Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195.176
Filtrar
1.
Biol Sex Differ ; 15(1): 30, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566248

RESUMEN

BACKGROUND: Neonatal hypoxia ischemia (HI) related brain injury is one of the major causes of learning disabilities and memory deficits in children. In both human and animal studies, female neonate brains are less susceptible to HI than male brains. Phosphorylation of the nerve growth factor receptor TrkB has been shown to provide sex-specific neuroprotection following in vivo HI in female mice in an estrogen receptor alpha (ERα)-dependent manner. However, the molecular and cellular mechanisms conferring sex-specific neonatal neuroprotection remain incompletely understood. Here, we test whether female neonatal hippocampal neurons express autonomous neuroprotective properties and assess the ability of testosterone (T) to alter this phenotype. METHODS: We cultured sexed hippocampal neurons from ERα+/+ and ERα-/- mice and subjected them to 4 h oxygen glucose deprivation and 24 h reoxygenation (4-OGD/24-REOX). Sexed hippocampal neurons were treated either with vehicle control (VC) or the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) following in vitro ischemia. End points at 24 h REOX were TrkB phosphorylation (p-TrkB) and neuronal survival assessed by immunohistochemistry. In addition, in vitro ischemia-mediated ERα gene expression in hippocampal neurons were investigated following testosterone (T) pre-treatment and TrkB antagonist therapy via q-RTPCR. Multifactorial analysis of variance was conducted to test for significant differences between experimental conditions. RESULTS: Under normoxic conditions, administration of 3 µM 7,8-DHF resulted an ERα-dependent increase in p-TrkB immunoexpression that was higher in female, as compared to male neurons. Following 4-OGD/24-REOX, p-TrkB expression increased 20% in both male and female ERα+/+ neurons. However, with 3 µM 7,8-DHF treatment p-TrkB expression increased further in female neurons by 2.81 ± 0.79-fold and was ERα dependent. 4-OGD/24-REOX resulted in a 56% increase in cell death, but only female cells were rescued with 3 µM 7,8-DHF, again in an ERα dependent manner. Following 4-OGD/3-REOX, ERα mRNA increased ~ 3 fold in female neurons. This increase was blocked with either the TrkB antagonist ANA-12 or pre-treatment with T. Pre-treatment with T also blocked the 7,8-DHF- dependent sex-specific neuronal survival in female neurons following 4-OGD/24-REOX. CONCLUSIONS: OGD/REOX results in sex-dependent TrkB phosphorylation in female neurons that increases further with 7,8-DHF treatment. TrkB phosphorylation by 7,8-DHF increased ERα mRNA expression and promoted cell survival preferentially in female hippocampal neurons. The sex-dependent neuroprotective actions of 7,8-DHF were blocked by either ANA-12 or by T pre-treatment. These results are consistent with a model for a female-specific neuroprotective pathway in hippocampal neurons in response to hypoxia. The pathway is activated by 7,8-DHF, mediated by TrkB phosphorylation, dependent on ERα and blocked by pre-exposure to T.


Asunto(s)
Receptor alfa de Estrógeno , Fármacos Neuroprotectores , Niño , Femenino , Animales , Masculino , Ratones , Humanos , Receptor alfa de Estrógeno/metabolismo , Neuroprotección , Caracteres Sexuales , Testosterona/farmacología , Testosterona/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Isquemia , Hipoxia/metabolismo , ARN Mensajero/metabolismo
2.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572740

RESUMEN

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Asunto(s)
Herpesvirus Humano 1 , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ribonucleasas , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleasas/metabolismo , Estabilidad del ARN , Virión/genética , Virión/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579148

