Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
J Virol ; 97(7): e0039423, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37338373

RESUMEN

Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections during our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, transforming growth factor ß1 (TGF-ß1), driving cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-ß1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT. IMPORTANCE We have previously shown that RSV infects ciliated cells on the apical side of the lung airway. RSV-induced cytoskeletal inflammation contributes to an uneven increase in the height of the airway epithelium, resembling noncanonical bronchial wall thickening. RSV infection changes epithelial cell morphology by modulating actin-protein 2/3 complex-driven actin polymerization. Therefore, it is prudent to investigate whether RSV-induced cell morphological changes contribute to EMT. Our data indicate that RSV does not induce EMT in at least three different epithelial in vitro models: an epithelial cell line, primary epithelial cells, and pseudostratified bronchial airway epithelium.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Anciano , Niño , Preescolar , Humanos , Lactante , Actinas/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Factor de Crecimiento Transformador beta1
2.
J Control Release ; 357: 264-273, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37015293

RESUMEN

Respiratory viruses including the respiratory syncytial virus (RSV) aggravate the global burden of virus-inflicted morbidity and mortality. Entry inhibitors are a promising class of antiviral drugs for combating these viruses, as they can prevent infection at the site of viral entry, i.e., the respiratory tract. Here we used a broad-spectrum entry inhibitor, composed of a ß-cyclodextrin backbone, functionalized with 11-mercapto-1-undecanesulfonate (CD-MUS) that is capable of neutralizing a variety of viruses that employ heparan sulfate proteoglycans (HSPG) to infect host cells. CD-MUS inactivates viral particles irreversibly by binding to viral attachment proteins through a multivalent binding mechanism. In the present study, we show that CD-MUS is well tolerated when administered to the respiratory tract of mice. Based on this, we developed an inhalable spray-dried powder formulation that fits the size requirements for lung deposition and disperses well upon use with the Cyclops dry powder inhaler (DPI). Using an in vitro dose-response assay, we show that the compound retained its activity against RSV after the spray drying process. Our study sets the stage for further in vivo studies, exploring the efficacy of pulmonary administered CD-MUS in animal models of RSV infection.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios , Animales , Virus Sincitiales Respiratorios/metabolismo , Polvos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Administración por Inhalación , Proteínas Virales/metabolismo , Inhaladores de Polvo Seco
3.
J Ethnopharmacol ; 291: 115157, 2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35247474

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence and mortality of bronchial asthma are increasing, and respiratory syncytial virus (RSV) is widely regarded as the common cause of clinical exacerbation of asthma. Ma-Xing-Gan-Shi decoction (MXGSD), a classic traditional Chinese medicine prescription, is well-known for treating respiratory diseases, while the mechanism of effecting on RSV-exacerbated asthma remains to be explored. AIM OF THE STUDY: In this study, we investigated the mechanism by which MXGSD exerts a protective effect on asthma exacerbated by RSV in vivo and in vitro. MATERIALS AND METHODS: MXGSD is composed of four Chinese medicine, including Ephedra intermedia Schrenk & C.A.Mey. (herbaceous stem, 27g), Prunus armeniaca L. (dry seed, 27g), Glycyrrhiza uralensis Fisch. (radix and rhizome, 18g), and Gypsum fibrosum (main component: CaSO4·2H2O, 54g). In the present study, the exacerbated asthmatic mice model with the treatment of OVA plus RSV was replicated, and accompanied by the TMT proteomic analysis and further experimental investigations. Then, the protective effect of MXGSD (13.2, 6.6, 3.3 g/kg/d, 7d) on the mice treated by OVA plus RSV, and the mechanism of regulating TRPV1 was explored. In addition, the intracellular Ca2+ concentration of 16HBE cells pretreated with MXGSD medicated serum was also tested after stimulation with the TRPV1 agonist capsaicin. RESULTS: The results suggested that MXGSD could reduce the levels of inflammation cells, airway hyperresponsiveness, and pathological damage of lung tissue. TMT quantitative proteomics analysis and further experimental exploration revealed that MXGSD could reduce the levels of IL-4, IL-13, PGE2, and SP in BAL and down-regulate the expression of TRPV1 mRNA and protein in lung tissue. Furthermore, 16HBE cells stimulated by capsaicin showed an increased intracellular Ca2+ concentration, while the pretreatment of MXGSD medicated serum could reduce it. CONCLUSION: MSGSD showed a protective effect on RSV-exacerbated asthma, which may be related to its regulation of TRPV1 expression and reduction of Th2 cytokines and neurogenic inflammatory mediators. It may provide an objective basis and reference for the clinical application of MXGSD.


