Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.686
Filtrar
1.
J Agric Food Chem ; 72(26): 14581-14591, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957087

RESUMEN

Plants withstand pathogen attacks by recruiting beneficial bacteria to the rhizosphere and passing their legacy on to the next generation. However, the underlying mechanisms involved in this process remain unclear. In our study, we combined microbiomic and transcriptomic analyses to reveal how the rhizosphere microbiome assembled through multiple generations and defense-related genes expressed in Arabidopsis thaliana under pathogen attack stress. Our results showed that continuous exposure to the pathogen Pseudomonas syringae pv tomato DC3000 led to improved growth and increased disease resistance in a third generation of rps2 mutant Arabidopsis thaliana. It could be attributed to the enrichment of specific rhizosphere bacteria, such as Bacillus and Bacteroides. Pathways associated with plant immunity and growth in A. thaliana, such as MAPK signaling pathways, phytohormone signal transduction, ABC transporter proteins, and flavonoid biosynthesis, were activated under the influence of rhizosphere bacterial communities. Our findings provide a scientific basis for explaining the relationship between beneficial microbes and defense-related gene expression. Understanding microbial communities and the mechanisms involved in plant responses to disease can contribute to better plant management and reduction of pesticide use.


Asunto(s)
Arabidopsis , Resistencia a la Enfermedad , Enfermedades de las Plantas , Pseudomonas syringae , Rizosfera , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Microbiota , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiología del Suelo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adaptación Fisiológica , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Physiol Plant ; 176(4): e14428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38981693

RESUMEN

Chlorophyll is essential in photosynthesis, converting sunlight into chemical energy in plants, algae, and certain bacteria. Its structure, featuring a porphyrin ring enclosing a central magnesium ion, varies in forms like chlorophyll a, b, c, d, and f, allowing light absorption at a broader spectrum. With a 20-carbon phytyl tail (except for chlorophyll c), chlorophyll is anchored to proteins. Previous findings suggested the presence of chlorophyll with a modified farnesyl tail in thermophilic cyanobacteria Thermosynechoccocus vestitus. In our Arabidopsis thaliana PSII cryo-EM map, specific chlorophylls showed incomplete phytyl tails, suggesting potential farnesyl modifications. However, further high-resolution mass spectrometry (HRMS) analysis in A. thaliana and T. vestitus did not confirm the presence of any farnesyl tails. Instead, we propose the truncated tails in PSII models may result from binding pocket flexibility rather than actual modifications.


Asunto(s)
Arabidopsis , Clorofila , Complejo de Proteína del Fotosistema II , Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/metabolismo , Espectrometría de Masas , Thermosynechococcus/metabolismo , Microscopía por Crioelectrón
3.
Physiol Plant ; 176(4): e14432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38981735

RESUMEN

WRKYs play important roles in plant stress resistance. However, the role of WRKYs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis) against Botrytis cinerea (B. cinerea) remains poorly understood. Herein, the expression of BcWRKY1 was induced by B. cinerea. Further, the role of BcWRKY1 in B. cinerea infection was identified. Silencing of BcWRKY1 in non-heading Chinese cabbage enhanced plant resistance to B. cinerea. After B. cinerea inoculation, BcWRKY1-silencing plants exhibited lower reactive oxygen species (ROS) content, higher jasmonic acid (JA) content, and the expression level of JA biosynthesis genes, BcOPR3, BcLOX3-1 and BcLOX3-2 were upregulated. Overexpression of BcWRKY1 in Arabidopsis exhibited a complementary phenotype. By directly targeting W-boxes in the promoter of BcLOX3-2, BcWRKY1 inhibited the transcription of this gene. In addition, 13 candidate interacting proteins of BcWRKY1 were identified by yeast two-hybrid (Y2H) screening, and the interaction between BcWRKY1 and BcCaM6 weakened the inhibition of BcLOX3-2. In summary, our findings suggest that BcWRKY1 interacts with BcCaM6 to negatively regulate disease resistance.