RESUMEN

Two well-known facets in protein synthesis in eukaryotic cells are transcription of DNA to pre-RNA in the nucleus and the translation of messenger-RNA (mRNA) to proteins in the cytoplasm. A critical intermediate step is the removal of segments (introns) containing ∼97% of the nucleic-acid sites in pre-RNA and sequential alignment of the retained segments (exons) to form mRNA through a process referred to as splicing. Alternative forms of splicing enrich the proteome while abnormal splicing can enhance the likelihood of a cell developing cancer or other diseases. Mechanisms for splicing and origins of splicing errors are only partially deciphered. Our goal is to determine if rules on splicing can be inferred from data analytics on nucleic-acid sequences. Toward that end, we represent a nucleic-acid site as a point in a plane defined in terms of the anterior and posterior sub-sequences of the site. The "point-set" representation expands analytical approaches, including the use of statistical tools, to characterize genome sequences. It is found that point-sets for exons and introns are visually different, and that the differences can be quantified using a family of generalized moments. We design a machine-learning algorithm that can recognize individual exons or introns with 91% accuracy. Point-set distributions and generalized moments are found to differ between organisms.


Asunto(s)
Empalme del ARN , ARN , Intrones/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exones/genética
4.
Structure ; 32(4): 377-379, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579678

RESUMEN

Eiler et al. used cryo-electron microscopy to determine a 2.49 Å resolution structure of Giardia lamblia 80S ribosome bound to tRNA, mRNA, and the anti-protozoal drug emetine. The structure reveals some critical aspects of translation in G. lamblia, including the lack of ribosomal protein RACK1, and how emetine blocks translation by interacting with both the ribosome and mRNA.


Asunto(s)
Giardia lamblia , Giardia lamblia/química , Giardia lamblia/genética , Giardia lamblia/metabolismo , Microscopía por Crioelectrón , Emetina/metabolismo , Ribosomas/metabolismo , ARN Mensajero/metabolismo
5.
Vet Res ; 55(1): 43, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581048

RESUMEN

Senecavirus A (SVA) causes outbreaks of vesicular disease in pigs, which imposes a considerable economic burden on the pork industry. As current SVA prevention measures are ineffective, new strategies for controlling SVA are urgently needed. Circular (circ)RNA is a newly characterized class of widely expressed, endogenous regulatory RNAs, which have been implicated in viral infection; however, whether circRNAs regulate SVA infection remains unknown. To investigate the influence of circRNAs on SVA infection in porcine kidney 15 (PK-15) cells, RNA sequencing technology was used to analyze the circRNA expression profiles of SVA-infected and uninfected PK-15 cells, the interactions between circRNAs, miRNAs, and mRNAs potentially implicated in SVA infection were predicted using bioinformatics tools. The prediction accuracy was verified using quantitative real-time (qRT)-PCR, Western blotting, as well as dual-luciferase reporter and RNA pull-down assays. The results showed that 67 circRNAs were differentially expressed as a result of SVA infection. We found that circ_8521 was significantly upregulated in SVA-infected PK-15 cells and promoted SVA infection. circ_8521 interacted with miR-324. miR-324 bound to LC3A mRNA which inhibited the expression of LC3A. Knockdown of LC3A inhibited SVA infection. However, circ_8521 promoted the expression of LC3A by binding to miR-324, thereby promoting SVA infection. We demonstrated that circ_8521 functioned as an endogenous miR-324 sponge to sequester miR-324, which promoted LC3A expression and ultimately SVA infection.


Asunto(s)
MicroARNs , Picornaviridae , Humanos , Animales , Porcinos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Picornaviridae/genética , ARN Mensajero/metabolismo
6.
Shanghai Kou Qiang Yi Xue ; 33(1): 30-35, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583021