Asunto(s)
Asma , Medicamentos Herbarios Chinos , Infecciones por Virus Sincitial Respiratorio , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Pulmón , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/farmacología , Proteómica , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Canales Catiónicos TRPV/metabolismo
4.
Acta Pharm ; 72(3): 415-425, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651544

RESUMEN

Respiratory syncytial virus (RSV) is the most common cause of small airways inflammation in the lungs (bronchiolitis) in neonates and immunocompromised adults. The deregulation of cellular and plasma components leads to increased morbidity and mortality. The activation of the clotting cascade plays a key role in the progression of disease severity during viral infection. The current investigation studied the effect of bivalirudin (BR) on the progression and cellular effects of RSV-induced infection in the neonatal mice model. Mice (5-7 days old) were inoculated intranasally with RSV with or without BR administration (2 mg kg-1 day-1, i.v.) for 2 weeks. Tissue histopathology, inflammatory signalling genes such as TLR, and cytokines were analyzed. The results showed pneumocytes exhibiting nuclear pyknosis, cellular infiltration in lung tissue and increased lung titers in RSV-infected mice compared to the control. Furthermore, RSV-infected mice demonstrated altered clotting parameters such as D-dimer, soluble thrombomodulin, and increased inflammatory cytokines IL-5, 6, IFN-γ, IL-13, and CXCL1. Additionally, the mRNA expression analysis displayed increased levels of IL-33, TLR3, and TLR7 genes in RSV-infected lung tissue. Further, to delineate the role of micro RNAs, the qRT-PCR analysis was done, and the results displayed an increase in miR-136, miR-30b, and let-7i. At the same time, the down-regulated expression of miR-221 in RSV-infected mice compared to the control. BR treatment reduced the cellular infiltration with reduced inflammatory cytokines and normalized clotting indices. Thus, the study shows that RSV infection induces specific changes in lung tissue and the clotting related signalling mechanism. Additionally, BR treatment significantly reduces bronchiolitis and prevents the severity of the infections suggesting that BR can possibly be used to reduce the viral-mediated infections in neonates.


Asunto(s)
MicroARNs , Infecciones por Virus Sincitial Respiratorio , Animales , Ratones , Animales Recién Nacidos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/metabolismo , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/patología , Pulmón/metabolismo , Pulmón/patología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/metabolismo , Citocinas/metabolismo , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
5.
Viruses ; 13(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34696497

RESUMEN

Respiratory viruses are known to be the most frequent causative mediators of lung infections in humans, bearing significant impact on the host cell signaling machinery due to their host-dependency for efficient replication. Certain cellular functions are actively induced by respiratory viruses for their own benefit. This includes metabolic pathways such as glycolysis, fatty acid synthesis (FAS) and the tricarboxylic acid (TCA) cycle, among others, which are modified during viral infections. Here, we summarize the current knowledge of metabolic pathway modifications mediated by the acute respiratory viruses respiratory syncytial virus (RSV), rhinovirus (RV), influenza virus (IV), parainfluenza virus (PIV), coronavirus (CoV) and adenovirus (AdV), and highlight potential targets and compounds for therapeutic approaches.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Metabolismo Energético/fisiología , Ácidos Grasos/biosíntesis , Glucólisis/fisiología , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Adenoviridae/metabolismo , Coronavirus/metabolismo , Humanos , Orthomyxoviridae/metabolismo , Virus de la Parainfluenza 1 Humana/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Rhinovirus/metabolismo
6.
Elife ; 102021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34586067