Asunto(s)
Botrytis , Brassica , Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas , Proteínas de Plantas , Botrytis/fisiología , Botrytis/patogenicidad , Ciclopentanos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Brassica/microbiología , Brassica/genética , Brassica/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente
4.
Methods Mol Biol ; 2827: 145-153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985267

RESUMEN

Plant cell suspension cultures (PCSCs) are in vitro-cultured cells that can divide indefinitely in a sterile growth medium. These PCSCs can be derived from various plant tissues, such as the root, stem, leaves, or seeds, and are maintained in a suitable culture medium containing nutrients, vitamins, hormones, and other essential components necessary for their growth. PCSCs have extensive applications in biotechnology, particularly in producing pharmaceutical and chemical compounds. This chapter presents a protocol for generating cell lines from Arabidopsis thaliana root callus under different light conditions, which can be used to investigate the effects of light on plant cell growth and development. The protocol described in this chapter is a valuable tool for researchers interested in utilizing PCSCs in their studies.


Asunto(s)
Arabidopsis , Técnicas de Cultivo de Célula , Luz , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Técnicas de Cultivo de Célula/métodos , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Medios de Cultivo/química , Células Cultivadas
5.
Methods Mol Biol ; 2827: 385-404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985284

RESUMEN

Abiotic environmental stressors cause various types of damage to plants and cause significant loss in yield. Abiotic stress tolerance in plants refers to the ability to withstand environmental factors and maintain growth, development, and production. Since this tolerance is controlled by a gene or a set of genes, transgenic activating of these genes in plants often enhances tolerance under abiotic stress. Therefore, this methodology chapter describes a strategy and the corresponding protocols needed to induce a gene by an abiotic stressor, clone the corresponding cDNA into plasmids and Agrobacterium cells, and genetic transformation to the Arabidopsis plants using the floral dip method. The chapter also describes standard assays to evaluate the transgene's effect on the plant's tolerance. Finally, the techniques outlined in this chapter for cloning and generating transgenic plants tolerant to abiotic stress are a versatile approach that can be implemented across various plant species and genes.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Arabidopsis/genética , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Transformación Genética
6.
Methods Mol Biol ; 2827: 405-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985285

RESUMEN

The engineering of plant cell cultures to produce high-value natural products is suggested to be a safe, low-cost, and environmentally friendly route to produce a wide range of chemicals. Given that the expression of heterologous biosynthetic pathways in plant tissue culture is limited by a lack of detailed protocols, the biosynthesis of high-value metabolites in plant cell culture is constrained compared with that in microbes. However, both Arabidopsis thaliana and Nicotiana benthamiana can be efficiently transformed with multigene constructs to produce high-value natural products in stable plant cell cultures. This chapter provides a detailed protocol as to how to engineer the plant cell culture as bio-factories for metabolite biosynthesis.


Asunto(s)
Arabidopsis , Productos Biológicos , Nicotiana , Productos Biológicos/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Técnicas de Cultivo de Tejidos/métodos , Células Vegetales/metabolismo , Ingeniería Metabólica/métodos , Plantas Modificadas Genéticamente/genética , Metaboloma , Vías Biosintéticas , Metabolómica/métodos , Técnicas de Cultivo de Célula/métodos
7.
Methods Mol Biol ; 2830: 81-91, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977570

RESUMEN

Chromatin immunoprecipitation (ChIP) is used to analyze the targeting of a protein to a specific region of chromatin in vivo. Here, we present an instructive ChIP protocol for Arabidopsis imbibed seeds. The protocol covers all steps, from the sampling of imbibed seeds to the reverse crosslinking of immunoprecipitated protein-DNA complexes, and includes experimental tips and notes. The targeting of the protein to DNA is determined by quantitative PCR (qPCR) using reverse crosslinked DNA. The protocol can be further scaled up for ChIP-sequencing (ChIP-seq) analysis. As an example of the protocol, we include a ChIP-quantitative PCR (ChIP-qPCR) analysis demonstrating the targeting of PIF1 to the ABI5 promoter.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunoprecipitación de Cromatina , Semillas , Arabidopsis/genética , Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina/métodos , Semillas/genética , Semillas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regiones Promotoras Genéticas , ADN de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
8.
Methods Mol Biol ; 2830: 93-104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977571

RESUMEN

In flowering plants, proper seed development is achieved through the constant interplay of fertilization products, embryo and endosperm, and maternal tissues. Understanding such a complex biological process requires microscopy techniques able to unveil the seed internal morphological structure. Seed thickness and relatively low permeability make conventional tissue staining techniques impractical unless combined with time-consuming dissecting methods. Here, we describe two techniques to imaging the three-dimensional structure of Arabidopsis seeds by confocal laser scanning microscopy. Both procedures, while differing in their time of execution and resolution, are based on cell wall staining of seed tissues with fluorescent dyes.