RESUMEN

PURPOSE: To explore the mechanism of SETDB1 inhibiting epithelial mesenchymal transition (EMT),migration and invasion in oral cancer via SOX 7 methylation. METHODS: SETDB1 and SOX7 mRNA and protein expression levels in KB cells of oral cancer and oral mucosal epithelial ATCC cells were determined by qRT-PCR and Western blot (WB). SETDB1 si-RNA was structured, then transfect into KB cells of oral cancer by liposome-mediated method. siRNA-SETDB1 was the experimental group (si-S), siRNA empty vector was the negative control group (si-N), and untransfected KB cells were the blank control group(NC). SETDB1 mRNA and protein expression levels were detected by qRT-PCR and Western blot(WB), to verify the transfection effect. The methylation levels of SOX7 were determined by pyrosequencing. The expression of N-cadherin, Vimentin, ß-catenin, and Slug proteins was detected by WB. Cell viability was measured by MTT assay, migration ability was tested by scratch healing assay, and invasion ability was tested by Transwell chamber assay. Statistical analysis was performed with SPSS 21.0 software package. RESULTS: The results of Rt-qPCR and WB showed that the SETDB1 mRNA and protein expression decreased significantly in si-S group(P<0.05). Pyrosequencing test results showed that the regulation of SETDB1 could significantly reduce the SOX7 methylation rate and increased the SOX7 protein expression. WB results showed that knockdown of SETDB1 significantly inhibited the expression of EMT-related proteins N-cadherin, Vimentin, ß-catenin and Slug in oral cancer KB cells (P<0.05). The results of cell functology experiments showed that knockdown of SETDB1 could significantly inhibit survival, migration and invasion of KB cells. CONCLUSIONS: Downregulation of SETDB1 could suppress EMT, migration and invasion of oral cancer cells by regulating SOX7 methylation level, providing new ideas and targets for the diagnosis and treatment of oral cancer.


Asunto(s)
Neoplasias de la Boca , Factores de Transcripción SOXF , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Regulación hacia Abajo , Línea Celular Tumoral , Vimentina/genética , Vimentina/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias de la Boca/genética , Transición Epitelial-Mesenquimal , ARN Mensajero/metabolismo , Metilación , Movimiento Celular/genética , Proliferación Celular , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
7.
Sci Rep ; 14(1): 8095, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582932

RESUMEN

Legumain (or asparagine endopeptidase/AEP) is a lysosomal cysteine endopeptidase associated with increased invasive and migratory behavior in a variety of cancers. In this study, co-delivery of Cas9 mRNA and guide RNA (gRNA) by lipid nanoparticles (LNP) for editing of LGMN gene was performed. For in-vitro transcription (IVT) of gRNA, two templates were designed: linearized pUC57-T7-gRNA and T7-gRNA oligos, and the effectiveness of gRNA was verified in multiple ways. Cas9 plasmid was modified and optimized for IVT of Cas9 mRNA. The effects of LGMN gene editing on lysosomal/autophagic function and cancer cell metastasis were investigated. Co-delivery of Cas9 mRNA and gRNA resulted in impaired lysosomal/autophagic degradation, clone formation, migration, and invasion capacity of cancer cells in-vitro. Experimental lung metastasis experiment indicates co-delivery of Cas9 mRNA and gRNA by LNP reduced the migration and invasion capacity of cancer cells in-vivo. These results indicate that co-delivery of Cas9 mRNA and gRNA can enhance the efficiency of CRISPR/Cas9-mediated gene editing in-vitro and in-vivo, and suggest that Cas9 mRNA and gRNA gene editing of LGMN may be a potential treatment for breast tumor metastasis.


Asunto(s)
Neoplasias de la Mama , Sistemas CRISPR-Cas , Humanos , Femenino , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias de la Mama/genética , Edición Génica/métodos
8.
Shanghai Kou Qiang Yi Xue ; 33(1): 22-29, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583020