RESUMEN

The complement system is a critical host defense against infection, playing a protective role that can also enhance disease if dysregulated. Although many consequences of complement activation during viral infection are well established, mechanisms that determine the extent to which viruses activate complement remain elusive. Here, we investigate complement activation by human respiratory syncytial virus (RSV), a filamentous respiratory pathogen that causes significant morbidity and mortality. By engineering a strain of RSV harboring tags on the surface glycoproteins F and G, we are able to monitor opsonization of single RSV particles using fluorescence microscopy. These experiments reveal an antigenic hierarchy, where antibodies that bind toward the apex of F in either the pre- or postfusion conformation activate the classical pathway whereas other antibodies do not. Additionally, we identify an important role for virus morphology in complement activation: as viral filaments age, they undergo a morphological transformation which lowers the threshold for complement deposition through changes in surface curvature. Collectively, these results identify antigenic and biophysical characteristics of virus particles that contribute to the formation of viral immune complexes, and suggest models for how these factors may shape disease severity and adaptive immune responses to RSV.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Activación de Complemento , Humanos , Modelos Biológicos , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/inmunología
7.
J Med Virol ; 93(11): 6116-6123, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34375002

RESUMEN

Virus invasion activates the host's innate immune response, inducing the production of numerous cytokines and interferons to eliminate pathogens. Except for viral DNA/RNA, viral proteins are also targets of pattern recognition receptors. Membrane-bound receptors such as Toll-like receptor (TLR)1, TLR2, TLR4, TLR6, and TLR10 relate to the recognition of viral proteins. Distinct TLRs perform both protective and detrimental roles for a specific virus. Here, we review viral proteins serving as pathogen-associated molecular patterns and their corresponding TLRs. These viruses are all enveloped, including respiratory syncytial virus, hepatitis C virus, measles virus, herpesvirus human immunodeficiency virus, and coronavirus, and can encode proteins to activate innate immunity in a TLR-dependent way. The TLR-viral protein relationship plays an important role in innate immunity activation. A detailed understanding of their pathways contributes to a novel direction for vaccine development.


Asunto(s)
Inmunidad Innata , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Proteínas Virales/metabolismo , Virosis/inmunología , Virus/inmunología , Animales , VIH/inmunología , VIH/metabolismo , VIH/patogenicidad , Hepacivirus/inmunología , Hepacivirus/metabolismo , Hepacivirus/patogenicidad , Herpesviridae/inmunología , Herpesviridae/metabolismo , Herpesviridae/patogenicidad , Humanos , Virus del Sarampión/inmunología , Virus del Sarampión/metabolismo , Virus del Sarampión/patogenicidad , Moléculas de Patrón Molecular Asociado a Patógenos/química , Virus Sincitiales Respiratorios/inmunología , Virus Sincitiales Respiratorios/metabolismo , Virus Sincitiales Respiratorios/patogenicidad , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteínas Virales/química , Virosis/virología , Virus/metabolismo , Virus/patogenicidad
8.
Sci Rep ; 11(1): 8953, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903695

RESUMEN

Respiratory syncytial virus (RSV) infection is a leading cause of hospitalization in infants. Underlying risk factors for RSV infection in the general population are not well understood, as previous work has focused on severe outcomes of infection in a clinical setting. Here we use RSV-specific IgG and IgA antibody measurements from two population-based cross-sectional serosurveys carried out in the Netherlands (n = 682) to classify children up to 5 years as seronegative or seropositive. We employ a generalized additive model to estimate the probability of prior RSV infection as function of age, date of birth within the year, and other risk factors. The analyses show that the majority of children have experienced a RSV infection before the age of 2 years. Age and birthdate are strong predictors of RSV infection in the first years of life, and children born in summer have higher estimated probability of infection than those born in winter [e.g., 0.56 (95% CI 0.45-0.66) vs. 0.32 (0.21-0.45) at age 1 year]. Our analyses reveal that the mean age at infection depends on date of birth, which has implications for the design of vaccination programmes and prioritisation schemes for the prophylactic use of monoclonal antibodies.