Asunto(s)
Arabidopsis , Microscopía Confocal , Semillas , Semillas/crecimiento & desarrollo , Microscopía Confocal/métodos , Imagenología Tridimensional/métodos , Colorantes Fluorescentes/química , Pared Celular/ultraestructura , Coloración y Etiquetado/métodos
9.
Methods Mol Biol ; 2830: 27-34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977565

RESUMEN

Germination test is fundamental and commonly used technique for seed dormancy and germination studies, and proper assessment of dormancy level and germination ability of a given set of seeds is prerequisite for most of the studies. However, germination is very sensitive to imbibition conditions, and dormancy development is also sensitive to growth conditions of the mother plants. In this chapter, we describe tips for plant growth and germination test mainly for physiological and molecular genetic studies with Arabidopsis. This protocol can be applied for other plant species with relatively small seeds and for various studies to analyze the effect of light, phytohormones, and other chemicals in seed germination.


Asunto(s)
Arabidopsis , Germinación , Latencia en las Plantas , Reguladores del Crecimiento de las Plantas , Semillas , Latencia en las Plantas/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Luz
10.
Nat Commun ; 15(1): 5823, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992052

RESUMEN

Zinc (Zn) is an essential micronutrient but can be cytotoxic when present in excess. Plants have evolved mechanisms to tolerate Zn toxicity. To identify genetic loci responsible for natural variation of plant tolerance to Zn toxicity, we conduct genome-wide association studies for root growth responses to high Zn and identify 21 significant associated loci. Among these loci, we identify Trichome Birefringence (TBR) allelic variation determining root growth variation in high Zn conditions. Natural alleles of TBR determine TBR transcript and protein levels which affect pectin methylesterification in root cell walls. Together with previously published data showing that pectin methylesterification increase goes along with decreased Zn binding to cell walls in TBR mutants, our findings lead to a model in which TBR allelic variation enables Zn tolerance through modulating root cell wall pectin methylesterification. The role of TBR in Zn tolerance is conserved across dicot and monocot plant species.


Asunto(s)
Arabidopsis , Pared Celular , Regulación de la Expresión Génica de las Plantas , Pectinas , Raíces de Plantas , Zinc , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Zinc/metabolismo , Zinc/toxicidad , Pectinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Esterificación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Alelos , Variación Genética
11.
BMC Plant Biol ; 24(1): 664, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992595

RESUMEN

BACKGROUND: Meloidogyne incognita is one of the most important plant-parasitic nematodes and causes tremendous losses to the agricultural economy. Light is an important living factor for plants and pathogenic organisms, and sufficient light promotes root-knot nematode infection, but the underlying mechanism is still unclear. RESULTS: Expression level and genetic analyses revealed that the photoreceptor genes PHY, CRY, and PHOT have a negative impact on nematode infection. Interestingly, ELONGATED HYPOCOTYL5 (HY5), a downstream gene involved in the regulation of light signaling, is associated with photoreceptor-mediated negative regulation of root-knot nematode resistance. ChIP and yeast one-hybrid assays supported that HY5 participates in plant-to-root-knot nematode responses by directly binding to the SWEET negative regulatory factors involved in root-knot nematode resistance. CONCLUSIONS: This study elucidates the important role of light signaling pathways in plant resistance to nematodes, providing a new perspective for RKN resistance research.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Enfermedades de las Plantas , Tylenchoidea , Animales , Tylenchoidea/fisiología , Enfermedades de las Plantas/parasitología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/parasitología , Arabidopsis/genética , Arabidopsis/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Transducción de Señal , Resistencia a la Enfermedad/genética , Luz , Regulación de la Expresión Génica de las Plantas , Fototransducción
12.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955187

RESUMEN

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Autoinmunidad , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Inmunidad de la Planta , Ubiquitina-Proteína Ligasas , Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Fusarium/inmunología , Proteínas NLR/metabolismo , Proteínas NLR/genética , Regulación de la Expresión Génica de las Plantas , Ubiquitinación , Proteínas Portadoras
13.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000320

RESUMEN

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cadmio , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Cadmio/toxicidad , Cadmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estrés Fisiológico/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica
14.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000365

RESUMEN

Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance.