RESUMEN

PURPOSE: To investigate the role and mechanism of connexin 43(Cx43)in odontoblast differentiation of human dental pulp cells (hDPCs) induced by lipopolysaccharide (LPS). METHODS: The maxillary first molar injury model of SD rats was established. The expression pattern of Cx43 in dental pulp repair after injury was detected by immunofluorescence(IF) staining. hDPCs was respectively stimulated with 0, 1, 10, 100 and 1 000 ng/mL LPS for 6 h to screen the optimal concentration, and then the expression of Cx43 was inhibited and overexpressed in hDPCs. Quantitative real-time PCR(qRT-PCR) and Western blot(WB) were used to detect the expression of Cx43 and dentin sialophosphoprotein (DSPP), dental matrix protein-1 (DMP-1), osterix (Osx) and extracellular signal-regulated kinase (ERK) activity. Furthermore, hDPCs were treated with specific Cx43 channel inhibitors to investigate the effect of Cx43-mediated channel activity in odontoblast differentiation of hDPCs, and to explore the role and mechanism of Cx43 in regulating odontoblast differentiation of hDPCs induced by LPS. Statistical analysis was performed with SPSS 26.0 software package. RESULTS: IF results showed that Cx43 was mainly expressed in the odontoblast layer in healthy dental pulp tissues. At 3-24 h after tooth injury, the expression of Cx43 decreased and then gradually increased to the normal level; from 3 days to 2 weeks after injury, the expression of Cx43 tended to be down-regulated which was in the odontoblast layer and pulp proper. The expression of DSPP mRNA was significantly up-regulated in the hDPCs stimulated with 10 ng/mL LPS for 6 h(P<0.01). Inhibition of Cx43 significantly up-regulated the expression of DSPP, DMP-1 and Osx mRNA induced by LPS in hDPCs(P<0.05), while overexpression of Cx43 obviously inhibited the expression of factors related to LPS-induced odontoblast differentiation(P<0.01) and the fluorescence intensity of DSPP. 10 ng/mL LPS activated ERK signal in hDPCs, and overexpression of Cx43 significantly attenuated the activity of ERK signal induced by LPS(P<0.01). Inhibition of Cx43-mediated hemichannel (HC) promoted mRNA expression of factors related to odontoblast differentiation in hDPCs and the activity of ERK signal induced by LPS(P<0.05), while blocking Cx43-mediated gap junction channel (GJC) inhibited odontoblast differentiation. CONCLUSIONS: Cx43 participates in the regulation of dental pulp repair after injury, and its expression shows a downward trend as a whole. Inhibition of Cx43 or blocking of HC promotes LPS-induced ERK signal activity and odontoblast differentiation of hDPCs.


Asunto(s)
Conexina 43 , Lipopolisacáridos , Animales , Humanos , Ratas , Diferenciación Celular/fisiología , Células Cultivadas , Conexina 43/metabolismo , Pulpa Dental/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Odontoblastos/metabolismo , Ratas Sprague-Dawley , ARN Mensajero/metabolismo
9.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 201-207, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38584100