Asunto(s)
Anticuerpos Antivirales/sangre , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Infecciones por Virus Sincitial Respiratorio/sangre , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitiales Respiratorios/metabolismo , Factores de Edad , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , Países Bajos/epidemiología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Factores de Riesgo
9.
Viruses ; 13(2)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567674

RESUMEN

Nucleolin is an essential cellular receptor to human respiratory syncytial virus (RSV). Pharmacological targeting of the nucleolin RNA binding domain RBD1,2 can inhibit RSV infections in vitro and in vivo; however, the site(s) on RBD1,2 which interact with RSV are not known. We undertook a series of experiments designed to: document RSV-nucleolin co-localization on the surface of polarized MDCK cells using immunogold electron microscopy, to identify domains on nucleolin that physically interact with RSV using biochemical methods and determine their biological effects on RSV infection in vitro, and to carry out structural analysis toward informing future RSV drug development. Results of immunogold transmission and scanning electron microscopy showed RSV-nucleolin co-localization on the cell surface, as would be expected for a viral receptor. RSV, through its fusion protein (RSV-F), physically interacts with RBD1,2 and these interactions can be competitively inhibited by treatment with Palivizumab or recombinant RBD1,2. Treatment with synthetic peptides derived from two 12-mer domains of RBD1,2 inhibited RSV infection in vitro, with structural analysis suggesting these domains are potentially feasible for targeting in drug development. In conclusion, the identification and characterization of domains of nucleolin that interact with RSV provide the essential groundwork toward informing design of novel nucleolin-targeting compounds in RSV drug development.


Asunto(s)
Fosfoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Receptores Virales/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Animales , Antivirales/farmacología , Línea Celular , Perros , Humanos , Inmunohistoquímica , Células de Riñón Canino Madin Darby , Microscopía Electrónica , Palivizumab/farmacología , Nucleolina
10.
Cytokine ; 138: 155349, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33132030

RESUMEN

BACKGROUND: Bronchial asthma (BA) is a chronic disease of the airways. The great majority of BA exacerbations are associated with respiratory viral infections. Recent findings point out a possible role of proinflammatory cytokine interleukin-33 (IL-33) in the development of atopic diseases. Although, little is known about the role of IL-33 in virus-induced BA exacerbations. METHODS: We used mouse models of RSV (respiratory syncytial virus)-induced inflammation exacerbation in OVA-sensitized mice and RSV infection alone in adult animals to characterize expression of il33 in the mouse lungs. Moreover, we studied the influence of il33 knockdown with intranasally administrated siRNA on the development of RSV-induced inflammation exacerbation. In addition, we evaluated the expression of IL33 in the ex vivo stimulated PBMCs from allergic asthma patients and healthy subjects with and without confirmed acute respiratory viral infection. RESULTS: Using mouse models, we found that infection with RSV drives enhanced il33 mRNA expression in the mouse lung. Treatment with anti-il33 siRNA diminishes airway inflammation in the lungs (we found a decrease in the number of inflammatory cells in the lungs and in the severity of histopathological alterations) of mice with RSV-induced inflammation exacerbation, but do not influence viral load. Elevated level of the IL33 mRNA was detected in ex vivo stimulated blood lymphocytes of allergic asthmatics infected with respiratory viruses. RSV and rhinovirus were the most detected viruses in volunteers with symptoms of respiratory infection. CONCLUSION: The present study provides additional evidence of the crucial role of the IL-33 in pathogenesis of RSV infection and virus-induced allergic bronchial asthma exacerbations.


Asunto(s)
Asma/metabolismo , Interleucina-33/biosíntesis , Interleucina-33/metabolismo , Ovalbúmina/química , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Regulación hacia Arriba , Adolescente , Adulto , Anciano , Animales , Asma/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Hipersensibilidad , Inflamación , Leucocitos Mononucleares/metabolismo , Pulmón/metabolismo , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Adulto Joven
11.
Nature ; 583(7817): 615-619, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32494007

RESUMEN

Pneumonia resulting from infection is one of the leading causes of death worldwide. Pulmonary infection by the respiratory syncytial virus (RSV) is a large burden on human health, for which there are few therapeutic options1. RSV targets ciliated epithelial cells in the airways, but how viruses such as RSV interact with receptors on these cells is not understood. Nucleolin is an entry coreceptor for RSV2 and also mediates the cellular entry of influenza, the parainfluenza virus, some enteroviruses and the bacterium that causes tularaemia3,4. Here we show a mechanism of RSV entry into cells in which outside-in signalling, involving binding of the prefusion RSV-F glycoprotein with the insulin-like growth factor-1 receptor, triggers the activation of protein kinase C zeta (PKCζ). This cellular signalling cascade recruits nucleolin from the nuclei of cells to the plasma membrane, where it also binds to RSV-F on virions. We find that inhibiting PKCζ activation prevents the trafficking of nucleolin to RSV particles on airway organoid cultures, and reduces viral replication and pathology in RSV-infected mice. These findings reveal a mechanism of virus entry in which receptor engagement and signal transduction bring the coreceptor to viral particles at the cell surface, and could form the basis of new therapeutics to treat RSV infection.


Asunto(s)
Receptor IGF Tipo 1/metabolismo , Receptores Virales/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Internalización del Virus , Línea Celular , Núcleo Celular/metabolismo , Activación Enzimática , Humanos , Fusión de Membrana/efectos de los fármacos , Fosfoproteínas/metabolismo , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/patogenicidad , Virus Sincitiales Respiratorios/fisiología , Carga Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Nucleolina
12.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-32345772

RESUMEN

Ephedrannin B (EPB) has been shown to exert anti-inflammatory effects. However, the effect of EPB on respiratory syncytial virus infection (RSV) is not known. In this study, the cytotoxic effect of EPB was evaluated in BEAS-2B cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Reverse transcription quantitative polymerase chain reaction and Western blot assays were performed to determine the expression of target genes. The anti-viral effect of EPB was assessed by determining viral titers using plaque assay. We found that RSV infection caused a marked increase in interleukin (IL)-6, IL-8, IL-1ß and tumor necrosis factor (TNF)- α production and release, which was concentration-dependently attenuated by EPB treatment. Furthermore, EPB decreased the expression of RSV fusion gene in RSV-infected BEAS-2B cells. Concomitantly, EPB treatment led to an obvious inhibition of viral replication in BEAS-2B cells. Besides, EPB suppressed RSV-induced mitogen-activated protein kinase/nuclear factor kappa-light-chainenhancer of activated B cells signaling. In conclusion, EPB exerts anti-viral and anti-inflammatory properties in BEAS-2B cells infected with RSV.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Proantocianidinas/farmacología , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/metabolismo , Línea Celular , Células Cultivadas , Células Epiteliales/metabolismo , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Interleucinas/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32295918

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of pediatric respiratory disease. Large numbers of neutrophils are recruited into the airways of children with severe RSV disease. It is not clear whether or how neutrophils enhance recovery from disease or contribute to its pathology. Using an in vitro model of the differentiated airway epithelium, we found that the addition of physiological concentrations of neutrophils to RSV-infected nasal cultures was associated with greater epithelial damage with lower ciliary activity, cilium loss, less tight junction expression (ZO-1), and more detachment of epithelial cells than is seen with RSV infection alone. This was also associated with a decrease in infectious virus and fewer RSV-positive cells in cultures after neutrophil exposure than in preexposure cultures. Epithelial damage in response to RSV infection was associated with neutrophil activation (within 1 h) and neutrophil degranulation, with significantly greater cellular expression of CD11b and myeloperoxidase and higher levels of neutrophil elastase and myeloperoxidase activity in apical surface media than in media with mock-infected airway epithelial cells (AECs). We also recovered more apoptotic neutrophils from RSV-infected cultures (>40%) than from mock-infected cultures (<5%) after 4 h. The results of this study could provide important insights into the role of neutrophils in host response in the airway.IMPORTANCE This study shows that the RSV-infected human airway drives changes in the behavior of human neutrophils, including increasing activation markers and delaying apoptosis, that result in greater airway damage and viral clearance.


Asunto(s)
Neutrófilos/inmunología , Mucosa Respiratoria/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Adulto , Células Epiteliales/virología , Humanos , Neutrófilos/virología , Cultivo Primario de Células , Mucosa Respiratoria/virología , Infecciones por Virus Sincitial Respiratorio/fisiopatología , Virus Sincitial Respiratorio Humano/fisiología , Virus Sincitiales Respiratorios/metabolismo , Virus Sincitiales Respiratorios/patogenicidad , Virus Sincitiales Respiratorios/fisiología , Virosis/metabolismo
14.
Biochem Pharmacol ; 177: 113982, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32305436

RESUMEN

Marine environments are known to be a new source of structurally diverse bioactive molecules. In this paper, we identified a porphyrin derivative of Pyropheophorbide a (PPa) from the mussel Musculus senhousei (M. senhousei) that showed broad anti-influenza A virus activity in vitro against a panel of influenza A viral strains. The analysis of the mechanism of action indicated that PPa functions in the early stage of virus infection by interacting with the lipid bilayer of the virion, resulting in an alteration of membrane-associated functions, thereby blocking the entry of enveloped viruses into host cells. In addition, the anti-influenza A virus activity of PPa was further assessed in mice infected with the influenza A virus. The survival rate and mean survival time of mice were apparently prolonged compared with the control group which was not treated with the drug. Therefore, PPa and its derivatives may represent lead compounds for controlling influenza A virus infection.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Bivalvos/química , Clorofila/análogos & derivados , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Virus Sincitiales Respiratorios/efectos de los fármacos , Virión/efectos de los fármacos , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Betacoronavirus/crecimiento & desarrollo , Betacoronavirus/metabolismo , Clorofila/química , Clorofila/aislamiento & purificación , Clorofila/farmacología , Perros , Interacciones Huésped-Patógeno/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Membrana Dobles de Lípidos/antagonistas & inhibidores , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Células de Riñón Canino Madin Darby , Masculino , Ratones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Virus Sincitiales Respiratorios/crecimiento & desarrollo , Virus Sincitiales Respiratorios/metabolismo , SARS-CoV-2 , Alimentos Marinos , Análisis de Supervivencia , Virión/crecimiento & desarrollo , Virión/metabolismo , Internalización del Virus/efectos de los fármacos
15.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321805

RESUMEN

Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infection in infants and young children. The vaccine-enhanced disease (VED) has greatly hindered the development of an RSV vaccine. Currently, there are no licensed vaccines for RSV. In this study, immunization of mice with hepatitis B virus core particles containing a conserved region of the G protein (HBc-tG) combined with interleukin-35 (IL-35) elicited a Th1-biased response and a high frequency of regulatory T (Treg) cells and increased the levels of IL-10, transforming growth factor ß, and IL-35 production. Importantly, immunization with HBc-tG together with IL-35 protected mice against RSV infection without vaccine-enhanced immunopathology. To explore the mechanism of how IL-35 reduces lung inflammation at the gene expression level, transcription profiles were obtained from lung tissues of immunized mice after RSV infection by the Illumina sequencing technique and further analyzed by a systems biology method. In total, 2,644 differentially expressed genes (DEGs) were identified. Twelve high-influence modules (HIMs) were selected from these DEGs on the basis of the protein-protein interaction network. A detailed analysis of HIM10, involved in the immune response network, revealed that Il10 plays a key role in regulating the host response. The selected DEGs were consistently confirmed by quantitative real-time PCR (qRT-PCR). Our results demonstrate that IL-35 inhibits vaccine-enhanced immunopathology after RSV infection and has potential for development in novel therapeutic and prophylactic strategies.IMPORTANCE In the past few decades, respiratory syncytial virus (RSV) has still been a major health concern worldwide. The vaccine-enhance disease (VED) has hindered RSV vaccine development. A truncated hepatitis B virus core protein vaccine containing the conserved region (amino acids 144 to 204) of the RSV G protein (HBc-tG) had previously been shown to induce effective immune responses and confer protection against RSV infection in mice but to also lead to VED. In this study, we investigated the effect of IL-35 on the host response and immunopathology following RSV infection in vaccinated mice. Our results indicate that HBc-tG together with IL-35 elicited a balanced immune response and protected mice against RSV infection without vaccine-enhanced immunopathology. Applying a systems biology method, we identified Il10 to be the key regulator in reducing the excessive lung inflammation. Our study provides new insight into the function of IL-35 and its regulatory mechanism of VED at the network level.


