775: 269-275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758324

RESUMEN

Urease and phospholipase are enzymes that are important virulence factors for Cryptococcus neoformans. These are two of the most studied enzymes involved in how C. neoformans breaches the blood-brain barrier. Additionally, phospholipase secretion also supports dissemination from the lungs. This chapter describes the methods used to measure the secretion of these enzymes, which may be used to characterize strain invasiveness and virulence.


Asunto(s)
Cryptococcus neoformans , Fosfolipasas , Ureasa , Ureasa/metabolismo , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/patogenicidad , Fosfolipasas/metabolismo , Criptococosis/microbiología , Factores de Virulencia/metabolismo , Humanos , Proteínas Fúngicas/metabolismo , Virulencia
15.
Int J Biol Macromol ; 270(Pt 1): 132295, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735615

RESUMEN

Ovomucin-Complex extracted from egg white is expected to have a barrier function similar to gastric mucin. In this study, the dynamic changes in structure, rheological properties and binding ability of Ovomucin-Complex during in vitro simulated gastric digestion were investigated. The results from HPLC and CLSM showed that extremely acidic pH (pH = 2.0) promoted Ovomucin-Complex to form aggregation. Acid-induced aggregation may hinder its binding to pepsin, thus rendering Ovomucin-Complex resistant to pepsin. Consequently, most of the polymer structure and weak gel properties of Ovomucin-Complex retained after simulated gastric digestion as verified by HPLC, CLSM and rheological measurement, although there was a small breakdown of the glycosidic bond as confirmed by the increased content of reducing sugar. The significantly reduced hydrophobic interactions of Ovomucin-Complex were observed under extremely acidic conditions and simulated gastric digestion compared with the native. Noticeably, the undigested Ovomucin-Complex after simulated gastric digestion showed a higher affinity (KD = 5.0 ± 3.2 nm) for urease - the key surface antigen of Helicobacter pylori. The interaction mechanism between Ovomucin-Complex and urease during gastric digestion deserves further studies. This finding provides a new insight to develop an artificial physical mucus barrier to reduce Helicobacter pylori infection.


Asunto(s)
Digestión , Ovomucina , Ureasa , Ureasa/metabolismo , Ureasa/química , Ovomucina/química , Ovomucina/metabolismo , Concentración de Iones de Hidrógeno , Unión Proteica , Pepsina A/metabolismo , Pepsina A/química , Polimerizacion , Helicobacter pylori , Reología , Humanos
16.
Ecotoxicol Environ Saf ; 279: 116496, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38816322

RESUMEN

Microbially induced carbonate precipitation (MICP), as an eco-friendly and promising technology that can transform free metal ions into stable precipitation, has been extensively used in remediation of heavy metal contamination. However, its depressed efficiency of heavy metal elimination remains in question due to the inhibition effect of heavy metal toxicity on bacterial activity. In this work, an efficient, low-cost manganese (Mn) elimination strategy by coupling MICP with chitosan biopolymer as an additive with reduced treatment time was suggested, optimized, and implemented. The influences of chitosan at different concentrations (0.01, 0.05, 0.10, 0.15 and 0.30 %, w/v) on bacterial growth, enzyme activity, Mn removal efficiency and microstructure properties of the resulting precipitation were investigated. Results showed that Mn content was reduced by 94.5 % within 12 h with 0.15 % chitosan addition through adsorption and biomineralization as MnCO3 (at an initial Mn concentration of 3 mM), demonstrating a two-thirds decrease in remediation time compared to the chitosan-absent system, whereas maximum urease activity increased by ∼50 %. Microstructure analyses indicated that the mineralized precipitates were spherical-shaped MnCO3, and a smaller size and more uniform distribution of MnCO3 is obtained by the regulation of abundant amino and hydroxyl groups in chitosan. These results demonstrate that chitosan accelerates nucleation and tunes the growth of MnCO3 by providing nucleation sites for mineral formation and alleviating the toxicity of metal ions, which has the potential to upgrade MICP process in a sustainable and effective manner. This work provides a reference for further understanding of the biomineralization regulation mechanism, and gives a new perspective into the application of biopolymer-intensified strategies of MICP technology in heavy metal contamination.