RESUMEN

Objective: To investigate the effects of reduced nicotinamide adenine dinucleotide phosphooxidase 4 (NOX4) inhibitors GKT137831 and M2-type macrophages on oxidative stress markers NOX4, nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the rat hepatic stellate cell line (HSC-T6). Methods: Rat bone marrow macrophages were extracted and induced using interleukin (IL)-4 to differentiate them into M2 phenotype macrophages. HSC-T6 activation was performed with 5 µg/L transforming growth factor ß1 (TGF-ß1). The proliferation condition of HSC-T6 cells stimulated by the NOX4 inhibitor GKT137831 at a concentration gradient of 5 to 80 µmol/L after 48 hours was detected using the Cell Counting Kit-8 (CCK-8) assay. The optimal drug concentration was chosen and divided into an HSC co-culture group (the control group) and five experimental groups: the TGF-ß1 stimulation group, the TGF-ß1 +GKT137831 stimulation group, the M2-type macrophage + HSC co-culture group, the M2-type macrophage +TGF-ß1 stimulation group, and the M2-type + TGF-ß1 + GKT137831 stimulation group. Reactive oxygen species (ROS) production level was detected in each cell using the DCFH-DA probe method. NOX4, α-smooth muscle actin (α-SMA), Nrf2, and HO-1 levels in each group of HSC cells were detected using the qRT-PCR method and the Western blot method. The t-test was used to compare the two groups. The one-way ANOVA method was used to compare multiple groups. Results: Intracellular ROS increased significantly following TGF-ß1 stimulation. ROS relative levels in each cell group were 1.03±0.11, 3.88±0.07, 2.90±0.08, 0.99±0.06, 3.30±0.05, 2.21±0.11, F = 686.1, P = 0.001, respectively. The mRNA and protein expressions of NOX4, α-SMA, Nrf2, and HO-1 were significantly increased (P < 0.05). After the addition of GKT137831, ROS, and NOX4, α-SMA mRNA and protein expression were comparatively decreased in the TGF-ß1 stimulation group (P < 0.05), while mRNA and protein expressions of Nrf2 and HO-1 were increased (P < 0.05). The expression of ROS and NOX4, as well as α-SMA mRNA and protein, produced by HSC were significantly decreased in the co-culture group compared to the single culture group after TGF-ß1 stimulation (P < 0.05). After the addition of GKT137831, ROS, NOX4, α-SMA mRNA, and protein expression were further reduced in the co-culture group compared with the single culture group (P < 0.05), while the mRNA and protein expression of Nrf2 and HO-1 were further increased (P < 0.05). Conclusion: NOX4 inhibitor GKT137831 can reduce RO, NOX4, and α-SMA levels while increasing Nrf2 and HO-1 levels in hepatic stellate cells. After M2-type macrophage co-culture, GKT137831 assists in lowering ROS, NOX4, and α-SMA levels while accelerating Nrf2 and HO-1 levels in hepatic stellate cells, which regulates the balance between oxidative stress and anti-oxidative stress systems, thereby antagonizing the fibrosis process.


Asunto(s)
Células Estrelladas Hepáticas , Pirazolonas , Piridonas , Factor de Crecimiento Transformador beta1 , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Cirrosis Hepática/inducido químicamente , Estrés Oxidativo , Macrófagos/metabolismo , ARN Mensajero/metabolismo
10.
Sci Rep ; 14(1): 7888, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570626

RESUMEN

Given the limitation of current routine approaches for pancreatic cancer screening and detection, the mortality rate of pancreatic cancer cases is still critical. The development of blood-based molecular biomarkers for pancreatic cancer screening and early detection which provide less-invasive, high-sensitivity, and cost-effective, is urgently needed. The goal of this study is to identify and validate the potential molecular biomarkers in white blood cells (WBCs) of pancreatic cancer patients. Gene expression profiles of pancreatic cancer patients from NCBI GEO database were analyzed by CU-DREAM. Then, mRNA expression levels of three candidate genes were determined by quantitative RT-PCR in WBCs of pancreatic cancer patients (N = 27) and healthy controls (N = 51). ROC analysis was performed to assess the performance of each candidate gene. A total of 29 upregulated genes were identified and three selected genes were performed gene expression analysis. Our results revealed high mRNA expression levels in WBCs of pancreatic cancer patients in all selected genes, including FKBP1A (p < 0.0001), PLD1 (p < 0.0001), and PSMA4 (p = 0.0002). Among candidate genes, FKBP1A mRNA expression level was remarkably increased in the pancreatic cancer samples and also in the early stage (p < 0.0001). Moreover, FKBP1A showed the greatest performance to discriminate patients with pancreatic cancer from healthy individuals than other genes with the 88.9% sensitivity, 84.3% specificity, and 90.1% accuracy. Our findings demonstrated that the alteration of FKBP1A gene in WBCs serves as a novel valuable biomarker for patients with pancreatic cancer. Detection of FKBP1A mRNA expression level in circulating WBCs, providing high-sensitive, less-invasive, and cost-effective, is simple and feasible for routine clinical setting that can be applied for pancreatic cancer screening and early detection.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Pancreáticas , Humanos , Detección Precoz del Cáncer/métodos , Biomarcadores/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , ARN Mensajero/metabolismo , Leucocitos/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
11.
BMC Complement Med Ther ; 24(1): 144, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575939

RESUMEN

BACKGROUND: Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS: PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION: PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.


Asunto(s)
Enfermedad de Alzheimer , Panax notoginseng , Saponinas , Humanos , Ratones , Animales , Lactante , Panax notoginseng/química , Saponinas/farmacología , Mitofagia , Estrés Oxidativo , Encéfalo/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ARN Mensajero/metabolismo
12.
Wiley Interdiscip Rev RNA ; 15(2): e1841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576135

RESUMEN

Long noncoding (lnc)RNAs modulate gene expression programs in a range of developmental processes in different organs. In skeletal muscle, lncRNAs have been implicated in myogenesis, the process whereby muscle precursor cells form muscle fibers during embryonic development and regenerate muscle fibers in the adult. Here, we discuss OIP5-AS1, a lncRNA that is highly expressed in skeletal muscle and is capable of coordinating protein expression programs during myogenesis. Given that several myogenic functions of OIP5-AS1 involve interactions with MEF2C mRNA and with the microRNA miR-7, it was critical to carefully evaluate the precise levels of OIP5-AS1 during myogenesis. We discuss the approaches used to examine lncRNA copy number using OIP5-AS1 as an example, focusing on quantification by quantitative PCR analysis with reference to nucleic acids of known abundance, by droplet digital (dd)PCR measurement, and by microscopic visualization of individual lncRNAs in cells. We discuss considerations of RNA stoichiometry in light of developmental processes in which lncRNAs are implicated. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Adulto , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , MicroARNs/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Proliferación Celular/genética
13.
PLoS One ; 19(4): e0300965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557554

RESUMEN

AIM: Our study aims to identify novel non-coding RNA-mRNA regulatory networks associated with ß-cell dysfunction and compensatory responses in obesity-related diabetes. METHODS: Glucose metabolism, islet architecture and secretion, and insulin sensitivity were characterized in C57BL/6J mice fed on a 60% high-fat diet (HFD) or control for 24 weeks. Islets were isolated for whole transcriptome sequencing to identify differentially expressed (DE) mRNAs, miRNAs, IncRNAs, and circRNAs. Regulatory networks involving miRNA-mRNA, lncRNA-mRNA, and lncRNA-miRNA-mRNA were constructed and functions were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS: Despite compensatory hyperinsulinemia and a significant increase in ß-cell mass with a slow rate of proliferation, HFD mice exhibited impaired glucose tolerance. In isolated islets, insulin secretion in response to glucose and palmitic acid deteriorated after 24 weeks of HFD. Whole transcriptomic sequencing identified a total of 1324 DE mRNAs, 14 DE miRNAs, 179 DE lncRNAs, and 680 DE circRNAs. Our transcriptomic dataset unveiled several core regulatory axes involved in the impaired insulin secretion in HFD mice, such as miR-6948-5p/Cacna1c, miR-6964-3p/Cacna1b, miR-3572-5p/Hk2, miR-3572-5p/Cckar and miR-677-5p/Camk2d. Additionally, proliferative and apoptotic targets, including miR-216a-3p/FKBP5, miR-670-3p/Foxo3, miR-677-5p/RIPK1, miR-802-3p/Smad2 and ENSMUST00000176781/Caspase9 possibly contribute to the increased ß-cell mass in HFD islets. Furthermore, competing endogenous RNAs (ceRNA) regulatory network involving 7 DE miRNAs, 15 DE lncRNAs and 38 DE mRNAs might also participate in the development of HFD-induced diabetes. CONCLUSIONS: The comprehensive whole transcriptomic sequencing revealed novel non-coding RNA-mRNA regulatory networks associated with impaired insulin secretion and increased ß-cell mass in obesity-related diabetes.