Asunto(s)
Virus de la Hepatitis B/inmunología , Interleucinas/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Virus de la Hepatitis B/metabolismo , Humanos , Inmunización , Interleucinas/metabolismo , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/metabolismo , Virus Sincitiales Respiratorios/patogenicidad , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Vacunación , Células Vero , Proteínas del Núcleo Viral/inmunología
16.
Sci Rep ; 10(1): 3653, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107411

RESUMEN

Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with oxidative injury and pathogenic inflammation. RSV impairs antioxidant responses by increasing the degradation of transcription factor NRF2, which controls the expression of several antioxidant enzyme (AOE) genes, including catalase. Since catalase is a key enzyme for the dismutation of virus-mediated generation of hydrogen peroxide (H2O2) we developed a model of intranasal supplementation of polyethylene glycol-conjugated catalase (PG-CAT) for RSV-infected mice. The results of our study show that PG-CAT supplementation was able to increase specific enzymatic activity along with reduction in H2O2 in the airways and had a significant protective effect against RSV-induced clinical disease and airway pathology. PG-CAT treated mice showed amelioration in airway obstruction, reduction in neutrophil elastase and inflammation. Improved airway hyperresponsiveness was also observed in mice that received PG-CAT as a treatment post-viral inoculation. In addition, PG-CAT greatly reduced the concentration of inflammatory cytokines and chemokines, including IL-1, TNF-α, IL-9, CXCL1, CCL2, and CCL5 in the bronchoalveolar lavage fluid of RSV-infected mice, without increasing viral replication in the lung. In conclusion, catalase supplementation may represent a novel pharmacologic approach to be explored in human for prevention or treatment of respiratory infections caused by RSV.


Asunto(s)
Catalasa/farmacología , Pulmón/metabolismo , Polietilenglicoles/farmacología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitiales Respiratorios/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología
18.
Adv Ther ; 37(1): 578-591, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31832988

RESUMEN

INTRODUCTION: The study objective was to characterize the excretion and metabolic profile of the respiratory syncytial virus fusion protein inhibitor, JNJ-53718678. Prior animal and in vitro studies suggested three main elimination pathways: N-glucuronidation to M8; CYP(3A4) metabolism leading to circulating metabolites M5, M12, M19 and M37; and JNJ-53718678 biliary excretion. To gain insight into the relative contribution of JNJ-53718678 and M8 biliary excretion, duodenal fluid sampling was incorporated into this mass balance study. METHODS: A single oral dose of 500 mg 14C-JNJ-53718678 was administered to six healthy male subjects. Four hours after study drug intake, gallbladder contraction was stimulated and duodenal fluid samples were collected. JNJ-53718678, its key circulating metabolites and total radioactivity (TR) were quantified in plasma, feces, urine and duodenal fluid. Safety was monitored throughout. RESULTS: JNJ-53718678 and M12 represented 47.4% and 17.8%, respectively, of TR area under the curve (AUC)∞ in plasma. M37 (9.6%), M19 (5.2%), M5 (4.3%) and M8 (1.4%) were minor metabolites; 70.6% of TR was recovered in feces and 19.9% in urine. Duodenal fluid concentrations (% of TR) were highest for JNJ-53718678 (11.6%) followed by M8 (10.4%), M5 (5.9%) and M12 (1.1%). In feces, 10-16% of TR was JNJ-53718678, 5-8% M5, < 1% M12 and < 1% M8. N-glucuronidation to M8 and direct biliary excretion of JNJ-53718678 represented 7% and 8% of drug clearance, respectively. JNJ-53718678 was safe and well tolerated. CONCLUSIONS: JNJ-53718678 is primarily eliminated through CYP3A4-mediated metabolism. By integrating duodenal sampling, N-glucuronidation was confirmed as another metabolic pathway despite the low amount of M8 excreted in urine and feces. TRIAL REGISTRATION: Eudract no. 2016-002664-14.