Asunto(s)
Carbonatos , Quitosano , Manganeso , Quitosano/química , Manganeso/química , Manganeso/toxicidad , Carbonatos/química , Adsorción , Biopolímeros/química , Precipitación Química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Ureasa , Restauración y Remediación Ambiental/métodos , Biomineralización/efectos de los fármacos , Biodegradación Ambiental
17.
Talanta ; 275: 126191, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705020

RESUMEN

Mucin 1 is a significant tumor marker, and developing portable and cost-effective methods for its detection is crucial, especially in resource-limited areas. Herein, we developed an innovative approach for mucin 1 detection using a visible multicolor aptasensor. Urease-encapsulated DNA microspheres were used to mediate multicolor change facilitated by the color mixing of the mixed pH indicator, a mixed methyl red and bromocresol green solution. Distinct color changes were exhibited in response to varying mucin 1 concentrations. Notably, the color mixing of the mixed pH indicator was used to display various hues of colors, broadening the range of color variation. And color tonality is much easier to differentiate than color intensity, improving the resolution with naked-eyes. Besides, the variation of color from red to green (a pair of complementary colors) enhanced the color contrast, heightening sensitivity for visual detection. Importantly, the proposed method was successfully applied to detect mucin 1 in real samples, demonstrating a clear differentiation of colors between the samples of healthy individuals and breast cancer patients. The use of a mixed pH indicator as a multichromatic substrate offers the merits of low cost, fast response to pH variation, and plentiful color-evolution. And the incorporation of calcium carbonate microspheres to encapsulate urease ensures stable urease activity and avoids the need for extra urease decoration. The color-mixing dependent strategy opens a new way for multicolor detection of MUC1, characterized by vivid color changes.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Color , Mucina-1 , Ureasa , Ureasa/química , Concentración de Iones de Hidrógeno , Mucina-1/análisis , Mucina-1/química , Humanos , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Microesferas , Neoplasias de la Mama
18.
Nat Commun ; 15(1): 4036, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740750

RESUMEN

Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.


Asunto(s)
Proteínas Bacterianas , Níquel , Níquel/metabolismo , Níquel/química , Animales , Virulencia/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Zinc/metabolismo , Zinc/química , Mariposas Nocturnas/microbiología , Ureasa/metabolismo , Ureasa/antagonistas & inhibidores , Transporte Biológico
19.
Nat Commun ; 15(1): 3919, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724503

RESUMEN

Biological macromolecules can condense into liquid domains. In cells, these condensates form membraneless organelles that can organize chemical reactions. However, little is known about the physical consequences of chemical activity in and around condensates. Working with model bovine serum albumin (BSA) condensates, we show that droplets swim along chemical gradients. Active BSA droplets loaded with urease swim toward each other. Passive BSA droplets show diverse responses to externally applied gradients of the enzyme's substrate and products. In all these cases, droplets swim toward solvent conditions that favor their dissolution. We call this behavior "dialytaxis", and expect it to be generic, as conditions which favor dissolution typically reduce interfacial tension, whose gradients are well-known to drive droplet motion through the Marangoni effect. These results could potentially suggest alternative physical mechanisms for active transport in living cells, and may enable the design of fluid micro-robots.


Asunto(s)
Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Animales , Ureasa/metabolismo , Ureasa/química , Solubilidad , Bovinos , Solventes/química , Tensión Superficial
20.
Sci Rep ; 14(1): 10556, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719847

RESUMEN

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Asunto(s)
Fertilizantes , Glycine max , Níquel , Suelo , Glycine max/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Fertilizantes/análisis , Suelo/química , Ureasa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Fijación del Nitrógeno/efectos de los fármacos , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Agricultura/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...