Asunto(s)
Diabetes Mellitus , MicroARNs , ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Dieta Alta en Grasa/efectos adversos , ARN Circular/metabolismo , Secreción de Insulina , Secuenciación del Exoma , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Obesidad/genética , Redes Reguladoras de Genes , Canales de Calcio Tipo N/metabolismo
14.
BMC Genomics ; 25(1): 325, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561670

RESUMEN

BACKGROUND: Non-coding RNA is a key epigenetic regulation factor during skeletal muscle development and postnatal growth, and miR-542-3p was reported to be conserved and highly expressed in the skeletal muscle among different species. However, its exact functions in the proliferation of muscle stem cells and myogenesis remain to be determined. METHODS: Transfection of proliferative and differentiated C2C12 cells used miR-542-3p mimic and inhibitor. RT-qPCR, EdU staining, immunofluorescence staining, cell counting kit 8 (CCK-8), and Western blot were used to evaluate the proliferation and myogenic differentiation caused by miR-542-3p. The dual luciferase reporter analysis and rescued experiment of the target gene were used to reveal the molecular mechanism. RESULTS: The data shows overexpression of miR-542-3p downregulation of mRNA and protein levels of proliferation marker genes, reduction of EdU+ cells, and cellular vitality. Additionally, knocking it down promoted the aforementioned phenotypes. For differentiation, the miR-542-3p gain-of-function reduced both mRNA and protein levels of myogenic genes, including MYOG, MYOD1, et al. Furthermore, immunofluorescence staining immunized by MYHC antibody showed that the myotube number, fluorescence intensity, differentiation index, and myotube fusion index all decreased in the miR-542-3p mimic group, compared with the control group. Conversely, these phenotypes exhibited an increased trend in the miR-542-3p inhibitor group. Mechanistically, phosphatase and tensin homolog (Pten) was identified as the bona fide target gene of miR-542-3p by dual luciferase reporter gene assay, si-Pten combined with miR-542-3p inhibitor treatments totally rescued the promotion of proliferation by loss-function of miR-542-3p. CONCLUSIONS: This study indicates that miR-542-3p inhibits the proliferation and differentiation of myoblast and Pten is a dependent target gene of miR-542-3p in myoblast proliferation, but not in differentiation.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Epigénesis Genética , Proliferación Celular/genética , Diferenciación Celular/genética , ARN Mensajero/metabolismo , Desarrollo de Músculos/genética , Mioblastos , Luciferasas/genética , Luciferasas/metabolismo
15.
BMC Musculoskelet Disord ; 25(1): 253, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561728

RESUMEN

BACKGROUND: The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS: CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS: The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION: The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Animales , Ratones , Cartílago Articular/metabolismo , Antígeno CD146/metabolismo , Diferenciación Celular , Células Cultivadas , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea/metabolismo , Condrogénesis , ARN Mensajero/metabolismo , Fenómenos Magnéticos , Lípidos
16.
Wiley Interdiscip Rev RNA ; 15(2): e1843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576117

RESUMEN

RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.


Asunto(s)
Empalme del ARN , Proteínas de Unión al ARN , Humanos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Dolor/genética
17.
J Int Soc Sports Nutr ; 21(1): 2336095, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38576169

RESUMEN

PURPOSE: Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS: The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS: Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION: Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.


Asunto(s)
Ajo , Glucógeno , Humanos , Glucógeno/metabolismo , Antioxidantes/metabolismo , Ajo/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Músculo Esquelético , Suplementos Dietéticos , ARN Mensajero/metabolismo , Mitocondrias/metabolismo , Glucemia/metabolismo
18.
Acta Neurobiol Exp (Wars) ; 84(1): 89-97, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38587320

RESUMEN

Opioid addiction is critically dependent on the activation of N­methyl­D­aspartate (NMDA) receptors, which are widely found in the mesocorticolimbic system. Meanwhile, opioid addiction may affect the expression level of NMDA receptor subunits. The existence of GluN3 subunits in the NMDA receptor's tetramer structure reduces the excitatory current of the receptor channel. We evaluated the changes in the mRNA expression pattern of the GluN3B subunit of the NMDA receptor in rat brains following acute and chronic exposure to morphine. Chronic, escalating intraperitoneal doses of morphine or saline were administered twice daily to male Wistar rats for six days. Two other groups were injected with a single acute dose of morphine or saline. The mRNA level of the GluN3B subunit of the NMDA receptor in the striatum, hippocampus, and nucleus accumbens (NAc) was measured by real­time PCR. mRNA expression of the GluN3B subunit was considerably augmented (3.15 fold) in the NAc of animals chronically treated with morphine compared to the control group. The difference between rats that were chronically administered morphine and control rats was not statistically significant for other evaluated brain areas. In rats acutely treated with morphine, no significant differences were found for GluN3B subunit expression in the examined brain regions compared to the control group. It was concluded that chronic exposure to morphine notably increased the GluN3B subunit of the NMDA receptor in NAc. The extent of the impact of this finding on opioid addiction and its features requires further evaluation in future studies.


Asunto(s)
Morfina , Trastornos Relacionados con Opioides , Ratas , Masculino , Animales , Morfina/farmacología , Receptores de N-Metil-D-Aspartato , Ratas Wistar , Encéfalo/metabolismo , Trastornos Relacionados con Opioides/metabolismo , ARN Mensajero/metabolismo
19.
J Mol Neurosci ; 74(2): 34, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38565829

RESUMEN

Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, ß-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.


Asunto(s)
Histona Acetiltransferasas , Histonas , Animales , Ratones , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Acetilación , Hipocampo/metabolismo
20.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 499-506, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597441

RESUMEN

OBJECTIVE: To investigate the effects of α7 nicotinic acetylcholine receptor (nAChR) agonist on ß3-adrenoceptor agonist-induced impairment of white fat homeostasis and beige adipose formation and heat production in obese mice. METHODS: Forty obese C57BL/6J mice were randomized into high-fat feeding group, ß3-adrenoceptor agonist-treated model group, α7 nAChR agonist group, and α7 nAChR inhibitor group (n=10), with another 10 mice with normal feeding as the blank control group. White adipose tissue from the epididymis of the mice were sampled for HE staining of the adipocytes. The expression levels of TNF-α, IL-1ß, IL-10 and TGF-ß in the white adipose tissue were determined by ELISA, and the mRNA levels of iNOS, Arg1, UCP-1, PRDM-16 and PGC-1α were detected using RT-qPCR. Western blotting was performed to detect the expression levels of NF-κB P65, p-JAK2, p-STAT3 in the white adipose tissue. RESULTS: Compared with those in the blank control group, the mice with high-fat feeding showed significantly increased body weight, more fat vacuoles in the white adipose tissue, increased volume of lipid droplets in the adipocytes, upregulated iNOS mRNA expression and protein expression of TNF-α and IL-1ß, and lowered expression of Arg-1 mRNA and IL-10 and TGF-ß proteins (P < 0.01). Treatment with α7 nAChR significantly reduced mRNA levels of PRDM-16, PGC-1α and UCP-1, lowered TNF-α and IL-1ß expressions, increased IL-10 and TGF-ß expressions, and reduced M1/M2 macrophage ratio in the white adipose tissues (P < 0.05 or 0.01). CONCLUSION: Activation of α7 nAchR improves white adipose tissue homeostasis impairment induced by ß3 agonist, promotes transformation of M1 to M2 macrophages, reduces inflammatory response in white adipose tissue, and promote beige adipogenesis and thermogenesis in obese mice.


Asunto(s)
Interleucina-10 , Receptor Nicotínico de Acetilcolina alfa 7 , Masculino , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Ratones Obesos , Adipogénesis , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Homeostasis , Termogénesis , Factor de Crecimiento Transformador beta/metabolismo , ARN Mensajero/metabolismo , Receptores Adrenérgicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...