Asunto(s)
Imidazolidinas/metabolismo , Indoles/metabolismo , Virus Sincitiales Respiratorios/metabolismo , Adulto , Animales , Área Bajo la Curva , Citocromo P-450 CYP3A/metabolismo , Humanos , Masculino , Tasa de Depuración Metabólica , Redes y Vías Metabólicas
19.
Proteins ; 88(5): 689-697, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31702857

RESUMEN

Monoclonal antibodies (mAbs) have become an important class of therapeutics, particularly in the realm of anticancer immunotherapy. While the two antigen-binding fragments (Fabs) of an mAb allow for high-avidity binding to molecular targets, the crystallizable fragment (Fc) engages immune effector elements. mAbs of the IgG class are used for the treatment of autoimmune diseases and can elicit antitumor immune functions not only by several mechanisms including direct antigen engagement via their Fab arms but also by Fab binding to tumors combined with Fc engagement of complement component C1q and Fcγ receptors. Additionally, IgG binding to the neonatal Fc receptor (FcRn) allows for endosomal recycling and prolonged serum half-life. To augment the effector functions or half-life of an IgG1 mAb, we constructed a novel "2Fc" mAb containing two Fc domains in addition to the normal two Fab domains. Structural and functional characterization of this 2Fc mAb demonstrated that it exists in a tetrahedral-like geometry and retains binding capacity via the Fab domains. Furthermore, duplication of the Fc region significantly enhanced avidity for Fc receptors FcγRI, FcγRIIIa, and FcRn, which manifested as a decrease in complex dissociation rate that was more pronounced at higher densities of receptor. At intermediate receptor density, the dissociation rate for Fc receptors was decreased 6- to 130-fold, resulting in apparent affinity increases of 7- to 42-fold. Stoichiometric analysis confirmed that each 2Fc mAb may simultaneously bind two molecules of FcγRI or four molecules of FcRn, which is double the stoichiometry of a wild-type mAb. In summary, duplication of the IgG Fc region allows for increased avidity to Fc receptors that could translate into clinically relevant enhancement of effector functions or pharmacokinetics.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos de Histocompatibilidad Clase I/química , Fragmentos Fab de Inmunoglobulinas/química , Inmunoglobulina G/química , Receptores Fc/química , Receptores de IgG/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Expresión Génica , Células HEK293 , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Ingeniería de Proteínas/métodos , Receptores Fc/genética , Receptores Fc/inmunología , Receptores de IgG/genética , Receptores de IgG/inmunología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Virus Sincitiales Respiratorios/química , Virus Sincitiales Respiratorios/inmunología , Virus Sincitiales Respiratorios/metabolismo
20.
Org Lett ; 21(23): 9579-9583, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31755722

RESUMEN

Two novel phloroglucinol-terpenoid adducts (1 and 2), featuring a rare 2,2,4-trimethyl-cinnamyl-ß-triketone unit, were isolated from the buds of Cleistocalyx operculatus. Their structures with absolute configurations were established by spectroscopic analyses, single-crystal X-ray diffraction, and quantum chemical calculations. Structurally, compound 1 represents a new carbon skeleton possessing a densely functionalized tricyclo[11.3.1.03;8]heptadecane bridged ring system with an unusual bridgehead enol. Compounds 1 and 2 exhibited significant in vitro antiviral activities against respiratory syncytial virus (RSV).


Asunto(s)
Antivirales/farmacología , Floroglucinol/farmacología , Virus Sincitiales Respiratorios/efectos de los fármacos , Syzygium , Terpenos/farmacología , Antivirales/química , Línea Celular , Glicoproteínas/metabolismo , Humanos , Estructura Molecular , Floroglucinol/química , Virus Sincitiales Respiratorios/metabolismo , Terpenos/química , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...