Asunto(s)
Áfidos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Sorghum , Estrés Fisiológico , Triazoles , Sorghum/genética , Sorghum/metabolismo , Áfidos/genética , Áfidos/fisiología , Animales , Triazoles/farmacología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Oxilipinas/metabolismo , Oxilipinas/farmacología , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Arabidopsis/genética , Regiones Promotoras Genéticas , Familia de Multigenes , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Filogenia , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Genoma de Planta
15.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000546

RESUMEN

Plants are often exposed to biotic or abiotic stress, which can seriously impede their growth and development. In recent years, researchers have focused especially on the study of plant responses to biotic and abiotic stress. As one of the most widely planted grapevine rootstocks, 'Beta' has been extensively proven to be highly resistant to stress. However, further research is needed to understand the mechanisms of abiotic stress in 'Beta' rootstocks. In this study, we isolated and cloned a novel WRKY transcription factor, VhWRKY44, from the 'Beta' rootstock. Subcellular localization analysis revealed that VhWRKY44 was a nuclear-localized protein. Tissue-specific expression analysis indicated that VhWRKY44 had higher expression levels in grape roots and mature leaves. Further research demonstrated that the expression level of VhWRKY44 in grape roots and mature leaves was highly induced by salt and cold treatment. Compared with the control, Arabidopsis plants overexpressing VhWRKY44 showed stronger resistance to salt and cold stress. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were significantly increased, and the contents of proline, malondialdehyde (MDA) and chlorophyll were changed considerably. In addition, significantly higher levels of stress-related genes were detected in the transgenic lines. The results indicated that VhWRKY44 was an important transcription factor in 'Beta' with excellent salt and cold tolerance, providing a new foundation for abiotic stress research.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Factores de Transcripción , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Vitis/genética , Vitis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Frío , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tolerancia a la Sal/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
16.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000585

RESUMEN

Plant flowering time is affected by endogenous and exogenous factors, but its variation patterns among different populations of a species has not been fully established. In this study, 27 Arabidopsis thaliana accessions were used to investigate the relationship between autonomous pathway gene methylation, gene expression and flowering time variation. DNA methylation analysis, RT-qPCR and transgenic verification showed that variation in the flowering time among the Arabidopsis populations ranged from 19 to 55 days and was significantly correlated with methylation of the coding regions of six upstream genes in the autonomous pathway, FLOWERING LOCUS VE (FVE), FLOWERING LOCUS Y (FY), FLOWERING LOCUS D (FLD), PEPPER (PEP), HISTONE DEACETYLASE 5 (HAD5) and Pre-mRNA Processing Protein 39-1 (PRP39-1), as well as their relative expression levels. The expression of FVE and FVE(CS) was modified separately through degenerate codon substitution of cytosine and led to earlier flowering of transgenic plants by 8 days and 25 days, respectively. An accurate determination of methylated sites in FVE and FVE(CS) among those transgenic plants and the recipient Col-0 verified the close relationship between the number of methylation sites, expression and flowering time. Our findings suggest that the methylation variation of these six key upstream transcription factors was associated with the gene expression level of the autonomous pathway and flowering time in Arabidopsis. The FVE(CS) and FVE genes in transgenic plants tended to be hypermethylated, which could be a protective mechanism for plants. However, modification of gene sequences through degenerate codon substitution to reduce cytosine can avoid hypermethylated transferred genes in transgenic plants. It may be possible to partially regulate the flowering of plants by modified trans-epigenetic technology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Flores , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Epigénesis Genética
18.
Plant Cell Rep ; 43(7): 188, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960994

RESUMEN

KEY MESSAGE: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/citología , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , División Celular Asimétrica , Mutación/genética , Células Madre/metabolismo , Células Madre/citología , Ciclinas/metabolismo , Ciclinas/genética , Proteínas de Unión a Calmodulina , Factores de Transcripción
19.
Physiol Plant ; 176(4): e14411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973028

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.


Asunto(s)
Arabidopsis , Bacillus licheniformis , Etilenos , Poliaminas , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Arabidopsis/fisiología , Etilenos/metabolismo , Poliaminas/metabolismo , Bacillus licheniformis/metabolismo , Bacillus licheniformis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Plantones/metabolismo , Álcalis/farmacología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA